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Abstract:

When we analyze the reflection phenomenon for the elastic wave, the one of the

most complicated and interesting problems is to study the mode conversion case. For the elastic
wave, there are waves of different modes and a remarkable phenomenon called ‘‘mode-conversion”
which causes serious difficulties. In this paper, by considering the non back-scattering case, we
examine the singularities of the scattering kernel for the elastic wave equation with transverse
incident waves and derive a new result about the singularities of the scattering kernel.
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1. Introduction. Let € be an exterior do-
main in R?® with smooth and compact boundary.
We consider the isotropic elastic wave equation with

the Dirichlet boundary condition

(1.1)
(0 — L)u(t,z) =0 in RxQ,
u(t,z) =0 on R x99,
u(0,z) = fi(z) Ow(0,z) = fo(x) on Q,

where u(t,z) = "(u1,us,u3) and fi(x) = "(fu, fio,
fis) (i =1,2). Recall that L has the following form:
3
L= aijaar, a’nﬂ
i j=1

where a;; are 3 x 3 matrices of which (p, g)-entry is
expressed by aipj,. We say that the elastic medium
Q is isotropic, if a;pjy is given by

Qipjg = Mipig + 11(0:50pq + bigOjp),

where A, o are Lame’s constants satisfying the fol-
lowing inequalities:

2
/\+§/,L>O, > 0.

Under the assumption that the elastic medium
Q is isotropic, Yamamoto [13] and Shibata-Soga [8]
have formulated a scattering theory which is analo-
gous to the theory of Lax-Phillips [4]. Let k_(s,w)
and k(s,w) € L*(R x S?) denote the incoming and
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outgoing translation representations of an initial
data f ="(f1, f2) respectively (see [4]). Recall that
the scattering operator S is the mapping

S k_(s,w)

The scattering operator S admits a representation:
(Sk_)(s,0) = // S(s —35,0,w)k_(5,w)d5dw
RxS?

with a distribution kernel S(s,6,w) called the scat-
tering kernel. Majda [5] has obtained a representa-
tion formula of the scattering kernel S(s,0,w) for
the scalar-valued case. This representation formula
is very effective to investigate inverse scattering prob-
lems (cf. Majda [5], Soga [9], Petkov [7]). For the elas-
tic case, Soga [10] and Kawashita [2] have derived a
representation formula of the scattering kernel.

The characteristic matrix L(&) of the operator

L(d,) has the eigenvalues C2|¢|* and C2|¢]?, where
Cr=(A+2u)7, Cp=
Let P;(&) be the eigenprojector associated to the

— ky(s,w).

eigenvalues Cf|§|2(i =1,2), where

P(§) =¢®¢ P& =1- P9
Then P;(£)R? is the space spaned by &, and P (£)R?
is the orthogonal complement of P;(£)R?. Asso-
ciated with the eigenvalues CZ2|¢|*(i =1,2), there
are waves of two different types (modes). The one
propagates with the speed C}, and the other with
Cy. Furthermore their amplitudes are longitudinal
and transverse to the propagation direction respec-
tively, and therefore these waves are called longitu-
dinal and transverse waves respectively. For elastic
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waves there is a remarkable phenomenon called
“mode-conversion’, that is, when longitudinal or
transverse incident wave hits the boundary 0€2, both
longitudinal reflected wave and transverse reflected
wave appear. This phenomenon causes serious diffi-
culties in the analysis of singularities of the scatter-
ing kernel for the elastic wave equation.

In view of results concerning mode-conversion
(cf. Chapter 5 of Achenbach [1] and Theorem
2.1 of Soga [12]), we can expect that correspond-
ing phenomenon occurs for the scattering kernel
S(s,0,w), because in the asymptotic sense the kernel
P,(0)S(C;*0-x —t,0,w)P(w) expresses the C;-mode
component of the scattered wave in the direction 6
for the Cj-mode incident plane wave in the direction
w. In the back-scattering case (i.e § = —w), studying
by Soga [10, 11] we can obtain the same results as in
Majda [5]. In [11], he has derived an asymptotic
expansion of P;(—w)S(+, —w,w)P(w) which is valid
near the right end point of the singular support for
seR (ies=—ryw)):

(1.2)
Pi(-w)S5(s, —w,w) P (w)

~ CZ K(ak)%é(l)(—s = ra(w)) Bi(w)P(w) + -+,

N
k=1

where 7;(w) = (C;! + C7)r(w), 7(w) = mingegq @ -
w {z; w-z=71(W)} NI ={a},, .y and K(a;) is
the Gaussian curvature of 9Q at a; and c is a
constant. For a distribution f(s) on R we use the
notation

f(8) ~ fo(s) + fi(s) + -

which means that there exists an integer m and a
C* function ¢(s) with ¢(sp) # 0 such that for every
integer N > 0

p($){f(s) = (fols) + -+ fu(s))} € H" ™ (R).

