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Abstract: Kobayashi’s multiplicity-free theorem asserts that irreducible unitary highest

weight representations � are multiplicity-free when restricted to any symmetric pairs if � is of

scalar type. The Hua–Kostant–Schmid–Kobayashi branching laws embody this abstract theorem

with explicit irreducible decomposition formulas of holomorphic discrete series representations

with respect to symmetric pairs. In this paper, we study the ‘classical limit’ (geometry of

coadjoint orbits) of a special case of these representation theoretic theorems in the spirit of the

Kirillov–Kostant–Duflo orbit method.

First, we consider the Corwin–Greenleaf multiplicity function nðOG; OKÞ for Hermitian

symmetric spaces G=K. The first main theorem is that nðOG; OKÞ � 1 for any G-coadjoint orbit

OG and any K-coadjoint orbit OK if OG \
ffiffiffiffiffiffiffi
�1

p
ð½k; k� þ pÞ? 6¼ ;. Here, g ¼ kþ p is the Cartan

decomposition of the Lie algebra g of G. The second main theorem is a necessary and sufficient

condition for nðOG; OKÞ 6¼ 0 by means of strongly orthogonal roots.

Key words: Hermitian symmetric space; Corwin–Greenleaf multiplicity function; orbit
method; Kobayashi’s multiplicity-free theorem; highest weight representations; branching law.

1. Corwin–Greenleaf multiplicity func-

tion. The orbit method pioneered by Kirillov

and Kostant seeks to understand irreducible uni-

tary representation by analogy with ‘‘quantization’’

procedures in mechanics. Physically, the idea of

quantization is to replace a classical mechanical

model (a phase space modelled by a symplectic

manifold M) with a quantum mechanical model (a

state space modelled by a Hilbert space H) of the

same system. The natural quantum analogue of the

action of a group G on M by symplectomorphisms is

a unitary representation of G on H.

For a Lie group G, coadjoint orbits are

symplectic manifolds, and the philosophy of the

orbit method says that there should be a method of

‘‘quantization’’ to pass from coadjoint orbits for G

to irreducible unitary representations of G. Kirillov

proved that this works perfectly for nilpotent Lie

groups, but many specialists have pointed out that

the orbit method does not work very well for

semisimple Lie groups [7,10,18,22]. However, we

can still expect an intimate relation between the

unitary dual of G and the set of (integral) coadjoint

orbits even for a semisimple Lie group. We also

expect that the orbit method should be ‘‘functori-

al’’, in the sense that branching laws of the

restrictions (the side of unitary representation

theory) are explained from the projection of coad-

joint orbits (the side of symplectic geometry) and

vise versa. Our present work is to establish such

functorial property in a special setting, where

multiplicity-free theorems of branching laws are

known to be true.

Now, let us focus on the main theme of

this paper. One of the fundamental problems in

representation theory is to decompose a given

representation into irreducibles [10]. Branching

laws are one of the most important cases. Here, by

branching laws we mean the irreducible decompo-

sition in terms of a direct integral of an irreducible

unitary representation � of a group G when

restricted to a subgroup H:

�jH ’
Z �

bHH m�ð�Þ�d�ð�Þ:ð1:1Þ

Such a decomposition is unique, for example, if H is

reductive or nilpotent, and the multiplicity m� :
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bHH ! N [ f1g makes sense as a measurable func-

tion on the unitary dual bHH. Here are two basic

questions on multiplicities:

Problem 1.1.

a) For which ðG;H; �Þ, the restriction �jH is

multiplicity-free?

b) Relate quantum and classical pictures in the

spirit of Kirillov–Kostant orbit method.

As for (a), T. Kobayashi recently established a

unified theory on multiplicity-free theorems for

branching laws for both finite and infinite dimen-

sional representations in a broad setting [12,16].

His theorem gives a uniform explanation for

many known cases of multiplicity free results (e.g.

Clebsch–Gordan formula, Pieri’s rule, Plancherel

formula for Riemannian symmetric spaces, GLm �
GLn duality, the Hua–Kostant–Schmid–Kobayashi

formula [9], . . .) and also presents many new cases

of multiplicity free branching laws.

As for (b), it is well-known that the orbit

method works perfectly for nilpotent Lie groups [7],

but only partially for reductive groups.

