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Abstract: In this note, we de�ne a notion of �nite-type for invariants of curves on surfaces
as an analogue of the notion of �nite-type for invariants of knots and 3-manifolds (Section 3). We

also present a systematic construction for a large family of �nite-type invariants SCIn for curves on

surfaces (Section 5). Arnold’s invariants of plane isotopy classes of plane curves occur as invariants
of order 1. Our theory of �nite-type invariants of curves on surfaces is developed using the topolog-

ical theory of words.
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1. Introduction. V. A. Vassiliev developed a
method for knot classi�cation by applying singular-

ity theory to knots [10]. This method attempts to

classify knots by using �nite-type invariants (Vassiliev
invariants). It remains unknown whether �nite-type

invariants can classify knots (the Vassiliev conjec-

ture) [3, 10]. Every C-valued invariant v of oriented
knots is extended inductively to singular knots, knots

which may have double points, by resolving the dou-

ble points using the formula:

ð1Þ

We say that v is a �nite-type invariant of order less
than or equal to n if v vanishes on every singular

knot with at least nþ 1 double points, where v is

extended by (1). It is known that there are many
�nite-type invariants of knots, though it is not easy

to construct them.

V. I. Arnold introduced invariants of generic
plane curves using a theory similar to that used by

Vassiliev [1, 2]. M. Polyak and O. Viro gave a con-

crete construction of second and third order Vassiliev
invariants by Gauss diagram formulae [5]; a Gauss

diagram formula is a formula given by a sum over
subdiagrams of a given diagram. Polyak also re-

constructed Arnold’s invariants by Gauss diagram

formulae in a similar manner and combinatorially
de�ned �nite-type invariants of plane curves [4]. On

the other hand, V. Turaev suggested that words be
considered as generalisations of curves and knots

and demonstrated that it is possible to classify words

in the same manner as knots [7{9].
In this note, we de�ne a notion of �nite-type for

invariants of curves on surfaces by replacing ‘‘double

points’’ in the de�nition of Vassiliev invariants of
knots with ‘‘self-tangency points and triple points’’ of

curves on surfaces (De�nition 1). Arnold’s invariants

of plane curves are �nite-type invariants of �rst order
in this sense. We also give a systematic construction

of a large family of �nite-type invariants SCIn for

curves on surfaces using the topological theory of
words (Main Theorem). An idea of our construction

of �nite-type invariants is to consider a sum over sub-

words of a given word, like a Gauss diagram formula.
In this paper, we present the main results and

the ideas of the proofs. The details and generalisa-

tions will be presented elsewhere.
2. Curves. A curve is a smooth immersion

of an oriented circle into an oriented surface. A curve

is generic if it has only transversal double points of
self-intersection. A curve is singular if it has only

transversal double points, self-tangency points, and

triple points of self-intersection. A pointed curve is a
generic curve with a base point on the curve distinct

from the self-intersections. Two curves are stably

homeomorphic if there is a homeomorphism of their
regular neighbourhoods in the ambient surfaces that

maps the �rst curve onto the second one preserving

the orientations of the curve and the surface. Simi-
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larly, two pointed curves are said to be stably homeo-

morphic if there is a homeomorphism as above pre-

serving the base point.
3. De�nition of �nite-type invariants. In

this note, every local self-crossing is either a transver-

sal double point or a point looking like the left hand
side of the formulae (2){(4) and the mirror image of

the picture on the left hand side of (3). Note that

each of these self-crossings is uniquely determined up to
homeomorphism preserving orientation. Self-tangency

points or triple points are called singular points. In par-

ticular, a self-tangency point is a direct self-tangency

point if the two tangent branches are oriented in the

same direction; otherwise, it is called an inverse self-

tangency point. The direction of the resolution of a
self-tangency point is positive if the resolution gener-

ates a curve with a larger number of double points.

