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Abstract:

This paper is concerned with Dedekind sums in finite characteristic. We

introduce Dedekind sums for lattices, and establish the reciprocity law for them.
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1. Introduction. This paper is a résumé of
our results, and the details will be published
elsewhere.

For two relatively prime integers a,c € Z with
¢ # 0, we define the classical Dedekind sum in the
form

1 k k
s(a,c) = - E cot (77 —) cot (7r a_) .
c c c
ke(Z/eZ)— {0}

As is well
properties:
(1) s(—a,c) = —s(a,c).

(2) If a = @' (mod ¢), then s(a,c) = s(d, ).

(3) (Reciprocity law) For two relatively prime
integers a,c € Z — {0},

known, s(a,c) has the following

s(a,c) + s(c,a) = L (ﬂ + 1 + E) — sign(ac).
3\c ac a

The sum s(a, c¢) is related to the module Z. In [4],
Sczech defined the Dedekind sum for a given lattice
Zw; + Zw,. Okada [3] introduced the Dedekind sum
for a given function field. His Dedekind sum is
related to the Fy[T]-module L corresponding to the
Carlitz module (cf. 2.1). Inspired by Okada’s result,
we defined in [2] the Dedekind sum for a given finite
field. Our previous result is related to a given finite
field itself. Observing these former results, we have
noticed that it is possible to define the Dedekind
sum for a given lattice in finite characteristic. In
this paper, we introduce Dedekind sums for lattices,
and establish the reciprocity law for them.

Our results is divided into two parts. Section 2
deals with function fields case. In section 3, we
discuss finite fields case.
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2. Function field Dedekind sums. In this
section we use the following notations. Let F, be the
finite field with ¢ elements, A = F¢[T] the ring of
polynomials in an indeterminate T', K = Fy(T') the
quotient field of A, | | the normalized absolute value
on K such that |T| = ¢, Ky the completion of K
with respect to | |, K a fixed algebraic extension of
K, and C the completion of K. We denote by
Z', H/ the sum over non-zero elements, the product
over non-zero elements, respectively.

2.1. A-lattices. A rank r A-lattice A in C
means a finitely generated A-submodule of rank r in
C that is discrete in the topology of C. For such an
A-lattice A, define the Euler product

ea(z) = =[] (1 - §>

The product converges uniformly on bounded sets
in C', and defines a map ep : C'— C. The map ey has
the following properties:

e ¢y is entire in the rigid analytic sense, and
surjective;

e ¢, is Fy-linear and A-periodic;

e ¢y has simple zeros at the points of A, and no
other zeros;

o dey(z)/dz = €}, (2) = 1. Hence we have

1 _eﬁx(z)zz 1

(21) en(z)  en(z) 2=\

An F-linear ring homomorphism
¢:A—Ende(G,), ar ¢,

is said to be a Drinfeld module of rank r over C if ¢

satisfies
pr=T+ar++at1, a #0

for some a; € C, where 7 denotes the ¢-th power
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morphism in End¢(G,). Given a rank r A-lattice A,
there exists a unique rank r Drinfeld module ¢*
with the condition e (az) = ¢*(ea(z)) for all a € A.
The association A — ¢* yields a bijection of the set
of A-lattices of rank r in C with the set of Drinfeld
modules of rank r over C. The rank one Drinfeld
module p defined by pr =T + 7 is said to be the
Carlitz module. We denote the A-lattice associated
to p by L.

We recall the Newton formula for power sums
of the zeros of a polynomial.

Proposition 2.1 (The Newton formula cf. [1]).
Let

X)) =X"+a X"+ Fe X+

be a polynomial, and oy, . .., «, the roots of f(X). For

each positive integer k, put

Tk:o/f—&—---—i—aﬁ.
Then
Ti+eiTia+--+ Ty + ke =0 (k<n),
Ti+alya+-+ce1Thpnir + Ty =0
(k>n).
Using this formula, we have
Proposition 2.2. Let A be a rank r A-lattice
in C, and take a mon-zero element a € A. For

m=1,2,...,9— 2, we have
a??lr 1
€A(a2)m - v eA(Z _ A/Cl,)m .

