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Abstract: This paper is concerned with Dedekind sums in finite characteristic. We

introduce Dedekind sums for lattices, and establish the reciprocity law for them.
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1. Introduction. This paper is a résumé of

our results, and the details will be published

elsewhere.

For two relatively prime integers a; c 2 Z with

c 6¼ 0, we define the classical Dedekind sum in the

form

sða; cÞ ¼ 1

c

X
k2ðZ=cZÞ�f0g

cot �
k

c

� �
cot �

ak

c

� �
:

As is well known, sða; cÞ has the following

properties:

(1) sð�a; cÞ ¼ �sða; cÞ.
(2) If a � a0 ðmod cÞ, then sða; cÞ ¼ sða0; cÞ.
(3) (Reciprocity law) For two relatively prime

integers a; c 2 Z� f0g,

sða; cÞ þ sðc; aÞ ¼
1

3

a

c
þ

1

ac
þ

c

a

� �
� signðacÞ:

The sum sða; cÞ is related to the module Z. In [4],

Sczech defined the Dedekind sum for a given lattice

Zw1 þ Zw2. Okada [3] introduced the Dedekind sum

for a given function field. His Dedekind sum is

related to the Fq½T �-module L corresponding to the

Carlitz module (cf. 2.1). Inspired by Okada’s result,

we defined in [2] the Dedekind sum for a given finite

field. Our previous result is related to a given finite

field itself. Observing these former results, we have

noticed that it is possible to define the Dedekind

sum for a given lattice in finite characteristic. In

this paper, we introduce Dedekind sums for lattices,

and establish the reciprocity law for them.

Our results is divided into two parts. Section 2

deals with function fields case. In section 3, we

discuss finite fields case.

2. Function field Dedekind sums. In this

section we use the following notations. Let Fq be the

finite field with q elements, A ¼ Fq½T � the ring of

polynomials in an indeterminate T , K ¼ FqðT Þ the
quotient field of A, j j the normalized absolute value

on K such that jT j ¼ q, K1 the completion of K

with respect to j j, K1 a fixed algebraic extension of

K1, and C the completion of K1. We denote byP0,
Q0 the sum over non-zero elements, the product

over non-zero elements, respectively.

2.1. A-lattices. A rank r A-lattice � in C

means a finitely generated A-submodule of rank r in

C that is discrete in the topology of C. For such an

A-lattice �, define the Euler product

e�ðzÞ ¼ z
Y
�2�

0
1�

z

�

� �
:

The product converges uniformly on bounded sets

in C, and defines a map e� : C ! C. The map e� has

the following properties:

� e� is entire in the rigid analytic sense, and

surjective;

� e� is Fq-linear and �-periodic;

� e� has simple zeros at the points of �, and no

other zeros;

� de�ðzÞ=dz ¼ e0�ðzÞ ¼ 1. Hence we have

1

e�ðzÞ
¼

e0�ðzÞ
e�ðzÞ

¼
X
�2�

1

z� �
:ð2:1Þ

An Fq-linear ring homomorphism

� : A ! EndCðGaÞ; a 7! �a

is said to be a Drinfeld module of rank r over C if �

satisfies

�T ¼ T þ a1� þ � � � þ ar�
r; ar 6¼ 0

for some ai 2 C, where � denotes the q-th power
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morphism in EndCðGaÞ. Given a rank r A-lattice �,

there exists a unique rank r Drinfeld module ��

with the condition e�ðazÞ ¼ ��
a ðe�ðzÞÞ for all a 2 A.

The association � 7! �� yields a bijection of the set

of A-lattices of rank r in C with the set of Drinfeld

modules of rank r over C. The rank one Drinfeld

module � defined by �T ¼ T þ � is said to be the

Carlitz module. We denote the A-lattice associated

to � by L.

We recall the Newton formula for power sums

of the zeros of a polynomial.

Proposition 2.1 (The Newton formula cf. [1]).

Let

fðXÞ ¼ Xn þ c1X
n�1 þ � � � þ cn�1X þ cn

be a polynomial, and �1; . . . ; �n the roots of fðXÞ. For
each positive integer k, put

Tk ¼ �k
1 þ � � � þ �k

n:

Then

Tk þ c1Tk�1 þ � � � þ ck�1T1 þ kck ¼ 0 ðk � nÞ;
Tk þ c1Tk�1 þ � � � þ cn�1Tk�nþ1 þ cnTk�n ¼ 0

ðk � nÞ:
Using this formula, we have

Proposition 2.2. Let � be a rank r A-lattice

in C, and take a non-zero element a 2 A. For

m ¼ 1; 2; . . . ; q � 2, we have

am

e�ðazÞm
¼

X
�2�=a�

1

e�ðz� �=aÞm
:

For any non-zero element c 2 A, set

RðcÞ ¼ fe�ð�=cÞ j � 2 �=c�g � f0g:

In other words, RðcÞ consists of the non-zero roots

of �cðzÞ. Let � be a rank r A-lattice in C

corresponding to the Drinfeld module � with

�cðzÞ ¼
Xn
i¼0

liðcÞzq
i

;ð2:2Þ

where n ¼ r deg c; lnðcÞ 6¼ 0, and l0ðcÞ ¼ c.