For the detailed proof, see Theorem 6.1 in [11]. Since
P,(w) P,(w) =0 in the mode-conversion case (i.e i # I),
in the analysis of the singularity we can use the above
asymptotic expansion (1.2) only when i =1[. In the
mode-conversion case, studying by Kawashita-Soga
[3], it is necessary to examine the lower term of the
asymptotic expansion of the scattering kernel. In [6],
we have proved the following results:
(i) supp [P;(0)S(-, 0, w) P1(0)] C (=00, —rin(6, w)]

(Z = 17 2)7

at s,
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(ii) P;(0)S(s,0,w)P,(w) is singular (not C'*)
at s = —ri(0,w)(i = 1,2),

where 74(0,w) = mingcpq - ny(0,w),ny(0,w) =
— (¢ - C ).

In this paper we examine the singularities of the
scattering kernel in the case of transverse incident
wave, which was not treated in Ota [6].

Before giving the main results in the present
paper, we give several definitions for stating those.
We denote the first hitting points at 92 by N;(6,w)
={z;ny(0,w) - x = ry(6,w)} N Q. Furthermore, we
arbitrarily pick a point a; € Ny(f,w) and choose a
system of orthogonal local coordinates y = (y’,y3),
with y' = (y1,%2), in R? such that y3 = (ry(0,w) —
ni(0,w) - z)|ng(0,w)| ", and that y=0 expresses
the reference point a;. Then ) is represented by
y3 > ¥(y’) in a neighborhood U of a;, where ¥(y’) is
a C'™ function defined in a neighborhood of 3" = 0.

If the Hessian matrix My, of 9(y’) is negative
definite at ' = 0 for every such picked point, we say
that n;;(f,w) is a regular direction for 02, which
does not depend on the choice of the coordinates
y=(y',y3). If ny(0,w) is a regular direction, the set
Ni(0,w) consists of a finite number of isolated
points.

From the above definitions we give the following
result.

Theorem 1.1. Let w,0 € S%. Assume that
|0 + w| is different from zero and sufficiently small,
and nip(0,w) is a regular direction for 0. Then we
have

Pi(0)S(s,0,w)Py(w) is singular (not C*) at
(i=1,2).

The basic idea of the proof is to derive an
asymptotic expansion of P;(0)S(s,0,w)P(w) and to
show that the leading term of this asymptotic ex-
pansion don’t vanish. In this paper we examine only
the singularity of P;(0)S(s,0,w)Py(w) (i.e the case
of (ii) of Theorem 2.1 in [6]), because we are not
able to apply the method of the finite propagation
speed which was used in [6] to study the support of
P(0)S(s,0,w) P (w).

2. Asymptotic expansion of the scattering
kernel and Proof of Theorem 1.1. In order to
prove the singularities of P;(0)S(s, 0, w)P2(w) we
make use of an asymptotic expansion of the scatter-
ing kernel which is derived from Proposition 3.3 in
[6] and prove Theorem 1.1.

s=—ri(0,w)
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To obtain Proposition 3.3 in the case of [ =2 in
[6], we take an orthonormal frame {p;,p2,p3} where
ps = —nq(0,w)|nu(8,w)| ™", and choose the local co-
ordinate system y = (y1,y2,ys3) such that z = y1p1 +
Yopo + y3ps. Moreover we denoted by T the 3 x 3
orthogonal matrix 7T = (t,,) such that T(e;) =
pi(7=1,2,3), where {ei, e, e3} is the canonical basis
in R®. Then we can obtain the following asymptotic
expansion by using Proposition 3.3 in the case of
=2

Proposition 2.1. Let w,0 € S2. Assume that
|0 + w| is sufficiently small, and n;(0,w) is a regular
direction for 0€). Then we have

Pi(6)S(s,0 w)Pg( )
~ (2V2m)2C2 c 2|n72(§ @) 726 (—s — ri2(0,@))

ki:{Z{a3q (C5'3,)

