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Abstract: We study group actions on a coarse space and the induced actions on the Higson
corona from a dynamical point of view. Our main theorem states that if an action of an abelian

group on a proper metric space satis�es certain conditions, the induced action has a �xed point in

the Higson corona. As a corollary, we deduce a coarse version of Brouwer’s �xed point theorem.
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1. Introduction. A metric space X is proper

if closed, bounded set in X are compact. Let X and
Y be proper metric spaces and let f :X ! Y be a

map (not necessarily continuous). We de�ne:

(a) The map f is proper if for each bounded subset
B of Y , f�1ðBÞ is a bounded subset of X.

(b) The map f is bornologous if for every R > 0

there exists S > 0 such that for each x; y 2 X,
dðx; yÞ < R implies dðfðxÞ; fðyÞÞ < S.

(c) The map f is coarse if it is proper and bornolo-
gous.

Let f; g:X ! Y be maps. We de�ne that f is close to

g, denoted f ’ g, if there exists R > 0 such that
dðfðxÞ; gðxÞÞ < R, for all x 2 X. We de�ne that X

and Y be coarsely equivalent if there exist coarse

maps f :X ! Y and g:Y ! X such that g � f and
f � g are close to the identity maps of X and Y , re-

spectively. A coarse space is a coarsely equivalent

class of proper metric spaces. The category of coarse
spaces consists of coarse spaces and coarse maps.

Let ’:X ! C be a bounded continuous map.

For each r > 0, we de�ne a map Vr’:X ! R by

Vr’ðxÞ :¼ supfj’ðyÞ � ’ðxÞj : dðx; yÞ < rg:
We de�ne that ’ is a Higson function if for each

r > 0, Vr’ vanishes at in�nity. The Higson functions

on a proper metric space X form a unital C�-algebra,
denoted by ChðXÞ. It follows from the Gelfand-Nai-

mark theorem that there exists a unique compact

Hausdor� space hX such that CðhXÞ ¼ ChðXÞ. The
compacti�cation hX of X is called the Higson com-

pacti�cation. Its boundary hX nX is denoted by �X

and called the Higson corona. The Higson corona is a

functor from the category of coarse spaces into the
category of compact Hausdor� spaces. Namely, a

coarse map f :X ! Y induces the unique continuous

map �f : �X ! �Y and moreover if coarse maps
f; g:X ! Y are close then �f ¼ �g. We remark that

the Higson corona of a proper metric space is never

second countable. We refer to [3] for a general refer-
ence of coarse geometry and the Higson compac-

ti�cation.
Let X be a proper metric space and let G be a

�nitely generated semi-group acting on X. A coarse

action, de�ned below, of G on X induces a continu-
ous action of G on the Higson corona �X. The main

subject of this article is to study these actions from a

dynamical point of view. Details of proofs of our
main results will be published elsewhere.

2. Coarse action. Let X and G be as above.

De�nition 2.1. An action of G on X is
coarse if for each element g of G, the map

�g:X ! X de�ned by x 7! g � x is a coarse map.

De�nition 2.2. For a point x0 of X, the orbit
map �x0

:G! X is de�ned by g 7! g � x0. We de�ne:

(a) The orbit of x0 is proper if so is �x0
.

(b) The orbit of x0 is bornologous if so is �x0
.

(c) The orbit of x0 is coarse if so is �x0
.

A typical example of the coarse action with

coarse orbits is the action of G on itself.
Lemma 2.3. Let G be a �nitely generated

group or G ¼ Nk with a left-invariant word metric

for some generating set. The action of G on G by

the left-translation ðg; hÞ 7! gh is a coarse action.

Furthermore, any orbit of h 2 G is coarse.

Since a coarse map induces a continuous map
between the Higson coronae, a coarse action induces
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a continuous action on the Higson corona. Our main
theorem is the following

Theorem 2.4. Assume that G ¼ Nk or Zk

and G acts on X as a coarse action. Suppose that

there exists a point of X whose orbit is coarse. Then

the induced action of G has a �xed point in the Hig-

son corona �X. That is, there exists a point x of �X

such that g � x ¼ x for any element g of G.

Example 2.5. Let G be a �nitely generated

group with an element h of in�nite order. Then a
group action of Z on G given by ðn; gÞ 7! hng is a

coarse action and any orbit is coarse. Thus the action

of Z has a �xed point in the Higson corona �G.
Moreover, if G is a hyperbolic group, this action ex-

tends to the Gromov boundary @gG. Then this action

of Z has a �xed point in @gG, since there exists a
G-equivariant map �G! @gG. This is a well-known

fact on the boundary of hyperbolic groups (c.f. Prop-

osition 10 and Theorem 30 in [2, Chapter 8]).
Example 2.6. The wreath product Z o Z con-

tains Zn as a subgroup for any positive integer n (see

page 135 of [3]). Thus the action of Zn on Z o Z is
coarse and the induced action of Zn has a �xed point

in �ðZ o ZÞ.
We cannot generalize Theorem 2.4 to a free

group action as follows:

Proposition 2.7. The action of the free

group F2 on �F2 induced by the left-translation

F2 � F2 ! F2 has no �xed point. That is, there is no

point x of �F2 such that g � x ¼ x for all elements g

of F2.

