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Abstract:
Galois group W(Es) via Mordell-Weil lattices.
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1. Introduction. In our previous work [6],
we have studied the Galois representaions and the al-
gebraic equations of exceptional type E, (r =6,7,8)
arising from Mordell-Weil lattices (MWL). In partic-
ular, we have established the construction theorem of
infinitely many (linearly disjoint) Galois extensions
of Q whose Galois group is isomorphic to the Weyl
group W(E,), plus the proof that every extension of
Q with Galois group W(E,) is obtained in that way
(see Theorems 7.1 and 7.2 of [6]). Furthermore we
have exhibited an explicit example of such for r = 6
and 7 =7 [6, Examples 7.4 and 7.6], but the case
r = 8 was omitted there, since some necessary infor-
mation about the maximal subgroups of the Weyl
group W (Eg) was not available that time.

More recently, Jouve-Kowalski-Zywina [3] and
Vérilly-Alvarado-Zywina [9] have constructed some
explicit W (Es)-extensions of Q. The former is based
on the simple algebraic group of type Eg and the
characterisitic polynomial of its adjoint representa-
tion, while the latter uses the del-Pezzo surfaces of
degree one.

Now the purpose of this note is to write down an
explicit example of integral polynomial whose split-
ting field is a W (Es)-extension of Q by the method
of [6], which is entirely parallel to the case of
r = 6,7 mentioned above and whose construction
seems to be more natural and somewhat simpler
than those given by [3] or [9]. See §2 for the state-
ments. For the proof (§3), we have only to apply the
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group-theoretic lemma on W(Es) obtained by [3]
(Lemma 3.1 below), to the old data we examined
nearly two decades ago. A few remarks are given
in §4.

We refer to [2, Ch. 4] for the basic facts on the
root lattice Eg and the Weyl group W(FEs); we sim-
ply recall that it has order 2'*.3%.5%.7 and it is
almost a simple group; we have W(Eg) = 2.0¢(2).2
with the notation of Atlas [1] where OF (2) is a simple
group. For Mordell-Weil lattices, we refer to [5].

I would like to dedicate this paper to Professor
J-P. Serre who helped me in treating this type of
problems in [6], which leads to the present paper.

2. An explicit example. Consider the ellip-
tic curve E/Q(t) defined by

(2.1) V=2 + A+t+ 2+ o+ 1+t +2+85+15.

Let Q be an algebraic closure of Q. Then the
Mordell-Weil lattice E(Q(t)) is isomorphic to the
root lattice Fg, and there are exactly 240 rational
points P = (x(t),y(t)), corresponding to the 240

roots of Eg, which are of the form:
(2.2) z(t) =v*t +at +b, yt) = 0> +ct* +dt +e

(v,a,...,e € Q) The quantity v satisfies an alge-
braic equation of degree 240 with integer coefficients
U (v) = 0, which is explicitly given as ¥(v) = F(v?)
with a polynomial F(X) € Z[X] of degree 120 below.
We prove the following
Proposition 2.1. The Galois representation

p: Gal(Q/Q) — Aut(E(Q1))) = Aut(Fy) = W(F)
18 surjective.

Proposition 2.2. Let IC be the splitting field of
the polynomial U(v) of degree 240. Then K/Q is a
Galois extension with Galois group W (Eg).
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(2.3) F(X)

=1460X + 1764 X* + 33880 X3 + 478890 X *

+ 5327856 X ° + 48793140 X © + 380483064 X

+ 2598324795 X ® 4 15932785020 X *

+ 89749362936 X 1° + 473980028160 X !*

4 2387129524492 X2 + 11610734817520 X 1

4 54946822132728 X 11 4- 253570184893640 X 1
+1139170471812505 X ' 4 4966863067888332 X !

4 20975997259257420 X ¥ + 85751930578096488 X 9

— 2787642171110435554924445112 X 47

+ 10836668436242566282618846201 X *8
+ 58617803145640098757603141084 X *°
+169901174645519701610315084748 X *°
+ 364619363395851165251556074640 X !
+621760817442592188743112149958 X 2
+ 853996995954 752839123279092256 X 53
+ 936403079514859290353492992584 X >