+ tan(Cfléq)} +ag(Cy e + Cf1§3)}ﬁziop2(@) T

x ZK(at)*ﬂsz
t=1

+ BRI
& = 'Tw, 6 = 'T0 and fyy =
\/ +C2oC2—1- Moreover Py = 77:(P® Q)
and sz0 = ﬁ{(f) NI—p® c}} where p =
(@1, Do, Raa), § = "1, @2, |@3]).-
For the detailed proof, see Propositon 3.3 in [6].
Next, using Proposition 2.1, we investigate the
singularities of the scattering kernel S(s,6,w) for the
non-back scattering case and prove Theorem 1.1.
Proof of Theorem 1.1. Note that P(¢) =
ERE Py(§) =1—E® ¢ and each P2 Py(@)(k = 1,2)
takes the following form:

where © = Ty,

(21)  P(@) = P,0*Py(@)
Koy owow;  @r|ws)(1 — @3)
2
- DGR R Do - @) |,
R1o01@3  Riaews  Riolws|(1 — @3)
|
(2.2) P (@) := Py P (@) = ——
pb-q
ﬁ.q_@%z+ —Q1@22+ L:)1|LA~}3|Z_
x| —@ednze Bri-@Ba Gfdslz |,
where z4 := |@3|(R12 — @3) £ 1.
Note that @3 <0 and recalling that
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nin(0,0)/|nia(0,d)| = 1(0,0,—1), we can rewrite
2
( Z [Z{aiq Cy Wq)+ asg(C, 10 }+
=1|¢=
a33(C'2 Rre + C 193)] Pk’OPg(w) in the following
form:

2
P;(6) Z{(a;ﬂ + fag1) @1 + (as: + ‘ags)s
k_

+ ag3(D3 + Fra + Calfiga|) } Pe(@

(2.3)

)/ Co.

Then, calculating each term in (2.3) more carefully,
we can obtain

5 0 0 A+pu
RO [ o o o
Adp 0 0
=N+ pa{2@®d) +ps@a+pioct/(p-q),

01 P (@)

s (0 0 0
PBOY [0 0 Atp|0P(@)
A0 A+p 0
=M+ p)o{20®@d) +ps®@b+pp@c}/(P-q),
2 (p 0 0 B
Pz( )Z O 12 O (@3+I€k2+02|ﬁ12|)P]4(u~))
B=1\0 0 A4+2u

2((:}3 + K12 + C2|ﬁi2|)(c ® d)

I
—

+ Colripo| { p(Pin @ @+ Pia ® b)

+ O+ 2w)pi @ 2 /(5 ),
where

- -(13)

a = t(wlpj (11) ~ ~(23)

. (21
+ Ki2p; ', wip; @)

+ R12p; ",

515 + p™),
a="p-q—dizy, —D1@224, D1 |D3]2-)

b = t(QQﬁi(lg) + I’%IZﬁiUQ)?d}Qﬁi(g?)) + "%122’57:(22)7

Dop ™ 4 Fap ™),
b="(—@o124,P G — Dyzp,Do|ds]2)
o= "(u@p"" +&:p") + A+ 2m) 10
(@ +39p) + (A + 20)Faop Y,
n(@5 + 325 + (A + 2m)p™),

¢ ="(—@3@1 (@ P), —D3@2(@- p), (1 — @) (@ p)),

d =", 0202, |3](1 — @3)).
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each f)ipq) and p; denote (p, g)-entry and I-th column = {()\ + p)|@s|(1 — @g){Q(l — @g) + 2 }}51(33)

of PZ(9~) respectively, and 79 :leg(é @). Hence SO\ (e~ o) ~ -
' A ’ 1-— 2R12 :
applying the asymptotic expansion derived in the A+ ws){ Fa2las| + (@-p )}

Proposition 2.1, we can obtain X ((le)1<31) + @2131(32>)
(24)  P(0)5(s,0,w)Pr(w) + 1) @3 {2(@3 + Faz + Colfina]) (1 — &2)
~ (2\/571-)72027% Cif% 610(=s = r:1(0,2)) + C2|T~L12|Zf}(031151(31> + @2131(32))
x EM: K(ay) 3S | TM,&)'T + -, + (A4 20) (1 = @){2(@3 + Frz + Calfna])Rra| s
=1 (

