Dedekind sums in finite characteristic

By Yoshinori HAMAHATA

Department of Mathematics, Tokyo University of Science, 2641 Noda, Chiba, 278-8510, Japan

(Communicated by Shigefumi MORI, M.J.A., June 10, 2008)

Abstract: This paper is concerned with Dedekind sums in finite characteristic. We introduce Dedekind sums for lattices, and establish the reciprocity law for them.

Key words: Dedekind sums; lattices; Drinfeld modules.

1. Introduction. This paper is a résumé of our results, and the details will be published elsewhere.

For two relatively prime integers $a, c \in \mathbb{Z}$ with $c \neq 0$, we define the classical Dedekind sum in the form

$$s(a,c) = \frac{1}{c} \sum_{k \in (\mathbf{Z}/c\mathbf{Z}) - \{0\}} \cot\left(\pi \frac{k}{c}\right) \cot\left(\pi \frac{ak}{c}\right).$$

As is well known, s(a, c) has the following properties:

(1) s(-a,c) = -s(a,c).

(2) If $a \equiv a' \pmod{c}$, then s(a, c) = s(a', c).

(3) (Reciprocity law) For two relatively prime integers $a, c \in \mathbf{Z} - \{0\}$,

$$s(a,c) + s(c,a) = \frac{1}{3} \left(\frac{a}{c} + \frac{1}{ac} + \frac{c}{a} \right) - \operatorname{sign}(ac)$$

The sum s(a, c) is related to the module **Z**. In [4], Sczech defined the Dedekind sum for a given lattice $\mathbf{Z}w_1 + \mathbf{Z}w_2$. Okada [3] introduced the Dedekind sum for a given function field. His Dedekind sum is related to the $\mathbf{F}_q[T]$ -module L corresponding to the Carlitz module (cf. 2.1). Inspired by Okada's result, we defined in [2] the Dedekind sum for a given finite field. Our previous result is related to a given finite field itself. Observing these former results, we have noticed that it is possible to define the Dedekind sum for a given lattice in finite characteristic. In this paper, we introduce Dedekind sums for lattices, and establish the reciprocity law for them.

Our results is divided into two parts. Section 2 deals with function fields case. In section 3, we discuss finite fields case.

2. Function field Dedekind sums. In this section we use the following notations. Let \mathbf{F}_q be the finite field with q elements, $A = \mathbf{F}_q[T]$ the ring of polynomials in an indeterminate $T, K = \mathbf{F}_q(T)$ the quotient field of A, || the normalized absolute value on K such that $|T| = q, K_\infty$ the completion of K with respect to $||, \overline{K_\infty}$ a fixed algebraic extension of K_∞ , and C the completion of $\overline{K_\infty}$. We denote by \sum', \prod' the sum over non-zero elements, the product over non-zero elements, respectively.

2.1. A-lattices. A rank r A-lattice Λ in C means a finitely generated A-submodule of rank r in C that is discrete in the topology of C. For such an A-lattice Λ , define the Euler product

$$e_{\Lambda}(z) = z \prod_{\lambda \in \Lambda}' \left(1 - \frac{z}{\lambda} \right).$$

The product converges uniformly on bounded sets in C, and defines a map $e_{\Lambda} : C \to C$. The map e_{Λ} has the following properties:

• e_{Λ} is entire in the rigid analytic sense, and surjective;

• e_{Λ} is \mathbf{F}_q -linear and Λ -periodic;

• e_{Λ} has simple zeros at the points of Λ , and no other zeros;

• $de_{\Lambda}(z)/dz = e'_{\Lambda}(z) = 1$. Hence we have

(2.1)
$$\frac{1}{e_{\Lambda}(z)} = \frac{e'_{\Lambda}(z)}{e_{\Lambda}(z)} = \sum_{\lambda \in \Lambda} \frac{1}{z - \lambda}.$$

An \mathbf{F}_q -linear ring homomorphism

 $\phi: A \to \operatorname{End}_C(\mathbf{G}_a), \quad a \mapsto \phi_a$

is said to be a *Drinfeld module* of rank r over C if ϕ satisfies

$$\phi_T = T + a_1 \tau + \dots + a_r \tau^r, \quad a_r \neq 0$$

for some $a_i \in C$, where τ denotes the q-th power

²⁰⁰⁰ Mathematics Subject Classification. Primary 11F20; Secondary 11T50, 11G09.

morphism in $\operatorname{End}_{C}(\mathbf{G}_{a})$. Given a rank r A-lattice Λ , there exists a unique rank r Drinfeld module ϕ^{Λ} with the condition $e_{\Lambda}(az) = \phi_{a}^{\Lambda}(e_{\Lambda}(z))$ for all $a \in A$. The association $\Lambda \mapsto \phi^{\Lambda}$ yields a bijection of the set of A-lattices of rank r in C with the set of Drinfeld modules of rank r over C. The rank one Drinfeld module ρ defined by $\rho_{T} = T + \tau$ is said to be the Carlitz module. We denote the A-lattice associated to ρ by L.