+ 338777493097323270 X %
+1286110326634556720 X 2!
+4645243511039448812 X 22

+ 15781295779679038440 X %3

+ 49982542358210104135 X *
+147131229010289262732 X %°
+404490375319591401040 X %6
+1051866512316875968008 X **

+ 2627876995725411369560 X 2

+ 6344305570523224297840 X

+ 14520529565511555036172 X 30
+29688209277164999351080 X 3!
+46109411843449203201495 X *2

+ 11874604308325191705300 X 33
—304520712140489244332444 X3

— 1710507607494226305427600 X 3

— 6564373286217262022972626 X %6
—20640733068869514203178928 X 37

— 55485376072870265785653512 X %8

— 128793713071489729206023952 X %
— 257743742783949813779493007 X 1
— 442469975366494543245531996 X 4!
— 655052776921613524140717120 X 42
— 884472107222475356521568192 X 43
— 1280575595777430358465307604 X 4
— 2232747093968418475468736712 X 1°
— 3709663451251650088528216368 X *6

+ 813242989399427654276532027720 X 5
+561901601257250767568960750119 X %

+ 135336745534853793043766886324 X °7

— 1359056654022871830736377392248 X °°

— 6463196369092920757436226504288 X %

— 19274666150603339082780988303322 X %

— 43000266962344916776074492071304 X 5!

— 73878522660917308900155611253488 X 52
—93075326288055274100372536594400 X %

— 64536984699047964526813581514542 X 64
+49300929293800996462069228076464 X %

+ 2528601596562424520926 75829367640 X %
4 489725119826300703593418835619104 X 7
+ 660488031167958421155995175713950 X %
+ 685712147170409615430086676252264 X %
+ 551683526957510476762145457969296 X ™
4 288512672181776185291212516963736 X
— T4267572398719223747581053086990 X ™
—500903915968439620592031943919824 X
— 910549984484808540102258882764384 X ™
—1206968873617213245195049682159960 X 7
— 1388629308181446796708722329894566 X 70
— 1569354844716924282753640688567888 X 7'
— 1823707475660170741752627186852960 X 7
— 2048864511428828705784772599553992 X 7
—2035166278567233185515268622860248 X %
— 1687433627384737395302666916386904 X !
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— 1115482759086740014512839085137184 X %2
— 526761122020931966446367902077448 X %
— 58577864879939375605450418679390 X 3
+ 250069449965626638272171839412808 X
+ 387136100056401973048117693037508 X %6
+ 357325360560127756205870421947760 X 57
+211364951183975868623079248436736 X 8
+ 51418627724822694637234112345296 X %
— 46773865393411874487242211411132 X %
— T1774553474500093078405620618056 X !
— 53829465805447662564570533480300 X ¥
—23062139597305102540202721147928 X %
+ 1816100885334286383938979391048 X *

+ 11380969645808962145214086704520 X »°
+ 8855368362001862935225686348201 X %

+ 3508823119483958223796553026092 X 7

+ 698584814104495914238234637808 X *°

— 70607871098449423028062500728 X %

— 98180055668334747549552434182 X 170
+13906908793114791985890198096 X 101
+61292636677690980053605520392 X 102
+40196120652474279054639641144 X 103

+ 17855181917039225649951928083 X 104
+6334493066645070192567414780 X 105

+ 2278787412568458774590238896 X %

+ 737551796202189011654576888 X 17
+432931186611007826071544506 X 198
+42930134179004989016938168 X %

+ 538259733452669451411924 X 10

— 8495924317136199276760920 X '!*
—1018334616107030308504127 X 112
+30090518814268329965700 X 13

+ 67986368606208563098464 X !4

+ 5895943156273015604992 X 115

— 448019811798352498176 X '1¢

— 280668086084640358400 X 117
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— 3365783326104268800 X 118
+1750559212171657216 X '

+313989595009449984 X %0

3. Proof. Let G = Im(p) be the image of p
which is a subgroup of W (Ejg). By [6, §7] and [7, §8])
(cf. §4 below for a brief review), G is also isomorphic
to the Galois group Gal(K/Q), and we can view G as
a subgroup of Say, the permutation group of the 240
roots of ¥. [The two embeddings of G are compati-
ble, since we have a natural inclusion of W (Fg) into
Sago which results from the ‘“generic” case.] In this
situation, we claim that G = W (Ej).

For the polynomial ¥(X) = F(X?) € Z[X], let
U,(X) = ¥(X)(mod p) for a prime number p and
we consider the decomposition of U,(X) € Z/pZ[X]
into irreducible polynomials.

Taking p = 5, for example, we find that ¥,(X)
is a product of 16 distinct irreducible polynomials of
degree 15, as is easily checked with a computer. We
express this fact by saying that W, has the cycle
type (15)°.

Similarly, for p = 7,11,13,17, we check that the
cycle type is respectively given as follows:

(3)°(12)", (15)", (20)", (4)*(8)".