5 + Cy|fina| (@ ﬁ33>} 5 d).
where M (6,) is a 3 x 3-matrix whose (p, ¢)-entry is 2lna|( )} N )

expressed by my,(0,0). As is shown above, it is By fi12(6,d)/|12(8,&)| = (0,0, —1), that is,

represented in the following form: o 5y = Cflép (p=1,2),
(2-5)~ Cy '@ = O3 — |Ag2(0,@)| and |6] = 1,
M(6, @) Wwe can express mgg(é, W) as a function in (él, 0,):
=[O+ maf2eed +is@atpn @) mss(Br,82) = F(6r,0:)/(5- ),
+ A+ )02 {2(b @ d) + Piz ® b+ pip ® T} where
+2(@y + Faz + Colfizl)(c ® d) F(61,62)
+ 02|ﬁi2|{u(1~7i1 ®a+pip® b) =+ M)|@3(9~)|01_2022(é12 + 522)

x {2C7°C3 (07 + 63) + z— }{1 — (67 + 63)}

22032 | {2
Finally, by considering the mode conversion +A+p )Cl~C’2 (07 +65)
case and non-mode conversion case separately, we x {2R12|@3(0)|+ @(0) - p}C 1Cy05(0) (62 + 62)
show that the leading term of the right hand side of 9 259
02 + 62
(3.4) does not vanish. To show it, we first observe the +rCTC, ( +0)1a(0)]

+ A+ 2u)is @ ¢} /(5 ).

mode-conversion case (7 = 1). ) X {2 w3 (6 —|— R12 + Cs|nya|)C 2022(512 + 522)
Lemma 2.2. A5§ume that |0 + w| is different + Colfinglz YOGy 03(0)

from zero and sufficiently small. Then we have N,

mas(0, @) # 0. ] + (A + 2,u)C’7 Cs5 (07 + 605)
Proof. Let i = 1. According to (2.5), ms3(0,©) x {2(53(0) + Fro + C’2|n12|)mg|w3( )|

is expressed as follows:
+ Co|na|(@ }9

=005 (ef + 92) 7 (01, 92).

Here we note that |6 + @[ # 0 is equivalent to
&|@slz +pPV (1 - @) (@-p)} (61,65) # (0,0). To prove mas(6,&) # 0, it suffices
to show that F(;,0y) # 0. Since F(;,0y) is a
C* function near (61,6;) = (0,0) and |fi;o| = O] " +

m33<§,u~))
- [(,\ + ) {2055 + Raop ) @s] (1 — B2
+p®

+ A+ w)@2{2(@p™ + Fao 5|3 (1 — 22)

+ 5| @sles + 570 (1 - 2@ )} O, Fia= O Co, &(0) - = —CLCy when (61, 62)
+ 2 + s + Cg|ﬁ12|){u(&1ﬁ1(31) n &2251(32)) - = (0,0), we can obtain that
+ O 207155 (1 - 32) reo-
= C'Co{ (A + p) + pCiCy (14 C 1 Cy)
+ Calfinz {32 (@1p1™ + 3 pi™) + (A +20)(3CCy — 1)}

+ (2w (1 - @)@ )} /(5 ) = O o {uCi Oy 4 3(A + 21)C Gy} > 0.
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Therefore we can prove that F (él, 52) # 0 provided

|0 + & is different from zero and sufficiently small.
Thus the proof is completed. O

Next we observe the non mode-conversion case
(1 =2).

Lemma 2.3. Assume that |0+&| is suffi-
ciently small. Then we have mu(é, w) #0.

Proof. Let i = 2. According to (2.5), my1 (6, @) is
expressed as follows:

miy (é, LZ))
= [0+ war {2615}

—i—f)(213>

9 4 :‘512]5511))@1@3

(5 —@22y) + 5y (~@s0n) (@ )}
+ O+ )@ {20255 + Frp S
(—03@n)(@- )}

+2(@3 + Rra + Coliioa]) { (@152 + @2p5)

) 1@3

(13)

- (12
+ Dy )

(—@o@1)zy + Dy

+ A+ 2)Faop S Y @2

+ Colfiaal{1apy V(5 - 4 - 57 z4)
+ Py (—@o@1) 24
+ O+ 2005 (<5550 @ )} /(5 ).

Since, in the back-scattering case, we have &w =
(0,0,—1) and 6 = (0,0,1), we can derive that
m1(0,0) = 2u + O(|0 + &)).

Therefore, by using our assumption that |§ + 4|

is sufficiently small, we can prove that mn(é, @) #0.
Il
As is shown above, since we can prove that
ma3(0,&) #0 when i =1, and m;(f,&) # 0 when
1 = 2, in both cases, it was shown that the leading
term of the right hand side of (3.4) dose not vanish.
Thus the proof is completed. O
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