We recall the Newton formula for power sums of the zeros of a polynomial.

Proposition 2.1 (The Newton formula cf. [1]). Let

$$f(X) = X^{n} + c_1 X^{n-1} + \dots + c_{n-1} X + c_n$$

be a polynomial, and $\alpha_1, \ldots, \alpha_n$ the roots of f(X). For each positive integer k, put

$$T_k = \alpha_1^k + \dots + \alpha_n^k.$$

Then

$$T_k + c_1 T_{k-1} + \dots + c_{k-1} T_1 + k c_k = 0 \quad (k \le n),$$

$$T_k + c_1 T_{k-1} + \dots + c_{n-1} T_{k-n+1} + c_n T_{k-n} = 0$$

$$(k \ge n).$$

Using this formula, we have

Proposition 2.2. Let Λ be a rank r A-lattice in C, and take a non-zero element $a \in A$. For $m = 1, 2, \dots, q - 2$, we have

$$rac{a^m}{e_{\Lambda}(az)^m} = \sum_{\lambda \in \Lambda/a\Lambda} rac{1}{e_{\Lambda}(z - \lambda/a)^m}$$

For any non-zero element $c \in A$, set

$$R(c) = \{e_{\Lambda}(\lambda/c) \mid \lambda \in \Lambda/c\Lambda\} - \{0\}$$

In other words, R(c) consists of the non-zero roots of $\phi_c(z)$. Let Λ be a rank r A-lattice in Ccorresponding to the Drinfeld module ϕ with

(2.2)
$$\phi_c(z) = \sum_{i=0}^n l_i(c) z^{q^i},$$

where $n = r \deg c$, $l_n(c) \neq 0$, and $l_0(c) = c$.

Proposition 2.3.

$$\sum_{\alpha \in R(c)} \alpha^{-m} = \begin{cases} 0 & (m = 1, \dots, q - 2) \\ l_1(c)/c & (m = q - 1) \end{cases}$$

In particular, if $\phi = \rho$, the Carlitz module, then

$$\sum_{\alpha \in R(c)} \alpha^{-q+1} = \frac{c^{q-1} - 1}{T^q - T}.$$

2.2. Function field Dedekind sums. Observing that (2.1) is similar to a formula for $\pi \cot \pi z$, for an *A*-lattice Λ of finite rank in *C*, let us define Dedekind sum as follows:

Definition 2.4. Let $a, c \in A - \mathbf{F}_q$ be relatively prime elements. In other words, assume Aa + Ac = A. For $m = 1, \ldots, q - 2$, define

$$s_m(a,c)_{\Lambda} = \frac{1}{c^m} \sum_{\lambda \in \Lambda/c\Lambda} e_{\Lambda} \left(\frac{\lambda}{c}\right)^{-q+1+m} e_{\Lambda} \left(\frac{a\lambda}{c}\right)^{-m}.$$

Moreover, we define

$$s_0(c)_{\Lambda} = s_0(a,c)_{\Lambda} = \sum_{\lambda \in \Lambda/c\Lambda} ' e_{\Lambda} \left(\frac{\lambda}{c}\right)^{-q+1}$$

We call $s_m(a, c)_{\Lambda}$ the *m*-th *Dedekind-Drinfeld sum* for Λ . In particular, if *L* is the rank one *A*-lattice associated to the Carlitz module ρ , then $s_m(a, c)_L$ is called the *m*-th *Dedekind-Carlitz sum*.

Remark 2.5. (1) In [3], Okada defines the Dedekind-Carlitz sum. Our definition generalizes it. (2) It is possible to define Dedekind-Drinfeld sums in the same way for arbitrary function field instead of $K = \mathbf{F}_q(T)$.

It follows from Proposition 2.3 that

$$s_0(c)_{\Lambda} = s_0(a,c)_{\Lambda} = \frac{l_1(c)}{c},$$

where $l_1(c)$ is the coefficient of z^q in $\phi_c(z)$ as in (2.2). In particular, regarding the lattice L associated to the Carlitz module ρ ,

$$s_0(c)_L = s_0(a,c)_L = \frac{c^{q-1}-1}{T^q-T}$$

The following result is analogous to the properties (1), (2) of the classical Dedekind sums in section one.

Proposition 2.6. Dedekind sums $s_m(a,c)_{\Lambda}$ $(m = 1, \ldots, q - 2)$ satisfy the following properties:

- (1) For any $\alpha \in \mathbf{F}_q^*$, $s_m(\alpha a, c)_{\Lambda} = \alpha^{-m} s_m(a, c)_{\Lambda}$.
- (2) If $a, a' \in A$ satisfy $a a' \in cA$, then $s_m(a, c)_{\Lambda} = s_m(a', c)_{\Lambda}$.
- (3) Take $b \in A$ with $ab 1 \in cA$. Then $s_m(b,c)_{\Lambda} = c^{q-1-2m}s_{q-1-m}(a,c)_{\Lambda}$.

