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Abstract: We construct some explicit Galois extensions of Q (or integral polynomials) with

Galois group W ðE8Þ via Mordell-Weil lattices.
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1. Introduction. In our previous work [6],

we have studied the Galois representaions and the al-
gebraic equations of exceptional type Er ðr ¼ 6; 7; 8Þ
arising from Mordell-Weil lattices (MWL). In partic-

ular, we have established the construction theorem of
in�nitely many (linearly disjoint) Galois extensions

of Q whose Galois group is isomorphic to the Weyl

group W ðErÞ, plus the proof that every extension of
Q with Galois group W ðErÞ is obtained in that way

(see Theorems 7.1 and 7.2 of [6]). Furthermore we

have exhibited an explicit example of such for r ¼ 6
and r ¼ 7 [6, Examples 7.4 and 7.6], but the case

r ¼ 8 was omitted there, since some necessary infor-
mation about the maximal subgroups of the Weyl

group W ðE8Þ was not available that time.

More recently, Jouve-Kowalski-Zywina [3] and
V�arilly-Alvarado-Zywina [9] have constructed some

explicit W ðE8Þ-extensions of Q. The former is based

on the simple algebraic group of type E8 and the
characterisitic polynomial of its adjoint representa-

tion, while the latter uses the del-Pezzo surfaces of

degree one.
Now the purpose of this note is to write down an

explicit example of integral polynomial whose split-

ting �eld is a W ðE8Þ-extension of Q by the method
of [6], which is entirely parallel to the case of

r ¼ 6; 7 mentioned above and whose construction

seems to be more natural and somewhat simpler
than those given by [3] or [9]. See §2 for the state-

ments. For the proof (§3), we have only to apply the

group-theoretic lemma on W ðE8Þ obtained by [3]

(Lemma 3.1 below), to the old data we examined
nearly two decades ago. A few remarks are given

in §4.

We refer to [2, Ch. 4] for the basic facts on the
root lattice E8 and the Weyl group W ðE8Þ; we sim-

ply recall that it has order 214 � 35 � 52 � 7 and it is

almost a simple group; we have WðE8Þ ¼ 2:Oþ8 ð2Þ:2
with the notation of Atlas [1] where Oþ8 ð2Þ is a simple

group. For Mordell-Weil lattices, we refer to [5].

I would like to dedicate this paper to Professor

J-P. Serre who helped me in treating this type of
problems in [6], which leads to the present paper.

2. An explicit example. Consider the ellip-

tic curve E=QðtÞ de�ned by

y2¼x3þ ð1þ tþ t2 þ t3Þ xþ 1þ tþ t2 þ t3 þ t5:ð2:1Þ

Let �Q be an algebraic closure of Q. Then the

Mordell-Weil lattice Eð �QðtÞÞ is isomorphic to the
root lattice E8, and there are exactly 240 rational

points P ¼ ðxðtÞ; yðtÞÞ, corresponding to the 240

roots of E8, which are of the form:

xðtÞ ¼ v2t2 þ atþ b; yðtÞ ¼ v3t3 þ ct2 þ dtþ eð2:2Þ

ðv; a; . . . ; e 2 �QÞ. The quantity v satis�es an alge-
braic equation of degree 240 with integer coef�cients

�ðvÞ ¼ 0, which is explicitly given as �ðvÞ ¼ F ðv2Þ
with a polynomial F ðXÞ 2 Z½X� of degree 120 below.

We prove the following

Proposition 2.1. The Galois representation

� : Galð �Q=QÞ ! AutðEð �QðtÞÞÞ ffi AutðE8Þ ¼ WðE8Þ
is surjective.

Proposition 2.2. Let K be the splitting �eld of

the polynomial �ðvÞ of degree 240. Then K=Q is a

Galois extension with Galois group W ðE8Þ.
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F ðXÞð2:3Þ
¼ 1þ 60X þ 1764X 2 þ 33880X 3 þ 478890X 4