Proof. If the induced action of F2 on �F2 has a

�xed point, the induced action of F2 on the Gromov

boundary @gF2 also has a �xed point. However, we
can show that for any point z of @gF2, there exists

an element g of F2 such that g � z 6¼ z. r
3. Coarse �xed point. Let G be a �nitely

generated semi-group acting on X. We call a point x

of X, a coarse �xed point if its orbit

G � x ¼ fg � x : g 2 Gg � X

is a bounded set. If G is an in�nite group and x is a

coarse �xed point, then the orbit of x is not proper.
In the following two cases, the converse holds.

Proposition 3.1. Let X be a metric space

such that any bounded subset D � X is a �nite set.

Suppose that N acts on X. Then a point of X whose

orbit is not proper is a coarse �xed point.

Proof. Suppose that the orbit of x0 is not
proper. Then there exists a bounded set D � X such

that

fn 2 N : n � x0 2 Dg
is an in�nite set. Because D is a �nite set, there exist

positive integers m > n such that m � x0 ¼ n � x0. For
any integer l > m, there exist integers k > 0 and

r ¼ 0; � � � ;m� n� 1 satisfying l� n ¼ kðm� nÞ þ r.
Thus we have l � x0 ¼ ðnþ rÞ � x0. It follows that
N � x0 � fx0; 1 � x0; 2 � x0; � � � ; ðm� 1Þ � x0g. r

Proposition 3.2. Let X be a proper metric

space. Suppose that N acts on X as an isometry.

Then each point of X whose orbit is not proper is a

coarse �xed point.

Proof. We only give a sketch of a proof. Suppose
that the orbit of x0 is not proper. Then there exists a

bounded subset D � X such that fn 2 N : n �
x0 2 Dg is an in�nite set. Put K ¼ BðD; 1Þ \N � x0.
Here BðD; 1Þ is the 1-neighborhood of D. Since the

action is an isometry, there exist points x1; � � � ; xN of

K and positive integers T1; . . . ; TN such that

K �
[N

i¼1

Bðxi; 1Þ;

and Tj � x lies in
SN
i¼1 Bðxi; 1Þ for any point x of

Bðxj; 1Þ where j runs from 1 to N.

Using this decomposition of K, we can show

that N � x0 � Bðx0; RÞ for some R > 0. r
If the orbit is not coarse, there are two possibili-

ties; that is, the orbit is not proper, or, the orbit is

not bornologous. However, if the action is an isome-
try, any orbit is bornologous.

Proposition 3.3. Let X be a proper metric

space with an isometric action of N. Then the action

is a coarse action and any orbit is bornologous.

Proof. An isometric action is coarse. For any

given point x of X, put L ¼ dð1 � x; xÞ. Then we
have dððiþ 1Þ � x; i � xÞ ¼ L for all integers i > 0.

Hence for any pair of integers m � n � 0, we have

dð�xðmÞ;�xðnÞÞ ¼ dðm � x; n � xÞ

	
Xm�1

i¼n
dððiþ 1Þ � x; i � xÞ ¼ Ljm� nj:

Thus �x is bornologous. r
Corollary 3.4 (Coarse version of Brouwer’s

�xed point theorem). Let X be a proper metric

space and f : X ! X be an isometry. Then at least

one of the following holds:
(a) The map f has a coarse �xed point in X.

(b) The map �f has a �xed point in �X.

Example 3.5. The Gromov boundary of the
hyperbolic plane H2 is S1. Let f: H2 ! H2 be a con-

tinuous map such that f extends to the Gromov
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boundary. Then Brouwer’s �xed point theorem says
that f : H2 [ S1 ! H2 [ S1 has a �xed point. Let �

be a discrete group of isometries acting freely on H2

with quotient a compact surface. � is coarsely equiv-

alent to H2 and its Gromov boundary is also S1. Let

f: �! � be an isometry. Then Corollary 3.4 says
that f : � [ S1 ! � [ S1 has a coarse �xed point on

�, or, a �xed point on S1.

In Corollary 3.4, the assumption that the map f
is an isometry is essential.

Remark 3.6. In [1, Section 4] we give an ex-

ample of a proper coarse space X and a coarse map
f:X ! X such that the following hold:

(a) The map f has no coarse �xed point in X.

(b) The map �f has no �xed point in �X.
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