2.3. Function field reciprocity law. We present the reciprocity law for our Dedekind sums. Let $a, c \in A - \mathbf{F}_q$ be relatively prime elements, and $m = 1, \ldots, q - 2$.

Theorem 2.7 (Function field reciprocity law I).

$$s_{m}(a,c)_{\Lambda} + (-1)^{m-1} s_{m}(c,a)_{\Lambda}$$

= $\sum_{r=1}^{m-1} \frac{(-1)^{m-r} s_{m-r}(c,a)_{\Lambda}}{a^{r} c^{r}} \cdot {m+1 \choose r}$
+ $\frac{s_{0}(c)_{\Lambda} + m \cdot s_{0}(a)_{\Lambda}}{a^{m} c^{m}}$

As a corollary to this result, the next theorem is obtained.

Theorem 2.8 (Function field reciprocity law II).

$$\begin{split} s_m(a,c)_{\Lambda} &+ (-1)^{m-1} s_m(c,a)_{\Lambda} = \\ \sum_{r=1}^{m-1} \frac{(-1)^{r-1} \left(s_{m-r}(a,c)_{\Lambda} + (-1)^{m-1} s_{m-r}(c,a)_{\Lambda} \right) {\binom{m+1}{r}}}{2a^r c^r} \\ &+ \frac{\left(m + (-1)^{m-1} \right) \left(s_0(a)_{\Lambda} + (-1)^{m-1} s_0(c)_{\Lambda} \right)}{2a^m c^m}. \end{split}$$

Example 2.9. Using the notation in the previous subsection, we have

$$s_1(a,c)_{\Lambda} + s_1(c,a)_{\Lambda} = \frac{al_1(c) + cl_1(a)}{a^2c^2},$$

$$s_3(a,c)_{\Lambda} + s_3(c,a)_{\Lambda}$$

$$= \frac{2s_2(a,c)_{\Lambda} + 2s_2(c,a)_{\Lambda}}{ac} - \frac{al_1(c) + cl_1(a)}{a^4c^4}.$$

In particular, if $\Lambda = L$, then

$$s_1(a,c)_L + s_1(c,a)_L = \frac{a^{q-1} + c^{q-1} - 2}{ac(T^q - T)},$$

$$s_3(a,c)_L + s_3(c,a)_L$$

$$= \frac{2s_2(a,c)_L + 2s_2(c,a)_L}{ac} - \frac{a^{q-1} + c^{q-1} - 2}{a^3c^3(T^q - T)}.$$

3. Finite field Dedekind sums. In this section, we use the following notations.

 $K = \mathbf{F}_q$: the finite field with q elements.

 \overline{K} : an algebraic closure of K.

 $\sum':$ the sum over non-zero elements.

 $\overline{\Pi}'$: the product over non-zero elements.

3.1. Lattices. A lattice Λ in \overline{K} means a linear K-subspace in \overline{K} of finite dimension. For such a lattice Λ , we define the Euler product

$$e_{\Lambda}(z) = z \prod_{\lambda \in \Lambda}' \left(1 - \frac{z}{\lambda} \right).$$

The product defines a map $e_{\Lambda} : \overline{K} \to \overline{K}$. The map e_{Λ} has the following properties:

• e_{Λ} is \mathbf{F}_q -linear and Λ -periodic.

• If $\dim_K \Lambda = r$, then $e_{\Lambda}(z)$ has the form

(3.1)
$$e_{\Lambda}(z) = \sum_{i=0}^{r} \alpha_i(\Lambda) z^{q^i},$$

where $\alpha_0(\Lambda) = 1$ and $\alpha_r(\Lambda) \neq 0$.

• e_{Λ} has simple zeros at the points of Λ , and no other zeros.

• $de_{\Lambda}(z)/dz = e'_{\Lambda}(z) = 1$. Hence we have

(3.2)
$$\frac{1}{e_{\Lambda}(z)} = \frac{e'_{\Lambda}(z)}{e_{\Lambda}(z)} = \sum_{\lambda \in \Lambda} \frac{1}{z - \lambda}.$$

Using the Newton formula, we have

Proposition 3.1. Let Λ be a lattice in \overline{K} , and take a non-zero element $a \in \overline{K}$. For $m = 1, 2, \ldots, q - 2$, we have

$$\frac{a^m}{e_{\Lambda}(az)^m} = \sum_{x \in \Lambda} \frac{1}{\left(z - x/a\right)^m} \,.$$

For
$$b \in \overline{K} - \{0\}$$
, set

$$R(b) = \{\lambda/b \mid \lambda \in \Lambda\} - \{0\}.$$

Lemma 3.2.

$$\sum_{x \in R(b)} x^{-m} = \begin{cases} 0 & (m = 1, \dots, q - 2) \\ \alpha_1(\Lambda) b^{q-1} & (m = q - 1) \end{cases},$$

where $\alpha_1(\Lambda)$ is as in (3.1).