For any non-zero element ¢ € A, set
R(c) ={ea(Mc) | A € AJeA} — {0}.

In other words, R(c) consists of the non-zero roots
of ¢.(2). Let A be a rank r A-lattice in C
corresponding to the Drinfeld module ¢ with

22) 6(2) = S L(0)
i=0

where n = rdege,l,(c) #0, and ly(c) = c.
Proposition 2.3.

Z o { 0 (m=1,...,q—2)
o =
a€R(c) h (C)/C (m =4q- 1)
In particular, if ¢ = p, the Carlitz module, then
DN
Ti—-T

a€R(c)
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2.2. Function field Dedekind sums. Ob-
serving that (2.1) is similar to a formula for 7 cot 7z,
for an A-lattice A of finite rank in C, let us define
Dedekind sum as follows:

Definition 2.4. Let a,c€ A—F, be rela-
tively prime elements. In other words, assume
Aa+ Ac=A. Form=1,...,q— 2, define

1 , A —q+1+m al\ ™
Sm(a’v C)A = C_m Z €A <Z) €A <?> .

AEA/cA

Moreover, we define

p A —q+1
so(€)y = so(a, ), = Z en (—) .
AEA/cA ¢
We call s,,(a,c), the m-th Dedekind-Drinfeld sum
for A. In particular, if L is the rank one A-lattice
associated to the Carlitz module p, then s,,(a, c); is
called the m-th Dedekind-Carlitz sum.

Remark 2.5. (1) In [3], Okada defines the
Dedekind-Carlitz sum. Our definition generalizes it.
(2) It is possible to define Dedekind-Drinfeld sums
in the same way for arbitrary function field instead
of K =F,(T).

It follows from Proposition 2.3 that

li(c)

SO(C)A = 80(a7 C)A = 77

where [ (c) is the coefficient of 27 in ¢.(z) as in (2.2).
In particular, regarding the lattice L associated to
the Carlitz module p,

=t —1
so(c); = so(a,¢); = T

The following result is analogous to the
properties (1), (2) of the classical Dedekind sums
in section one.

Proposition 2.6. Dedekind sums s;(a,c),
m=1,...,q— 2) satisfy the following properties:
1) For any o € Fy, sm(aa,c)y = a "sp(a,c)y.

2) If a,d’ € A satisfy a — a' € cA, then sp(a,c), =
Sm(a’, ).

(3) Take b€ A with ab—1 € cA. Then sy(b,c), =
A 1mg g (a,c)

2.3. Function field reciprocity law. We
present the reciprocity law for our Dedekind sums.
Let a,c € A —F, be relatively prime elements, and
m=1,...,q—2.

Theorem 2.7 (Function
law I).

(
(
(

field reciprocity



sm(a,c)y + (=1)" "sm(c,a)y
R ED" s a)y (mtl
| arer "

so(c)y +m - so(a)y
amcm :

As a corollary to this result, the next theorem
is obtained.
Theorem 2.8 (Function field reciprocity law

).
sm(a,c)) + (71)7"715m(07 a)y =
m-1(=1)"" (sm,r(a7 O+ (=)™ (e, a)A> <m: 1)
— 2arcr
(m+ 0" ) (s0(@)s + (1" " s0(0)s)
+ 2a™mcm '

Example 2.9. Using the notation in the
previous subsection, we have
si(a,c), +si(c,a), = w,
a’c
s3(a,c)y + s3(c,a),
_ 2s3(a,¢)y +2s9(c,a),  ali(c) + cli(a)

ac a*ct
In particular, if A = L, then
q—1 g—1 _
si(a,c)p + si(c,a); = %C_T)Q ,
s3(a,c); + s3(c,a);
2s9(a,¢); +2s2(c,a);,  atl -2
- ac BT -T)

3. Finite field Dedekind sums.
section, we use the following notations.
K = F,: the finite field with ¢ elements.
K: an algebraic closure of K.

