Dedekind sums in finite characteristic

By Yoshinori Hamahata
Department of Mathematics, Tokyo University of Science, 2641 Noda, Chiba, 278-8510, Japan
(Communicated by Shigefumi Mori, M.J.A., June 10, 2008)

Abstract

This paper is concerned with Dedekind sums in finite characteristic. We introduce Dedekind sums for lattices, and establish the reciprocity law for them.

Key words: Dedekind sums; lattices; Drinfeld modules.

1. Introduction. This paper is a résumé of our results, and the details will be published elsewhere.

For two relatively prime integers $a, c \in \mathbf{Z}$ with $c \neq 0$, we define the classical Dedekind sum in the form

$$
s(a, c)=\frac{1}{c} \sum_{k \in(\mathbf{Z} / c \mathbf{Z})-\{0\}} \cot \left(\pi \frac{k}{c}\right) \cot \left(\pi \frac{a k}{c}\right)
$$

As is well known, $s(a, c)$ has the following properties:
(1) $s(-a, c)=-s(a, c)$.
(2) If $a \equiv a^{\prime}(\bmod c)$, then $s(a, c)=s\left(a^{\prime}, c\right)$.
(3) (Reciprocity law) For two relatively prime integers $a, c \in \mathbf{Z}-\{0\}$,

$$
s(a, c)+s(c, a)=\frac{1}{3}\left(\frac{a}{c}+\frac{1}{a c}+\frac{c}{a}\right)-\operatorname{sign}(a c)
$$

The sum $s(a, c)$ is related to the module \mathbf{Z}. In [4], Sczech defined the Dedekind sum for a given lattice $\mathbf{Z} w_{1}+\mathbf{Z} w_{2}$. Okada [3] introduced the Dedekind sum for a given function field. His Dedekind sum is related to the $\mathbf{F}_{q}[T]$-module L corresponding to the Carlitz module (cf. 2.1). Inspired by Okada's result, we defined in [2] the Dedekind sum for a given finite field. Our previous result is related to a given finite field itself. Observing these former results, we have noticed that it is possible to define the Dedekind sum for a given lattice in finite characteristic. In this paper, we introduce Dedekind sums for lattices, and establish the reciprocity law for them.

Our results is divided into two parts. Section 2 deals with function fields case. In section 3, we discuss finite fields case.

[^0]2. Function field Dedekind sums. In this section we use the following notations. Let \mathbf{F}_{q} be the finite field with q elements, $A=\mathbf{F}_{q}[T]$ the ring of polynomials in an indeterminate $T, K=\mathbf{F}_{q}(T)$ the quotient field of $A,| |$ the normalized absolute value on K such that $|T|=q, K_{\infty}$ the completion of K with respect to $\left|\mid, \overline{K_{\infty}}\right.$ a fixed algebraic extension of K_{∞}, and C the completion of $\overline{K_{\infty}}$. We denote by $\sum^{\prime}, \Pi^{\prime}$ the sum over non-zero elements, the product over non-zero elements, respectively.
2.1. A-lattices. A rank r A-lattice Λ in C means a finitely generated A-submodule of rank r in C that is discrete in the topology of C. For such an A-lattice Λ, define the Euler product
$$
e_{\Lambda}(z)=z \prod_{\lambda \in \Lambda}^{\prime}\left(1-\frac{z}{\lambda}\right)
$$

The product converges uniformly on bounded sets in C, and defines a map $e_{\Lambda}: C \rightarrow C$. The map e_{Λ} has the following properties:

- e_{Λ} is entire in the rigid analytic sense, and surjective;
- e_{Λ} is \mathbf{F}_{q}-linear and Λ-periodic;
- e_{Λ} has simple zeros at the points of Λ, and no other zeros;
- $d e_{\Lambda}(z) / d z=e_{\Lambda}^{\prime}(z)=1$. Hence we have

$$
\begin{equation*}
\frac{1}{e_{\Lambda}(z)}=\frac{e_{\Lambda}^{\prime}(z)}{e_{\Lambda}(z)}=\sum_{\lambda \in \Lambda} \frac{1}{z-\lambda} \tag{2.1}
\end{equation*}
$$