þ 5327856X 5 þ 48793140X 6 þ 380483064X 7

þ 2598324795X 8 þ 15932785020X 9

þ 89749362936X 10 þ 473980028160X 11

þ 2387129524492X 12 þ 11610734817520X 13

þ 54946822132728X 14 þ 253570184893640X 15

þ 1139170471812505X 16 þ 4966863067888332X 17

þ 20975997259257420X 18 þ 85751930578096488X 19

þ 338777493097323270X 20

þ 1286110326634556720X 21

þ 4645243511039448812X 22

þ 15781295779679038440X 23

þ 49982542358210104135X 24

þ 147131229010289262732X 25

þ 404490375319591401040X 26

þ 1051866512316875968008X 27

þ 2627876995725411369560X 28

þ 6344305570523224297840X 29

þ 14520529565511555036172X 30

þ 29688209277164999351080X 31

þ 46109411843449203201495X 32

þ 11874604308325191705300X 33

� 304520712140489244332444X 34

� 1710507607494226305427600X 35

� 6564373286217262022972626X 36

� 20640733068869514203178928X 37

� 55485376072870265785653512X 38

� 128793713071489729206023952X 39

� 257743742783949813779493007X 40

� 442469975366494543245531996X 41

� 655052776921613524140717120X 42

� 884472107222475356521568192X 43

� 1280575595777430358465307604X 44

� 2232747093968418475468736712X 45

� 3709663451251650088528216368X 46

� 2787642171110435554924445112X 47

þ 10836668436242566282618846201X 48

þ 58617803145640098757603141084X 49

þ 169901174645519701610315084748X 50

þ 364619363395851165251556074640X 51

þ 621760817442592188743112149958X 52

þ 853996995954752839123279092256X 53

þ 936403079514859290353492992584X 54

þ 813242989399427654276532027720X 55

þ 561901601257250767568960750119X 56

þ 135336745534853793043766886324X 57

� 1359056654022871830736377392248X 58

� 6463196369092920757436226504288X 59

� 19274666150603339082780988303322X 60

� 43000266962344916776074492071304X 61

� 73878522660917308900155611253488X 62

� 93075326288055274100372536594400X 63

� 64536984699047964526813581514542X 64

þ 49300929293800996462069228076464X 65

þ 252860159656242452092675829367640X 66

þ 489725119826300703593418835619104X 67

þ 660488031167958421155995175713950X 68

þ 685712147170409615430086676252264X 69

þ 551683526957510476762145457969296X 70

þ 288512672181776185291212516963736X 71

� 74267572398719223747581053086990X 72

� 500903915968439620592031943919824X 73

� 910549984484808540102258882764384X 74

� 1206968873617213245195049682159960X 75

� 1388629308181446796708722329894566X 76

� 1569354844716924282753640688567888X 77

� 1823707475660170741752627186852960X 78

� 2048864511428828705784772599553992X 79

� 2035166278567233185515268622860248X 80

� 1687433627384737395302666916386904X 81
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� 1115482759086740014512839085137184X 82

� 526761122020931966446367902077448X 83

� 58577864879939375605450418679390X 84

þ 250069449965626638272171839412808X 85

þ 387136100056401973048117693037508X 86

þ 357325360560127756205870421947760X 87

þ 211364951183975868623079248436736X 88

þ 51418627724822694637234112345296X 89

� 46773865393411874487242211411132X 90

� 71774553474500093078405620618056X 91

� 53829465805447662564570533480300X 92

� 23062139597305102540202721147928X 93

þ 1816100885334286383938979391048X 94

þ 11380969645808962145214086704520X 95

þ 8855368362001862935225686348201X 96

þ 3508823119483958223796553026092X 97

þ 698584814104495914238234637808X 98

� 70607871098449423028062500728X 99

� 98180055668334747549552434182X 100

þ 13906908793114791985890198096X 101

þ 61292636677690980053605520392X 102

þ 40196120652474279054639641144X 103

þ 17855181917039225649951928083X 104

þ 6334493066645070192567414780X 105

þ 2278787412568458774590238896X 106

þ 737551796202189011654576888X 107

þ 432931186611007826071544506X 108

þ 42930134179004989016938168X 109

þ 538259733452669451411924X 110

� 8495924317136199276760920X 111

� 1018334616107030308504127X 112

þ 30090518814268329965700X 113

þ 67986368606208563098464X 114

þ 5895943156273015604992X 115

� 448019811798352498176X 116

� 280668086084640358400X 117

� 3365783326104268800X 118

þ 1750559212171657216X 119

þ 313989595009449984X 120:

3. Proof. Let G ¼ Imð�Þ be the image of �
which is a subgroup of W ðE8Þ. By [6, §7] and [7, §8])

(cf. §4 below for a brief review), G is also isomorphic
to the Galois group GalðK=QÞ, and we can view G as

a subgroup of S240, the permutation group of the 240

roots of �. [The two embeddings of G are compati-
ble, since we have a natural inclusion of W ðE8Þ into

S240 which results from the ‘‘generic’’ case.] In this

situation, we claim that G ¼W ðE8Þ.
For the polynomial �ðXÞ ¼ F ðX2Þ 2 Z½X�, let

�pðXÞ ¼ �ðXÞðmod pÞ for a prime number p and

we consider the decomposition of �pðXÞ 2 Z=pZ½X�
into irreducible polynomials.

Taking p ¼ 5, for example, we �nd that �pðXÞ
is a product of 16 distinct irreducible polynomials of
degree 15, as is easily checked with a computer. We

express this fact by saying that �p has the cycle

type ð15Þ16.
Similarly, for p ¼ 7; 11; 13; 17, we check that the

cycle type is respectively given as follows:

ð3Þ8ð12Þ18; ð15Þ16; ð20Þ12; ð4Þ2ð8Þ29:

Thus the Galois group G contains some elements

having these cycle types.
Now we quote the following lemma from [3],

which is reformulated in the same form as [6, Lemma

7.5] for the case r ¼ 6; 7:
Lemma 3.1 (Jouve-Kowalski-Zywina). Let

C1 (resp. C2) be the conjugacy class, which is unique,

of an element in W ðE8Þ with cycle type ð15Þ16 (resp.