For simply connected nilpotent Lie group G,

building on the Kirillov isomorphismffiffiffiffiffiffiffi
�1

p
g
�=G ’ bGG;

Corwin and Greenleaf introduced the function

nðOG; OHÞ. For later purpose, we review its defi-

nition in the general setting where G is a Lie group

and H is its subgroup. We denote by g and h their

Lie algebras, and write pr : g� ! h
� for the natural

projection. For coadjoint orbits OG �
ffiffiffiffiffiffiffi
�1

p
g� and

OH �
ffiffiffiffiffiffiffi
�1

p
h
�, the Corwin–Greenleaf multiplicity

function nðOG; OHÞ is the number of H-orbits in

the intersection OG \ pr�1ðOHÞ. If � is attached to

OG and � is attached to OH , then one expects that

nðOG; OHÞ coincides with m�ð�Þ. Research in this

direction has been made extensively for nilpotent

Lie groups and for certain solvable groups by

Kirillov, Corwin, Greenleaf, Lipsman, and Fujiwara

among others [1,3,4,20]. However, branching prob-

lems for semisimple Lie groups are hard in general,

and substantial progress has been made only in the

last decade or so [8]. In this paper, inspired by

recent multiplicity-free theorems for semisimple Lie

groups [9,11–13,16], and their underlying complex

geometry [14,15], we seek for the counterpart in the

orbit geometry associated to Hermitian symmetric

spaces by means of the Corwin–Greenleaf multi-

plicity functions.

2. Main results. Suppose G is a non-com-

pact simple Lie group, � a Cartan involution of G,

and K :¼ fg 2 Gj�g ¼ gg a maximal compact sub-

group. We write g ¼ kþ p for the Cartan decom-

position of the Lie algebra g of G, corresponding to

the Cartan involution �. The group G is said to be of

Hermitian type, if the Riemannian symmetric space

G=K is a Hermitian symmetric space, or equiva-

lently, if the center cðkÞ of k is non-trivial. The

classification of simple Lie algebras g of Hermitian

type is given as follows:

suðp; qÞ; spðn;RÞ; soðm; 2Þ ðm 6¼ 2Þ;
so

�ð2nÞ; e6ð�14Þ; e7ð�25Þ:

An irreducible representation � of G is a highest

weight representation of scalar type if � is realized in

the space of holomorphic sections for a G-equivar-

iant holomorphic line bundle over the Hermitian

symmetric space G=K. A typical example is a

holomorphic discrete series (of scalar type), which

means that � is realized as square-integrable

holomorphic sections. For a Hermitian Lie group

G, Harish-Chandra constructed infinitely many

holomorphic discrete series representations of scalar

type among others. Kobayashi’s multiplicity-free

theorem ([9], see also [13, Theorem A]) says:

Fact 2.1. For any irreducible unitary highest

weight representation � of scalar type of G and for

any symmetric pair ðG;HÞ, the restriction �jH is

multiplicity-free.

On the other hand, a holomorphic discrete

series representation � of scalar type may be

regarded as a geometric quantization of a coadjoint

orbit OG in
ffiffiffiffiffiffiffi
�1

p
g� satisfying

OG \
ffiffiffiffiffiffiffi
�1

p
ð½k; k� þ pÞ? 6¼ ;ð2:1Þ

(see [10, Example 2.7]). We note that ð½k; k� þ pÞ? 6¼
f0g if and only if G is of Hermitian type. In the

late 1990s (see also [17]), Kobayashi proposed the

following conjecture as a counterpart of Fact 2.1:

Conjecture 2.2. Let OG be a G-coadjoint

orbit satisfying (2.1), and ðG;HÞ a symmetric pair.

Then nðOG; OHÞ � 1 for any H-coadjoint orbit OH

in
ffiffiffiffiffiffiffi
�1

p
h
�.

The first main result of this paper is to

give an affirmative solution to Conjecture 2.2 for

H ¼ K, namely, for a Riemannian symmetric

pair ðG;KÞ:
Theorem A. nðOG; OKÞ � 1 for any K-

coadjoint orbit OK if OG satisfies (2.1).
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Since K is connected, an immediate corollary is

the following topological result:

Corollary B. The intersection OG\ pr�1ðOKÞ
is connected for any coadjoint orbit OG satisfying

(2.1) and for any coadjoint orbit OK in
ffiffiffiffiffiffiffi
�1

p
k
�.