Z/: the sum over non-zero elements.
[T the product over non-zero elements.

3.1. Lattices. A lattice A in K means a linear
K-subspace in K of finite dimension. For such a
lattice A, we define the Euler product

ex(z) = zH’<1 - i)

The product defines a map ey : K — K. The map ey
has the following properties:
e ¢, is Fy-linear and A-periodic.

In this
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o If dimy A = r, then ey (2) has the form

(3.1) ex(z) = Zai(A)z‘f,
=0
where ap(A) =1 and a,(A) # 0.
e ¢, has simple zeros at the points of A, and no
other zeros.
o dey(z)/dz = €} (2) = 1. Hence we have

1 _eﬁ\(z)zz 1
z—X

e/\(z) B el\(z) NeA

(3.2)

Using the Newton formula, we have
Proposition 3.1. Let A be a lattice in K,
and take a non-zero element a € K. For m =
1,2,...,q — 2, we have
a™ 1

ep(az)™ B Z (z—x/a)™"

zEA

For b € K — {0}, set
R(b) = {\/b| A € A} —{0}.

Lemma 3.2.

o 0 (m=1,...,q—2)
2, _{ ar(A)p! q—1) 7

2€R(b) (m =

where a;(A) is as in (3.1).

3.2. Finite field Dedekind sums. Observing
that (3.2) is similar to a formula for 7cot 7z, for a
lattice A in K, we define Dedekind sum as follows:

Definition 3.3. Set

A={zecK|xz\e A for some A € A}.
We choose ¢,a € K — {0} such that a/c¢ A. For
m=1,...,q— 2, define
1

e\ —q+1+m a\\ ™
Sm(a7 C)A :EE Z EA ? .

Moreover, we define

s0(c)y = so(a,c)y = Z, (%) 7q+1.

AeA
We call s,,(a,c), the m-th finite Dedekind sum
for A.
Remark 3.4. In [2], we defined the Dede-
kind sum for A = K. Our definition generalizes it.
It follows from Lemma 3.2 that

so(c)y = so(a,c)y = an(A)e’™,

where «;(A) is the coefficient of 2¢ in ej(z) as in
(3.1).
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The following result is analogous to the proper-
ties (1), (2) of the classical Dedekind sums in
section one.

Proposition 3.5. Dedekind sums syn(a,c),
(m=1,...,q— 1) satisfy the following properties:
(1) For any o € K*, sp(aa,c)y = a ™sp(a,c),.

(2) If a,d’ € K satisfy a —a' € cA, then sy(a,c), =
Sm(d’, )y

3.3. Finite field reciprocity law. We present
the reciprocity law for our Dedekind sums. Let
a,c be the elements of K — {0} such that a/c ¢ A.

Theorem 3.6 (Finite field reciprocity law I).
Form=1,...,q— 2, we have

sm(a,c), + (=)™ s (e, a),

_ Tg (=D)"™ "sm-r(c,a)y (mj 1)

a"c’

s0(c)y +m - so(a)y
+ amcm !

As a corollary to this result, the next theorem
is obtained.

Theorem 3.7 (Finite field reciprocity law II).
Form=1,...,q— 2, we have

Sm (CL, C)A + (_1)m_13m(07 a)A =
2 (<) (s el )y + (1) s ) ()

T AT
i 2a"¢

(m + (—1)7"71) (SO(G)A + (_1)m7150(C)A)

2 aﬁl C777,

r=

+
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Example 3.8. Using the notation in the
previous subsection, we have
ar(A)(a?™t + 7Y

si(a,c), + si(c,a), = ” ,

53 (aa C)A + 83 (C7 a)A
B 2s9(a,c)) +2s2(c,a),  a1(A) (a7t + 1)
N ac adc3 '

In particular, if A = K, then ex(z) = z — 29, so that
a4 et
sila,c)p + s1(c,a)p = — ———,
1( ’ )K 1( )K ac
33(aa C)K + 53(0’ a)K
_ 2sy(a,0) g +2s9(c,a) e att !

ac aded
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