An \mathbf{F}_{q}-linear ring homomorphism

$$
\phi: A \rightarrow \operatorname{End}_{C}\left(\mathbf{G}_{a}\right), \quad a \mapsto \phi_{a}
$$

is said to be a Drinfeld module of rank r over C if ϕ satisfies

$$
\phi_{T}=T+a_{1} \tau+\cdots+a_{r} \tau^{r}, \quad a_{r} \neq 0
$$

for some $a_{i} \in C$, where τ denotes the q-th power
morphism in $\operatorname{End}_{C}\left(\mathbf{G}_{a}\right)$. Given a rank $r A$-lattice Λ, there exists a unique rank r Drinfeld module ϕ^{Λ} with the condition $e_{\Lambda}(a z)=\phi_{a}^{\Lambda}\left(e_{\Lambda}(z)\right)$ for all $a \in A$. The association $\Lambda \mapsto \phi^{\Lambda}$ yields a bijection of the set of A-lattices of rank r in C with the set of Drinfeld modules of rank r over C. The rank one Drinfeld module ρ defined by $\rho_{T}=T+\tau$ is said to be the Carlitz module. We denote the A-lattice associated to ρ by L.

We recall the Newton formula for power sums of the zeros of a polynomial.

Proposition 2.1 (The Newton formula cf. [1]). Let

$$
f(X)=X^{n}+c_{1} X^{n-1}+\cdots+c_{n-1} X+c_{n}
$$

be a polynomial, and $\alpha_{1}, \ldots, \alpha_{n}$ the roots of $f(X)$. For each positive integer k, put

$$
T_{k}=\alpha_{1}^{k}+\cdots+\alpha_{n}^{k}
$$

Then

$$
\begin{aligned}
& T_{k}+c_{1} T_{k-1}+\cdots+c_{k-1} T_{1}+k c_{k}=0 \quad(k \leq n) \\
& T_{k}+c_{1} T_{k-1}+\cdots+c_{n-1} T_{k-n+1}+c_{n} T_{k-n}=0 \\
& \quad(k \geq n)
\end{aligned}
$$

Using this formula, we have
Proposition 2.2. Let Λ be a rankr A-lattice in C, and take a non-zero element $a \in A$. For $m=1,2, \ldots, q-2$, we have

$$
\frac{a^{m}}{e_{\Lambda}(a z)^{m}}=\sum_{\lambda \in \Lambda / a \Lambda} \frac{1}{e_{\Lambda}(z-\lambda / a)^{m}}
$$

For any non-zero element $c \in A$, set

$$
R(c)=\left\{e_{\Lambda}(\lambda / c) \mid \lambda \in \Lambda / c \Lambda\right\}-\{0\}
$$

In other words, $R(c)$ consists of the non-zero roots of $\phi_{c}(z)$. Let Λ be a rank r-lattice in C corresponding to the Drinfeld module ϕ with

$$
\begin{equation*}
\phi_{c}(z)=\sum_{i=0}^{n} l_{i}(c) z^{q^{i}} \tag{2.2}
\end{equation*}
$$

where $n=r \operatorname{deg} c, l_{n}(c) \neq 0$, and $l_{0}(c)=c$.
Proposition 2.3.

$$
\sum_{\alpha \in R(c)} \alpha^{-m}=\left\{\begin{array}{cl}
0 & (m=1, \ldots, q-2) \\
l_{1}(c) / c & (m=q-1)
\end{array}\right.
$$

In particular, if $\phi=\rho$, the Carlitz module, then

$$
\sum_{\alpha \in R(c)} \alpha^{-q+1}=\frac{c^{q-1}-1}{T^{q}-T}
$$

2.2. Function field Dedekind sums. Observing that (2.1) is similar to a formula for $\pi \cot \pi z$, for an A-lattice Λ of finite rank in C, let us define Dedekind sum as follows:

Definition 2.4. Let $a, c \in A-\mathbf{F}_{q}$ be relatively prime elements. In other words, assume $A a+A c=A$. For $m=1, \ldots, q-2$, define

$$
s_{m}(a, c)_{\Lambda}=\frac{1}{c^{m}} \sum_{\lambda \in \Lambda / c \Lambda}{ }^{\prime} e_{\Lambda}\left(\frac{\lambda}{c}\right)^{-q+1+m} e_{\Lambda}\left(\frac{a \lambda}{c}\right)^{-m}
$$

Moreover, we define

$$
s_{0}(c)_{\Lambda}=s_{0}(a, c)_{\Lambda}=\sum_{\lambda \in \Lambda / c \Lambda}{ }^{\prime} e_{\Lambda}\left(\frac{\lambda}{c}\right)^{-q+1}
$$

We call $s_{m}(a, c)_{\Lambda}$ the m-th Dedekind-Drinfeld sum for Λ. In particular, if L is the rank one A-lattice associated to the Carlitz module ρ, then $s_{m}(a, c)_{L}$ is called the m-th Dedekind-Carlitz sum.