Proposition 2.3.X
�2RðcÞ

��m ¼
0 ðm ¼ 1; . . . ; q � 2Þ

l1ðcÞ=c ðm ¼ q � 1Þ

�
:

In particular, if � ¼ �, the Carlitz module, thenX
�2RðcÞ

��qþ1 ¼
cq�1 � 1

Tq � T
:

2.2. Function field Dedekind sums. Ob-

serving that (2.1) is similar to a formula for � cot�z,
for an A-lattice � of finite rank in C, let us define

Dedekind sum as follows:

Definition 2.4. Let a; c 2 A� Fq be rela-

tively prime elements. In other words, assume

Aaþ Ac ¼ A. For m ¼ 1; . . . ; q � 2, define

smða; cÞ� ¼
1

cm

X
�2�=c�

0
e�

�

c

� ��qþ1þm

e�
a�

c

� ��m

:

Moreover, we define

s0ðcÞ� ¼ s0ða; cÞ� ¼
X

�2�=c�

0
e�

�

c

� ��qþ1

:

We call smða; cÞ� the m-th Dedekind-Drinfeld sum

for �. In particular, if L is the rank one A-lattice

associated to the Carlitz module �, then smða; cÞL is

called the m-th Dedekind-Carlitz sum.

Remark 2.5. (1) In [3], Okada defines the

Dedekind-Carlitz sum. Our definition generalizes it.

(2) It is possible to define Dedekind-Drinfeld sums

in the same way for arbitrary function field instead

of K ¼ FqðT Þ.
It follows from Proposition 2.3 that

s0ðcÞ� ¼ s0ða; cÞ� ¼
l1ðcÞ
c

;

where l1ðcÞ is the coefficient of zq in �cðzÞ as in (2.2).

In particular, regarding the lattice L associated to

the Carlitz module �,

s0ðcÞL ¼ s0ða; cÞL ¼
cq�1 � 1

Tq � T
:

The following result is analogous to the

properties (1), (2) of the classical Dedekind sums

in section one.

Proposition 2.6. Dedekind sums smða; cÞ�
ðm ¼ 1; . . . ; q � 2Þ satisfy the following properties:

(1) For any � 2 F�
q , smð�a; cÞ� ¼ ��msmða; cÞ�.

(2) If a; a0 2 A satisfy a� a0 2 cA, then smða; cÞ� ¼
smða0; cÞ�.
(3) Take b 2 A with ab� 1 2 cA. Then smðb; cÞ� ¼
cq�1�2msq�1�mða; cÞ�.

2.3. Function field reciprocity law. We

present the reciprocity law for our Dedekind sums.

Let a; c 2 A� Fq be relatively prime elements, and

m ¼ 1; . . . ; q � 2.

Theorem 2.7 (Function field reciprocity

law I).
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smða; cÞ� þ ð�1Þm�1smðc; aÞ�

¼
Xm�1

r¼1

ð�1Þm�rsm�rðc; aÞ�
arcr

� mþ 1
r

� �

þ
s0ðcÞ� þm � s0ðaÞ�

amcm
:

As a corollary to this result, the next theorem

is obtained.

Theorem 2.8 (Function field reciprocity law

II).

smða; cÞ� þ ð�1Þm�1smðc; aÞ� ¼

Xm�1

r¼1

ð�1Þr�1 sm�rða; cÞ� þ ð�1Þm�1sm�rðc; aÞ�
� �

mþ 1
r

� �
2arcr

þ
mþ ð�1Þm�1

� �
s0ðaÞ� þ ð�1Þm�1s0ðcÞ�

� �
2amcm

:

Example 2.9. Using the notation in the

previous subsection, we have

s1ða; cÞ� þ s1ðc; aÞ� ¼
al1ðcÞ þ cl1ðaÞ

a2c2
;

s3ða; cÞ� þ s3ðc; aÞ�

¼
2s2ða; cÞ� þ 2s2ðc; aÞ�

ac
�

al1ðcÞ þ cl1ðaÞ
a4c4

:

In particular, if � ¼ L, then

s1ða; cÞL þ s1ðc; aÞL ¼
aq�1 þ cq�1 � 2

acðTq � T Þ ;

s3ða; cÞL þ s3ðc; aÞL

¼
2s2ða; cÞL þ 2s2ðc; aÞL

ac
�

aq�1 þ cq�1 � 2

a3c3ðTq � T Þ
:

3. Finite field Dedekind sums. In this

section, we use the following notations.

K ¼ Fq: the finite field with q elements.

K: an algebraic closure of K.P0: the sum over non-zero elements.Q0: the product over non-zero elements.