We de�ne the orientation of a resolution of a
triple point following [1]. An arbitrary triple point

gives rise to the newborn triangle which exists just

after a resolution of a triple point as shown in Fig. 1.
For the newborn triangle, we de�ne the sign of a tri-

angle. By the de�nition, each singular curve is a im-

mersion of an oriented circle into an oriented surface.
Every triple point of a curve has three preimages on

the circle and their cyclic order is well de�ned. Then
we obtain a well-de�ned orientation of the newborn

triangle given by the order in which the immersed

curve visits its sides. Each side of the immersed curve
also has its own orientation. The orientation may

coincide with the orientation de�ned by the cyclic

order of the sides of the triangle or may be opposite
to it. Let q be the number of the sides of the newborn

triangle whose orientations coincide with that given

by the cyclic order. The sign of the triangle is de�ned

as ð�1Þq (Fig. 1).
The direction of the resolution of the triple point

is positive if the sign of the newborn triangle is 1

after the resolution. The direction of the resolution
of the singular point is negative if the direction is

non-positive. It is possible to resolve singular points
away from the base point.

Let G be some Abelian group. Every G-valued
invariant ’ of generic curves is extended inductively

to singular curves by resolving the singular points

using (2), (3), and (4):

ð2Þ

ð3Þ

ð4Þ

De�nition 1. We say that ’ is a �nite-type

invariant of order less than or equal to n if ’ vanishes

on every singular curve with at least nþ 1 singular

points (self-tangency points or triple points), where
’ is extended by (2), (3) and (4).

Examples of �nite-type invariants will be given

later in this paper (Sect. 5).
4. Signed words. In this section, we intro-

duce a signed word. To de�ne signed words, we review

the de�nition of nanowords following [7{9].
An alphabet is a set and letters are its elements.

A word of length n � 1 in an alphabet A is a mapping

w : n̂! A where n̂ ¼ fi 2 Zj1 � i � ng. Such a
word is encoded by the sequence wð1Þwð2Þ � � �wðnÞ.
A word w : n̂! A is a Gauss word if the inverse

image of each element of A consists of precisely two
elements of n̂.

For a set �, an �-alphabet is a set A endowed

with a mapping j j : A 3 A 7! jAj 2 �. A nanoword

ðA; wÞ over � is a pair ðan �-alphabet A, a Gauss

word in the alphabet AÞ. By de�nition, there is a

unique empty nanoword ; of length 0.

An isomorphism of �-alphabets A1, A2 is a bi-

jection f : A1 ! A2 such that jAj ¼ jfðAÞj for all
A 2 A1. Two nanowords ðA1; w1Þ and ðA2; w2Þ over

� are isomorphic if there is an isomorphism of �-

alphabets f : A1 ! A2 such that w2 ¼ fw1. For an
arbitrary nanoword ðA; wÞ over �, a subnanoword of

ðA; wÞ is obtained by deleting a certain set of letters
from both the �-alphabet A and Gauss word w.

De�nition 2. Let �0 ¼ f�1; 1g. A signed

word of length 2n is a nanoword ðA; wÞ over �0 where
the length of w is 2n.

We consider a simple presentation for signed

words. For every letter A 2 A of a signed word

ðA; wÞ, replace A with A if jAj ¼ �1 and leave A

Fig. 1. The newborn triangle and the sign of the triangle.
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unchanged if jAj ¼ 1. This allows us to encode a

signed word by a sequence of letters A or A for

A 2 A. The isomorphism of two signed words w and

w0 is written as w ’ w 0. For example, ABBA ’
BCCB. However, ABBA is not isomorphic to

ABBA.

For an arbitrary signed word w, we de�ne a sub-

word of w as a sub-nanoword of ðA; wÞ over �0. For
an arbitrary signed word w, u � w means that u is a

subword of w. For example, all the subwords of the

signed word ABACBC are ;, AA, BB, CC, ABAB,

AACC, BCBC, and ABACBC.

5. Construction of the invariant. For two
arbitrary signed words u and w, de�ne h ; i by

u; wh i ¼
X

v�w
ðu; vÞ;ð5Þ

where ðu; vÞ is 1 if u ’ v and is 0 otherwise. Let k
be a �eld, W the k-linear space generated by all the

isomorphism classes of the signed words, and Wn the

k-linear space generated by the isomorphism classes
of signed words of length 2n. We denote by U� the

dual space of a given k-linear space U. We extend

h ; i linearly to h ; i : W�W! k.
We associate with an arbitrary pointed curve

� a nanoword wð�Þ over �0 following [8]. Let us

label the double points of � by distinct letters A1,
A2; . . . ; Am where m is the number of double points.