Remark 2.5. (1) In [3], Okada defines the Dedekind-Carlitz sum. Our definition generalizes it. (2) It is possible to define Dedekind-Drinfeld sums in the same way for arbitrary function field instead of $K=\mathbf{F}_{q}(T)$.

It follows from Proposition 2.3 that

$$
s_{0}(c)_{\Lambda}=s_{0}(a, c)_{\Lambda}=\frac{l_{1}(c)}{c}
$$

where $l_{1}(c)$ is the coefficient of z^{q} in $\phi_{c}(z)$ as in (2.2). In particular, regarding the lattice L associated to the Carlitz module ρ,

$$
s_{0}(c)_{L}=s_{0}(a, c)_{L}=\frac{c^{q-1}-1}{T^{q}-T}
$$

The following result is analogous to the properties (1), (2) of the classical Dedekind sums in section one.

Proposition 2.6. Dedekind sums $s_{m}(a, c)_{\Lambda}$ ($m=1, \ldots, q-2$) satisfy the following properties:
(1) For any $\alpha \in \mathbf{F}_{q}^{*}, s_{m}(\alpha a, c)_{\Lambda}=\alpha^{-m} s_{m}(a, c)_{\Lambda}$.
(2) If $a, a^{\prime} \in A$ satisfy $a-a^{\prime} \in c A$, then $s_{m}(a, c)_{\Lambda}=$ $s_{m}\left(a^{\prime}, c\right)_{\Lambda}$.
(3) Take $b \in A$ with $a b-1 \in c A$. Then $s_{m}(b, c)_{\Lambda}=$ $c^{q-1-2 m} s_{q-1-m}(a, c)_{\Lambda}$.
2.3. Function field reciprocity law. We present the reciprocity law for our Dedekind sums. Let $a, c \in A-\mathbf{F}_{q}$ be relatively prime elements, and $m=1, \ldots, q-2$.

Theorem 2.7 (Function field reciprocity law I).

$$
\begin{aligned}
s_{m}(a, c)_{\Lambda}+(-1)^{m-1} s_{m}(c, a)_{\Lambda} \\
=\sum_{r=1}^{m-1} \frac{(-1)^{m-r} s_{m-r}(c, a)_{\Lambda}}{a^{r} c^{r}} \cdot\binom{m+1}{r} \\
+\frac{s_{0}(c)_{\Lambda}+m \cdot s_{0}(a)_{\Lambda}}{a^{m} c^{m}}
\end{aligned}
$$

As a corollary to this result, the next theorem is obtained.

Theorem 2.8 (Function field reciprocity law II).

$$
\begin{aligned}
& s_{m}(a, c)_{\Lambda}+(-1)^{m-1} s_{m}(c, a)_{\Lambda}= \\
& \sum_{r=1}^{m-1} \frac{(-1)^{r-1}\left(s_{m-r}(a, c)_{\Lambda}+(-1)^{m-1} s_{m-r}(c, a)_{\Lambda}\right)\binom{m+1}{r}}{2 a^{r} c^{r}} \\
& \quad+\frac{\left(m+(-1)^{m-1}\right)\left(s_{0}(a)_{\Lambda}+(-1)^{m-1} s_{0}(c)_{\Lambda}\right)}{2 a^{m} c^{m}}
\end{aligned}
$$

Example 2.9. Using the notation in the previous subsection, we have

$$
\begin{aligned}
& s_{1}(a, c)_{\Lambda}+s_{1}(c, a)_{\Lambda}=\frac{a l_{1}(c)+c l_{1}(a)}{a^{2} c^{2}} \\
& s_{3}(a, c)_{\Lambda}+s_{3}(c, a)_{\Lambda} \\
& \quad=\frac{2 s_{2}(a, c)_{\Lambda}+2 s_{2}(c, a)_{\Lambda}}{a c}-\frac{a l_{1}(c)+c l_{1}(a)}{a^{4} c^{4}}
\end{aligned}
$$

In particular, if $\Lambda=L$, then

$$
\begin{aligned}
& s_{1}(a, c)_{L}+s_{1}(c, a)_{L}=\frac{a^{q-1}+c^{q-1}-2}{a c\left(T^{q}-T\right)} \\
& s_{3}(a, c)_{L}+s_{3}(c, a)_{L} \\
& \quad=\frac{2 s_{2}(a, c)_{L}+2 s_{2}(c, a)_{L}}{a c}-\frac{a^{q-1}+c^{q-1}-2}{a^{3} c^{3}\left(T^{q}-T\right)}
\end{aligned}
$$