3.1. Lattices. A lattice � in K means a linear

K-subspace in K of finite dimension. For such a

lattice �, we define the Euler product

e�ðzÞ ¼ z
Y
�2�

0
1�

z

�

� �
:

The product defines a map e� : K ! K. The map e�
has the following properties:

� e� is Fq-linear and �-periodic.

� If dimK � ¼ r, then e�ðzÞ has the form

e�ðzÞ ¼
Xr
i¼0

�ið�Þzq
i

;ð3:1Þ

where �0ð�Þ ¼ 1 and �rð�Þ 6¼ 0.

� e� has simple zeros at the points of �, and no

other zeros.

� de�ðzÞ=dz ¼ e0�ðzÞ ¼ 1. Hence we have

1

e�ðzÞ
¼

e0�ðzÞ
e�ðzÞ

¼
X
�2�

1

z� �
:ð3:2Þ

Using the Newton formula, we have

Proposition 3.1. Let � be a lattice in K,

and take a non-zero element a 2 K. For m ¼
1; 2; . . . ; q � 2, we have

am

e�ðazÞm
¼

X
x2�

1

ðz� x=aÞm
:

For b 2 K � f0g, set
RðbÞ ¼ f�=b j � 2 �g � f0g:

Lemma 3.2.X
x2RðbÞ

x�m ¼
0 ðm ¼ 1; . . . ; q � 2Þ

�1ð�Þbq�1 ðm ¼ q � 1Þ

�
;

where �1ð�Þ is as in (3.1).

3.2. Finite field Dedekind sums. Observing

that (3.2) is similar to a formula for � cot�z, for a

lattice � in K, we define Dedekind sum as follows:

Definition 3.3. Sete�� ¼ fx 2 K j x� 2 � for some � 2 �g:

We choose c; a 2 K � f0g such that a=c =2 e��. For

m ¼ 1; . . . ; q � 2, define

smða; cÞ� ¼
1

cm

X
�2�

0 �

c

� ��qþ1þm

e�
a�

c

� ��m

:

Moreover, we define

s0ðcÞ� ¼ s0ða; cÞ� ¼
X
�2�

0 �

c

� ��qþ1

:

We call smða; cÞ� the m-th finite Dedekind sum

for �.
Remark 3.4. In [2], we defined the Dede-

kind sum for � ¼ K. Our definition generalizes it.

It follows from Lemma 3.2 that

s0ðcÞ� ¼ s0ða; cÞ� ¼ �1ð�Þcq�1;

where �1ð�Þ is the coefficient of zq in e�ðzÞ as in

(3.1).
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The following result is analogous to the proper-

ties (1), (2) of the classical Dedekind sums in

section one.

Proposition 3.5. Dedekind sums smða; cÞ�
ðm ¼ 1; . . . ; q � 1Þ satisfy the following properties:

(1) For any � 2 K�, smð�a; cÞ� ¼ ��msmða; cÞ�.
(2) If a; a0 2 K satisfy a� a0 2 c�, then smða; cÞ� ¼
smða0; cÞ�.

3.3. Finite field reciprocity law. We present

the reciprocity law for our Dedekind sums. Let

a; c be the elements of K � f0g such that a=c =2 e��.
Theorem 3.6 (Finite field reciprocity law I).

For m ¼ 1; . . . ; q � 2, we have

smða; cÞ� þ ð�1Þm�1smðc; aÞ�

¼
Xm�1

r¼1

ð�1Þm�rsm�rðc; aÞ�
arcr

� mþ 1
r

� �

þ s0ðcÞ� þm � s0ðaÞ�
amcm

:

As a corollary to this result, the next theorem

is obtained.

Theorem 3.7 (Finite field reciprocity law II).

For m ¼ 1; . . . ; q � 2, we have

smða; cÞ� þ ð�1Þm�1smðc; aÞ� ¼

Xm�1

r¼1

ð�1Þr�1 sm�rða; cÞ� þ ð�1Þm�1sm�rðc; aÞ�
� �

mþ 1
r

� �
2arcr

þ
mþ ð�1Þm�1

� �
s0ðaÞ� þ ð�1Þm�1s0ðcÞ�

� �
2amcm

:

Example 3.8. Using the notation in the

previous subsection, we have

s1ða; cÞ� þ s1ðc; aÞ� ¼
�1ð�Þ aq�1 þ cq�1ð Þ

ac
;

s3ða; cÞ� þ s3ðc; aÞ�

¼
2s2ða; cÞ� þ 2s2ðc; aÞ�

ac
�

�1ð�Þ aq�1 þ cq�1ð Þ
a3c3

:

In particular, if � ¼ K, then eKðzÞ ¼ z� zq, so that

s1ða; cÞK þ s1ðc; aÞK ¼ �
aq�1 þ cq�1

ac
;

s3ða; cÞK þ s3ðc; aÞK

¼
2s2ða; cÞK þ 2s2ðc; aÞK

ac
þ

aq�1 þ cq�1

a3c3
:
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