Starting at the base point of � and following along

� in the positive direction, we write down the labels
of all double points until we return to the base point.

Since every double point is traversed twice, this

gives a Gauss word, wð�Þ, on the alphabet A ¼
fA1; A2; . . . ; Amg. Let t1i (resp., t2i ) be the tangent

vector to � at the double point labeled Ai appear-

ing at the �rst (resp., second) time we pass through

this double point. Set jAij ¼ �1 if the pair ðt1i ; t2i Þ
is positively oriented and jAij ¼ 1 otherwise. This

makes A into an �0-alphabet and makes wð�Þ into

a nanoword over �0. This nanoword is well de�ned
up to isomorphism. This nanoword yields a signed

word. For an arbitrary generic curve � with m dou-

ble points, we denote by w� a signed word: c2m! A
that is determined by selecting an arbitrary base

point as above.

De�nition 3. The linear mapping � on Wn is
de�ned by �ðAxAyÞ ¼ xAyA and �ðAxAyÞ ¼ xAyA

where x and y are words and A is a letter. For two

arbitrary signed words w and w 0, the cyclic equivalence

	 is de�ned as w 	 w 0 if and only if there exists l 2 N

such that � lðwÞ ¼ w 0. Let the subspace W�
n of Wn be

the linear space generated by fw 2Wnj�ðwÞ ¼ wg.
For a signed word v, ½v
 denotes the sum of all the

signed words which are cyclic equivalent to v. The

formula v 7! ½v
 extends to an endomorphism of Wn

also denoted by the square brackets.

For example, for v ¼ AABB, the cyclic equiva-

lence class containing v is fAABB, ABBA, BBAA,

BAABg, and ½v
 is AABB þ ABBA þ BBAA þ
BAAB. If v ¼ AABB, ½v
 ¼ AABB þ ABBA be-
cause AABB ’ BBAA.

We denote the linear space generated by all sta-

ble homeomorphism classes of curves on oriented
closed surfaces by C.

Remark 1. We denote the linear space gener-
ated by all stable homeomorphism classes of curves

with n double points on oriented closed surfaces by

Cn. There exists a bijective mapping from Cn to W�
n;

this has been proved by V. Turaev [8]. Speci�cally,

every signed word determines a regular neighbour-

hood of a curve � on a surface S, where � gives the
CW-decomposition of S (Fig. 2) [6]. In the rest of

this paper, we identify Cn with W�
n and C with W�

by � 7! ½w�
, where W� is the linear space generated
by fw 2W j�ðwÞ ¼ wg.

For an arbitrary natural number n, we de�ne a

signed curve invariant of order n, SCIn : W� !
W�

n, as follows: For a generic curve � 2 W�, we

de�ne SCInð�Þ : Wn ! k by

SCInð�ÞðvÞ ¼ ½v
; w�h i ðv 2WnÞ;ð6Þ
where w� is a signed word determined by �. We can

verify, from the de�nitions of ½ 
 and h ; i, that
SCInð�Þ is de�ned independently of the choice of

base point of �.

Main theorem. For any generic curve � on

an oriented surface, SCInð�Þ is a �nite-type invariant

of generic curves of order less than or equal to n.

The proof of the main theorem is given in
Sect. 7.

Fig. 2. Signed words and pointed curves.
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Let mw be the number of representative ele-
ments of the cyclic equivalence class that contains

a signed word w. Let w ¼ 1
mw
½w
 2W�. Then,

SCInð�Þ ¼ h½�
; w�i. For two arbitrary signed words

v and u, v� denotes a linear mapping such that
v�ðuÞ ¼ ðv; uÞ. We extend � linearly to a map � :