Thus the Galois group G contains some elements
having these cycle types.

Now we quote the following lemma from [3],
which is reformulated in the same form as [6, Lemma
7.5] for the case r = 6, 7:

Lemma 3.1 (Jouve-Kowalski-Zywina). Let
C) (resp. Cy) be the conjugacy class, which is unique,
of an element in W (Es) with cycle type (15)'° (resp.
(4)%(8)*). Suppose that a subgroup H of W(Es) has
the property that HNC;# 0 for i=1,2, then
H = W(Ey).

Obviously it implies our claim that G = W (Es),
which completes the proof of both Propositions 2.1
and 2.2.

4. Remarks.

4.1. Background: the generic situation.
For the reader’s convenience, we briefly recall the
general set-up from [6, §6] as the background of the
proof given above.

Let

3 3
(41) Eyv:yf=2a"+ (Zpiti)l‘ +Y gt 8

i=0 7=0



No. 8]

(42) A:(p()v"'aqS) €A8'

Assume that A is generic, i.e. p;, ¢; are algebraically
independent over Q, and let k be the algebraic
closure of Q(A). It is known that the generic Galois
representation

P+ Gal(k/Q(N) — Aut(E(K(1))) = W(Ey)

is surjective and that the smallest Galois extension
Ky of Q(A) such that E(K,(t)) = E(k(t)) is equal to
the splitting field of the universal polynomial of type
Es of degree 240 ®p, (u, A) € Q[A][u]. See [6, §6] and
[7, §8] for the proof and the definition of the universal
polynomial of type E,. In particular, the Galois
group Gal(KC,/Q(A)) is isomorphic to W(Es) which
acts transitively on the 240 roots of ® g (u, A) = 0.

4.2. Special cases. By applying Hilbert’s
irreducibility theorem [4] to the generic situation
above, we obtain infinitely many W(Fjg)-extensions
of Q [6, Theorem 7.1]: for most choice of A\ € Q®,
the specialization A — )y gives rise to such an ex-
tension.

Now the theme of the present note to make a
specific choice of \g € Q® for which this holds. The
propositions in §2 assert that if we choose \j =
(1,...,1) (i.e. if all coefficients p;, g; of (4.1) are spe-
cialized to 1), then the specialized extension of Q
does have the full Galois group W(Es). The polyno-
mial ¥(v) in Proposition 2.2 is obtained from the
universal polynomial ®g, (u, A) under the same spe-
cialization A — )y, except that we replace u by
v=1/u

(4.3) U(v) = B, (u, No) /u*"".

It is possible to derive the polynomial ¥(v) di-
rectly from the equations (2.1) and (2.2): first substi-
tute (2.2) into (2.1) to obtain an identity in ¢ of the
form:

¢U+¢lt+"'+¢5t5:0(¢7'€Q['U7aa"'ae])

and then eliminate e,...,a from the simultaneous
relations ¢y = --- = ¢5 = 0 to obtain the equation
U(v) = 0. [In fact, the universal polynomial @z, (u, )
is obtained in the same way starting from the generic
equation (4.1) and (2.2) with v = 1/u; see the proof
of [7, Theorem 8.3]].

If we consider the ideal I = (¢, -, ¢5) in the
polynomial ring Q[v,a,...,e] and take its Grobner
basis (with respect to suitable ordering), then we ob-
tain the relation ¥(v) =0, plus the polynomial ex-
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pressions of a, ..., e in terms of v. For this approach,
compare [8].

4.3. Other examples. Observe that the
method described above allows one to produce as
many explicit examples of integral polynomials and
extensions with Galois group W(Es) as one wants.
For example, starting from the elliptic curve E'/Q(t)
with the equation:

(44) =2+ 2+t+ + )+ 1+t 4+ + 2+ 17,

we get also such a polynomial ¥'(v). We leave it as
an excercise to check that the cycle type for p =11
is (4)*(8)%, while that for p =43 is (15)'® in this
case. By Lemma 3.1, we obtain another W (Ejy)-
extension which is distinct from the one given in §2.
4.4. Correction of [6, Theorem 7.3]. We
take this opportunity to make a correction in our
article [6]. In Theorem 7.3 (a formal analogue of
Tate’s conjecture), we asserted the equivalence of
three conditions (i), (ii), (iii) stated there. But we
want to cancel the condition (iii) from the statement.
Ackowledgements. We thank E. Kowalski
(ETH, Ziirich) for useful discussion about the recent
article [3]. We thank the referee for careful reading of
the paper and also for checking the computations.
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