3. Finite field Dedekind sums. In this section, we use the following notations.
$K=\mathbf{F}_{q}$: the finite field with q elements.
\bar{K} : an algebraic closure of K.
\sum^{\prime} : the sum over non-zero elements.
Π^{\prime} : the product over non-zero elements.
3.1. Lattices. A lattice Λ in \bar{K} means a linear K-subspace in \bar{K} of finite dimension. For such a lattice Λ, we define the Euler product

$$
e_{\Lambda}(z)=z \prod_{\lambda \in \Lambda}^{\prime}\left(1-\frac{z}{\lambda}\right)
$$

The product defines a map $e_{\Lambda}: \bar{K} \rightarrow \bar{K}$. The map e_{Λ} has the following properties:

- e_{Λ} is $\mathbf{F}_{q^{-}}$-linear and Λ-periodic.
- If $\operatorname{dim}_{K} \Lambda=r$, then $e_{\Lambda}(z)$ has the form

$$
\begin{equation*}
e_{\Lambda}(z)=\sum_{i=0}^{r} \alpha_{i}(\Lambda) z^{q^{i}} \tag{3.1}
\end{equation*}
$$

where $\alpha_{0}(\Lambda)=1$ and $\alpha_{r}(\Lambda) \neq 0$.

- e_{Λ} has simple zeros at the points of Λ, and no other zeros.
- $d e_{\Lambda}(z) / d z=e_{\Lambda}^{\prime}(z)=1$. Hence we have

$$
\begin{equation*}
\frac{1}{e_{\Lambda}(z)}=\frac{e_{\Lambda}^{\prime}(z)}{e_{\Lambda}(z)}=\sum_{\lambda \in \Lambda} \frac{1}{z-\lambda} \tag{3.2}
\end{equation*}
$$

Using the Newton formula, we have
Proposition 3.1. Let Λ be a lattice in \bar{K}, and take a non-zero element $a \in \bar{K}$. For $m=$ $1,2, \ldots, q-2$, we have

$$
\frac{a^{m}}{e_{\Lambda}(a z)^{m}}=\sum_{x \in \Lambda} \frac{1}{(z-x / a)^{m}}
$$

For $b \in \bar{K}-\{0\}$, set

$$
R(b)=\{\lambda / b \mid \lambda \in \Lambda\}-\{0\} .
$$

Lemma 3.2.

$\sum_{x \in R(b)} x^{-m}=\left\{\begin{array}{cl}0 & (m=1, \ldots, q-2) \\ \alpha_{1}(\Lambda) b^{q-1} & (m=q-1)\end{array}\right.$,
where $\alpha_{1}(\Lambda)$ is as in (3.1).
3.2. Finite field Dedekind sums. Observing that (3.2) is similar to a formula for $\pi \cot \pi z$, for a lattice Λ in \bar{K}, we define Dedekind sum as follows:

Definition 3.3. Set

$$
\widetilde{\Lambda}=\{x \in \bar{K} \mid x \lambda \in \Lambda \text { for some } \lambda \in \Lambda\}
$$

We choose $c, a \in \bar{K}-\{0\}$ such that $a / c \notin \widetilde{\Lambda}$. For $m=1, \ldots, q-2$, define

$$
s_{m}(a, c)_{\Lambda}=\frac{1}{c^{m}} \sum_{\lambda \in \Lambda}^{\prime}\left(\frac{\lambda}{c}\right)^{-q+1+m} e_{\Lambda}\left(\frac{a \lambda}{c}\right)^{-m}
$$

Moreover, we define

$$
s_{0}(c)_{\Lambda}=s_{0}(a, c)_{\Lambda}=\sum_{\lambda \in \Lambda}^{\prime}\left(\frac{\lambda}{c}\right)^{-q+1}
$$

We call $s_{m}(a, c)_{\Lambda}$ the m-th finite Dedekind sum for Λ.

Remark 3.4. In [2], we defined the Dedekind sum for $\Lambda=K$. Our definition generalizes it.

It follows from Lemma 3.2 that

$$
s_{0}(c)_{\Lambda}=s_{0}(a, c)_{\Lambda}=\alpha_{1}(\Lambda) c^{q-1}
$$

where $\alpha_{1}(\Lambda)$ is the coefficient of z^{q} in $e_{\Lambda}(z)$ as in (3.1).