W ! k by ðauþ bvÞ� ¼ au� þ bv� for a, b 2 k.
SCIn restricted to W�

n gives an isomorphism be-

tween W�
n and ðW�

nÞ
�, sending w� to ½w�
�. We

denote this isomorphism by �n. Let us consider

some examples of SCIn. Note that SCInð�ÞðvÞ ¼P
u½u


�ðvÞ where u � w� and u 2Wn. If � is a

given curve and w� is ABCACB, then SCI1ð�Þ ¼
½AA 
� + ½BB 
� + ½CC 
�, SCI2ð�Þ ¼ ½ABAB 
� +

½ACAC 
� + ½BCCB 
�, SCI3ð�Þ ¼ ½ABCACB 
�,
SCInð�Þ ¼ 0 (n � 4). SCI1ð�ÞðXXÞ ¼ ½AA 
�ðXXÞ
+ ½BB 
�ðXXÞ + ½CC 
�ðXXÞ ¼ 3.

Theorem 5.1. For arbitrary k, l such that

1 � l � k � n, the following holds :

n� l
k� l

� �
SCIl ¼ SCIljW�

k
� ��1

k � SCIk:ð7Þ

Proof. The equality ðn� kþ 1Þ � n
k�1

� �
¼ n

k

� �
�

k
k�1

� �
implies

ðn� kþ 1ÞSCIk�1 ¼ SCIk�1jW�
k
� ��1

k � SCIkð8Þ

for every k such that 2 � k � n. By using (8), we

see that ðn� lÞ!SCIl ¼ ðn� kÞ!SCIljW�
lþ1
� ��1

lþ1 �
SCIlþ1jW�

lþ2
� ��1

lþ2 � � � � � SCIk�1jW�
k
� ��1

k � SCIk ¼
ðn� kÞ!ðk� lÞ!SCIljW�

k
� ��1

k � SCIk. r
6. Arnold’s invariants and SCIn. In Sect.

6, � is used to denote an arbitrary generic plane

curve. Let w� be a signed word determined by select-

ing an arbitrary base point, and by using the
de�nition in Sect. 5. Arnold’s basic invariants

ðJþ; J�; StÞ and SCIn (n 2 N) are invariants for
plane isotopy classes of curves on a plane. The

de�nitions of Jþ, J� and St are provided in [1, 2].
Let ið�Þ be the rotation number of a generic

plane curve �. Then, ið�Þ is a �nite-type invariant

of order 0 because the left-hand sides of (2), (3) and
(4) should be equal to 0. We obtain the following

equations:

Jþð�Þ � J�ð�Þ ¼ SCI1ð�ÞðAAÞ;ð9Þ

J�ð�Þ þ 6Stð�Þ ¼ � 2SCI2ð�ÞðAABB
�AABBþ AABBÞ
þ i2ð�Þ � 1:

ð10Þ

However, Jþ, J� and St cannot be represented

by ið�Þ, SCI1 and SCI2 in a similar manner.

7. Proof of the main theorem. It is now
shown that for an extended invariant I for singu-

lar curves with SCIn, Ið�Þ ¼ 0 for an arbitrary

singular curve � with m (� nþ 1) singular points
(P1; P2; . . . ; Pm). We de�ne � by the mapping Pi 7!
�i and � ¼ ð�1; �2; . . . ; �mÞ, where �i ¼ �1. Let J ¼
f1; 2; . . . ;mg and sign � ¼

Q
i2J �i. A generic curve

�� is obtained from � by resolving at Pi, where

i ¼ 1; 2; ;m, in the positive direction if �i ¼ 1 and in

the negative direction if �i ¼ �1. Let w�� be a signed

word derived from �� by choosing an arbitrary base

point.
By using the de�nitions of � and �� in (2), (3)

and (4), we obtain

Ið�Þ ¼
X

�2f�1;1gm
sign �SCInð��Þ:ð11Þ

Then, by using (5), (6), (11) and ½v
 ¼
P

u u, where

v 	 u, we obtain

ð�ÞðvÞ ¼
X

�2f�1;1gm
sign �

X

uð	vÞ
u; w��h i

¼
X

uð	vÞ

X

�2f�1;1gm
sign � u; w��h i:

ð12Þ

In order to show that
P

� sign � u; w��h i van-

ishes, we consider the following conditions. For an

arbitrary �, we can determine the set of generic
curves f��g�. Let w�0

be a signed word correspond-

ing to ��0
with �0 ¼ ð1; 1; . . . ; 1Þ. By using w�0

, w� is

determined as follows:

Let A, B, C, A, B and C be the letters of
signed words, and let x, y, z, and t be words. In the

case of a negative resolution of a direct self-tangency

point, it is necessary to consider two cases: if w��0
¼

xAByABz, then w�� ¼ xyz (Fig. 3), and if w��0
¼

xAByABz, then w�� ¼ xyz. Even in the case of

a negative resolution of an inverse self-tangency
point, there are two cases: if w��0

¼ xAByBAz,

then w�� ¼ xyz (Fig. 4), and if w��0
¼ xAByBAz,

then w�� ¼ xyz. In the case of a negative resolution
of a triple point, there are eight cases: if w��0

¼
xAByCBzCAt, then w�� ¼ xBAyBCzACt; if w��0

¼ xAByACzCBt, then w�� ¼ xBAyCAzBCt;
if w��0

¼ xAByCAzBCt, w�� ¼ xBAyACzCBt

(Fig. 5); if w��0
¼ xAByBCzACt, then w�� ¼

xBAyCBzCAt; if w��0
¼ xAByC BzC At, then

w�� ¼ xBAyBCzACt; if w��0
¼ xAByACzC Bt,

then w�� ¼ xBAyCAzBCt; if w��0
¼ xAByC AzBC,
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then w�� ¼ xBAyACzCBt; if w��0
¼ xAByBCzACt,

then w�� ¼ xBAyCBzCAt.

Let u0 be a subword of w��0
and let �ðu0Þ be the

subword of w�� corresponding to u0. Note that �ðu0Þ
may be ; for a negative resolution of a self-tangency
point. The subword v0 of w�� is represented as �ðu0Þ.
By using (5) and the notion above,

X

�2f�1;1gm
sign � u; w��h i

¼
X

�2f�1;1gm
sign �

X

v 0�w��

ðu; v0Þ

¼
X

�2f�1;1gm
sign �

X

�ðu0Þ�w��

ðu; �ðu0ÞÞ

¼
X

�2f�1;1gm
sign �

X

u0�w��0

ðu; �ðu0ÞÞ

¼
X

u0�w��0

X

�2f�1;1gm
sign �ðu; �ðu0ÞÞ:

ð13Þ

Let Ju0 be f i 2 J j a letter of �ðu0Þ is generated by a

resolution at Pig. The sum over � can be divided into

one part with �i ði 2 Ju0 Þ and another part with �i
ði 2 J n Ju0 Þ. Hence, we have

X

�2f�1;1gm
sign �ðu; �ðu0ÞÞ

¼
X

�i¼�1
i2Ju0

Y

i2Ju0
�i

X

�i¼�1
i2J nJu0

Y

i2JnJu0
�iðu; �ðu0ÞÞ:

ð14Þ

For an arbitrary u, where �ðu0Þ 2Wn, there ex-
ists at least one singular point Pi that is not related

to ðu; �ðu0ÞÞ because u and u0 2 Wn and m � nþ 1.

In other words, J n Ju0 is not empty. Then,
X

�i¼�1
i2J nJu0

Y

i2JnJu0
�iðu; �ðu0ÞÞ

¼ ðu; �ðu0ÞÞ
X

�i¼�1
i2J nJu0

Y

i2JnJu0
�i

¼ 0:

ð15Þ

Here, (15) implies that Ið�ÞðvÞ in (12) vanishes, and
Ið�Þ ¼ 0.

8. Summary. In this note, the author de�nes

a notion of �nite-type for invariants of curves on sur-
faces by using Arnold’s idea related to the singularity

theory among various de�nitions. The author is un-

able to determine the structure of the linear space
Vn generated by �nite-type invariants of order less

than or equal to n.

Because of (6) and (8) we have the following re-
lations between the subspaces ðW�

nÞ
� of Vn.

ð16Þ

This diagram shows how SCIk ð1 � k � nÞ reduce
information from Cn ’ ðW�

nÞ
� to ðW�

1Þ
�.
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