ð4Þ2ð8Þ29). Suppose that a subgroup H of W ðE8Þ has

the property that H \ Ci 6¼ ; for i ¼ 1; 2, then

H ¼W ðE8Þ.
Obviously it implies our claim that G ¼W ðE8Þ,

which completes the proof of both Propositions 2.1

and 2.2.
4. Remarks.

4.1. Background: the generic situation.

For the reader’s convenience, we brie�y recall the
general set-up from [6, §6] as the background of the

proof given above.

Let

E� : y2 ¼ x3 þ
�X3

i¼0

pit
i

�
xþ

X3

j¼0

qjt
j þ t5ð4:1Þ
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� ¼ ðp0; . . . ; q3Þ 2 A8:ð4:2Þ

Assume that � is generic, i.e. pi; qj are algebraically
independent over Q, and let k be the algebraic

closure of Qð�Þ. It is known that the generic Galois

representation

�� : Galðk=Qð�ÞÞ ! AutðEðkðtÞÞÞ ffi WðE8Þ

is surjective and that the smallest Galois extension
K� of Qð�Þ such that EðK�ðtÞÞ ¼ EðkðtÞÞ is equal to

the splitting �eld of the universal polynomial of type

E8 of degree 240 �E8
ðu; �Þ 2 Q½��½u�. See [6, §6] and

[7, §8] for the proof and the de�nition of the universal

polynomial of type Er. In particular, the Galois

group GalðK�=Qð�ÞÞ is isomorphic to W ðE8Þ which
acts transitively on the 240 roots of �E8

ðu; �Þ ¼ 0.

4.2. Special cases. By applying Hilbert’s

irreducibility theorem [4] to the generic situation
above, we obtain in�nitely many WðE8Þ-extensions

of Q [6, Theorem 7.1]: for most choice of �0 2 Q8,

the specialization �! �0 gives rise to such an ex-
tension.

Now the theme of the present note to make a

speci�c choice of �0 2 Q8 for which this holds. The
propositions in §2 assert that if we choose �0 ¼
ð1; . . . ; 1Þ (i.e. if all coef�cients pi; qj of (4.1) are spe-

cialized to 1), then the specialized extension of Q

does have the full Galois group W ðE8Þ. The polyno-

mial �ðvÞ in Proposition 2.2 is obtained from the

universal polynomial �E8
ðu; �Þ under the same spe-

cialization �! �0, except that we replace u by

v ¼ 1=u:

�ðvÞ ¼ �E8
ðu; �0Þ=u240:ð4:3Þ

It is possible to derive the polynomial �ðvÞ di-
rectly from the equations (2.1) and (2.2): �rst substi-

tute (2.2) into (2.1) to obtain an identity in t of the

form:

�0 þ �1tþ � � � þ �5t
5 ¼ 0 ð�i 2 Q½v; a; . . . ; e�Þ

and then eliminate e; . . . ; a from the simultaneous
relations �0 ¼ � � � ¼ �5 ¼ 0 to obtain the equation

�ðvÞ ¼ 0. [In fact, the universal polynomial �E8
ðu; �Þ

is obtained in the same way starting from the generic
equation (4.1) and (2.2) with v ¼ 1=u; see the proof

of [7, Theorem 8.3]].

If we consider the ideal I ¼ ð�0; � � � ; �5Þ in the
polynomial ring Q½v; a; . . . ; e� and take its Gr€obner

basis (with respect to suitable ordering), then we ob-

tain the relation �ðvÞ ¼ 0, plus the polynomial ex-

pressions of a; . . . ; e in terms of v. For this approach,
compare [8].

4.3. Other examples. Observe that the
method described above allows one to produce as

many explicit examples of integral polynomials and

extensions with Galois group WðE8Þ as one wants.
For example, starting from the elliptic curve E 0=QðtÞ
with the equation:

y2¼x3þ 2þ tþ t2 þ t3
� �

xþ 1þ tþ t2 þ t3 þ t5;ð4:4Þ

we get also such a polynomial �0ðvÞ. We leave it as

an excercise to check that the cycle type for p ¼ 11
is ð4Þ2ð8Þ29, while that for p ¼ 43 is ð15Þ16 in this

case. By Lemma 3.1, we obtain another W ðE8Þ-
extension which is distinct from the one given in §2.

4.4. Correction of [6, Theorem 7.3]. We

take this opportunity to make a correction in our

article [6]. In Theorem 7.3 (a formal analogue of
Tate’s conjecture), we asserted the equivalence of

three conditions (i), (ii), (iii) stated there. But we

want to cancel the condition (iii) from the statement.
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