We note that the Blattner formula is just the

identity of the characters and that its actural

computation contains too many cancellations of

positive and negative terms. This fact prevents us

to tell explicitly whether the K-multiplicity is free

or not in general. Likewise, the existing results on

the ‘classic limit’ of the Blatter formula (e.g. [2])

does not yield directly Theorem A and Corollary B,

to the best of our knowledge.

The second main result of this paper is a

concrete criterion for nðOG; OKÞ 6¼ 0, equivalently,

OG \ pr�1ðOKÞ 6¼ ;. In order to state the theorem,

let gC ¼ kC þ pþ þ p� be the irreducible decompo-

sition as K-modules. We take a maximal abelian

subspace t of k, and fix a positive system

�þ
c :¼ �þðkC; tCÞ. We write �þ

n :¼ �þðpþ; tCÞ and
set �þðgC; tCÞ :¼ �þ

c [�þ
n .

Let f�1; � � � ; �rg be the maximal set of strongly

orthogonal roots [19] in �þ
n satisfying:

�j is the highest among f� 2 �þ
n : � isð2:2Þ

strongly orthogonal to �1; � � � ; �j�1g

for 1 � j � r. By using the Killing form, we regardffiffiffiffiffiffiffi
�1

p
cðkÞ� �

ffiffiffiffiffiffiffi
�1

p
t
� �

ffiffiffiffiffiffiffi
�1

p
k
� �

ffiffiffiffiffiffiffi
�1

p
g
�

corresponding to the inclusion cðkÞ � t � k � g.

Then any K-coadjoint orbit OK in
ffiffiffiffiffiffiffi
�1

p
k
� meets

at a single point, say �, in the dominant Weyl

chamber. Then we write OK
� for OK . Similarly, any

coadjoint orbit OG satisfying (2.1) meets at a single

point, say �, in
ffiffiffiffiffiffiffi
�1

p
cðkÞ�. We write OG

� for this

coadjoint orbit OG. We note that h�; 	i takes the

same value for any 	 2 �þ
n .

We are ready to state our second main result:

Theorem C. Supose h�; 	i > 0 for any

	 2 �þ
n . Then, nðOG

� ; OK
� Þ 6¼ 0 if and only if

� 2 �þ
X

a1�����ar�0
a1;���;ar2R

aj�j:

A similar result holds in the case h�; 	i < 0 for any

	 2 �þ
n .

The branching law of scalar holomorphic dis-

crete series representations �� for symmetric pairs

is known as the Hua–Kostant–Schmid–Kobayashi

formula. For the compact H, L.-K. Hua [5] found

the formula but for e6ð�14Þ and e7ð�25Þ, and later B.

Kostant, W. Schmid [21] and some others gave a

proof including the two exeptional cases. For

general H, special cases were studied by H.

Jakobsen, M. Vergne [6], J. Xie [23], etc., and the

final form was established by T. Kobayashi [9] (see

also [13, Theprem 8.3]). The formula for compact

H amounts to:

�G
� jK ’

X
a1�����ar�0
a1;���;ar2N

�
�K

�þ
Pl

j¼1

aj�j:

Here, �K
� denotes the finite dimensional repre-

sentation of K with highest weight � if � is a

dominant integral weight and �G
� is an irreducible

unitary lowest weight representation with minimal

K-type �K
� . Thus Theorem C matches exactly this

formula, and can be restated as:

Theorem C0. nðOG
� ; OK

� Þ 6¼ 0 if and only if

� 2 Convex-hull of SuppKð�G
� jKÞ

where OG
� $ �G

� and OK
� $ �K

� are the correspond-

ences between coadjoint orbits and lowest weight

modules.

As we formulated, the extension to the non-

compact H case makes sense, and we hope to be

back to this problem in a subsequent paper.

Sketch of the proof main results. The

proof of Theorems A and C is based on the following

steps:

Step 1) slð2;CÞ-reduction by using the maximal set

f�1; � � � ; �rg of strongly orthogonal roots.

Step 2) Find a dominant chamber Aþ compatible

with �þ
c .

Step 3) Find an explicit formula of prðAdðaÞZÞ.
Here, Z is a normalized generator of

ffiffiffiffiffiffiffi
�1

p
cðkÞ.

Details proofs will appear elsewhere.
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