The following result is analogous to the properties (1), (2) of the classical Dedekind sums in section one.

Proposition 3.5. Dedekind sums $s_{m}(a, c)_{\Lambda}$ ($m=1, \ldots, q-1$) satisfy the following properties:
(1) For any $\alpha \in K^{*}, s_{m}(\alpha a, c)_{\Lambda}=\alpha^{-m} s_{m}(a, c)_{\Lambda}$.
(2) If $a, a^{\prime} \in \bar{K}$ satisfy $a-a^{\prime} \in c \Lambda$, then $s_{m}(a, c)_{\Lambda}=$ $s_{m}\left(a^{\prime}, c\right)_{\Lambda}$.
3.3. Finite field reciprocity law. We present the reciprocity law for our Dedekind sums. Let a, c be the elements of $\bar{K}-\{0\}$ such that $a / c \notin \widetilde{\Lambda}$.

Theorem 3.6 (Finite field reciprocity law I). For $m=1, \ldots, q-2$, we have

$$
\begin{aligned}
& s_{m}(a, c)_{\Lambda}+(-1)^{m-1} s_{m}(c, a)_{\Lambda} \\
&=\sum_{r=1}^{m-1} \frac{(-1)^{m-r} s_{m-r}(c, a)_{\Lambda}}{a^{r} c^{r}} \cdot\binom{m+1}{r} \\
&+\frac{s_{0}(c)_{\Lambda}+m \cdot s_{0}(a)_{\Lambda}}{a^{m} c^{m}}
\end{aligned}
$$

As a corollary to this result, the next theorem is obtained.

Theorem 3.7 (Finite field reciprocity law II). For $m=1, \ldots, q-2$, we have

$$
\begin{aligned}
& s_{m}(a, c)_{\Lambda}+(-1)^{m-1} s_{m}(c, a)_{\Lambda}= \\
& \sum_{r=1}^{m-1} \frac{(-1)^{r-1}\left(s_{m-r}(a, c)_{\Lambda}+(-1)^{m-1} s_{m-r}(c, a)_{\Lambda}\right)\binom{m+1}{r}}{2 a^{r} c^{r}} \\
& \quad+\frac{\left(m+(-1)^{m-1}\right)\left(s_{0}(a)_{\Lambda}+(-1)^{m-1} s_{0}(c)_{\Lambda}\right)}{2 a^{m} c^{m}}
\end{aligned}
$$

Example 3.8. Using the notation in the previous subsection, we have

$$
\begin{aligned}
& s_{1}(a, c)_{\Lambda}+s_{1}(c, a)_{\Lambda}=\frac{\alpha_{1}(\Lambda)\left(a^{q-1}+c^{q-1}\right)}{a c} \\
& s_{3}(a, c)_{\Lambda}+s_{3}(c, a)_{\Lambda} \\
& =\frac{2 s_{2}(a, c)_{\Lambda}+2 s_{2}(c, a)_{\Lambda}}{a c}-\frac{\alpha_{1}(\Lambda)\left(a^{q-1}+c^{q-1}\right)}{a^{3} c^{3}} .
\end{aligned}
$$

In particular, if $\Lambda=K$, then $e_{K}(z)=z-z^{q}$, so that

$$
\begin{aligned}
& s_{1}(a, c)_{K}+s_{1}(c, a)_{K}=-\frac{a^{q-1}+c^{q-1}}{a c}, \\
& s_{3}(a, c)_{K}+s_{3}(c, a)_{K} \\
& =\frac{2 s_{2}(a, c)_{K}+2 s_{2}(c, a)_{K}}{a c}+\frac{a^{q-1}+c^{q-1}}{a^{3} c^{3}} .
\end{aligned}
$$

Acknowledgement. This work was partially supported by Grant-in-Aid for Scientific Research (No. 18540050), Japan Society for the Promotion of Science.

References

[1] D. Goss, The algebraist's upper half-plane, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 3, 391415.
[2] Y. Hamahata, Dedekind sums for finite fields, In: Diophantine Analysis and Related Fields: DARF 2007/2008. AIP Conference Proceedings, American Institute of Physics, (2008), 976, pp. 96-102.
[3] S. Okada, Analogies of Dedekind sums in function fields, Mem. Gifu Teach. Coll., 24, (1989) 11-16.
[4] R. Sczech, Dedekindsummen mit elliptischen Funktionen, Invent. Math. 76 (1984), no. 3, 523-551.

[^0]: 2000 Mathematics Subject Classification. Primary 11F20; Secondary 11T50, 11G09.