3.2. Finite field Dedekind sums. Observing that (3.2) is similar to a formula for $\pi \cot \pi z$, for a lattice Λ in \overline{K} , we define Dedekind sum as follows:

Definition 3.3. Set

$$\Lambda = \{ x \in \overline{K} \mid x\lambda \in \Lambda \text{ for some } \lambda \in \Lambda \}.$$

We choose $c, a \in \overline{K} - \{0\}$ such that $a/c \notin \Lambda$. For $m = 1, \ldots, q-2$, define

$$s_m(a,c)_{\Lambda} = \frac{1}{c^m} \sum_{\lambda \in \Lambda} \left(\frac{\lambda}{c} \right)^{-q+1+m} e_{\Lambda} \left(\frac{a\lambda}{c} \right)^{-m}.$$

Moreover, we define

$$s_0(c)_{\Lambda} = s_0(a,c)_{\Lambda} = \sum_{\lambda \in \Lambda} \left(\frac{\lambda}{c}\right)^{-q+1}$$

We call $s_m(a,c)_{\Lambda}$ the *m*-th finite Dedekind sum for Λ .

Remark 3.4. In [2], we defined the Dedekind sum for $\Lambda = K$. Our definition generalizes it.

It follows from Lemma 3.2 that

$$s_0(c)_{\Lambda} = s_0(a,c)_{\Lambda} = \alpha_1(\Lambda)c^{q-1},$$

where $\alpha_1(\Lambda)$ is the coefficient of z^q in $e_{\Lambda}(z)$ as in (3.1).

No. 7]

The following result is analogous to the properties (1), (2) of the classical Dedekind sums in section one.

Proposition 3.5. Dedekind sums $s_m(a,c)_{\Lambda}$ $(m = 1, \ldots, q - 1)$ satisfy the following properties: (1) For any $\alpha \in K^*$, $s_m(\alpha a, c)_{\Lambda} = \alpha^{-m} s_m(a, c)_{\Lambda}$. (2) If $a, a' \in \overline{K}$ satisfy $a - a' \in c\Lambda$, then $s_m(a, c)_{\Lambda} = s_m(a', c)_{\Lambda}$.

3.3. Finite field reciprocity law. We present the reciprocity law for our Dedekind sums. Let a, c be the elements of $\overline{K} - \{0\}$ such that $a/c \notin \widetilde{\Lambda}$.

Theorem 3.6 (Finite field reciprocity law I). For $m = 1, \ldots, q - 2$, we have

$$s_{m}(a,c)_{\Lambda} + (-1)^{m-1} s_{m}(c,a)_{\Lambda}$$

= $\sum_{r=1}^{m-1} \frac{(-1)^{m-r} s_{m-r}(c,a)_{\Lambda}}{a^{r}c^{r}} \cdot {m+1 \choose r}$
+ $\frac{s_{0}(c)_{\Lambda} + m \cdot s_{0}(a)_{\Lambda}}{a^{m}c^{m}}$

As a corollary to this result, the next theorem is obtained.

Theorem 3.7 (Finite field reciprocity law II). For $m = 1, \ldots, q - 2$, we have

..... 1

$$s_{m}(a,c)_{\Lambda} + (-1)^{m-1} s_{m}(c,a)_{\Lambda} =$$

$$\sum_{r=1}^{m-1} \frac{(-1)^{r-1} \left(s_{m-r}(a,c)_{\Lambda} + (-1)^{m-1} s_{m-r}(c,a)_{\Lambda} \right) {\binom{m+1}{r}}}{2a^{r}c^{r}} + \frac{\left(m + (-1)^{m-1} \right) \left(s_{0}(a)_{\Lambda} + (-1)^{m-1} s_{0}(c)_{\Lambda} \right)}{2a^{m}c^{m}}.$$

Example 3.8. Using the notation in the previous subsection, we have

$$s_{1}(a,c)_{\Lambda} + s_{1}(c,a)_{\Lambda} = \frac{\alpha_{1}(\Lambda)(a^{q-1} + c^{q-1})}{ac},$$

$$s_{3}(a,c)_{\Lambda} + s_{3}(c,a)_{\Lambda}$$

$$= \frac{2s_{2}(a,c)_{\Lambda} + 2s_{2}(c,a)_{\Lambda}}{ac} - \frac{\alpha_{1}(\Lambda)(a^{q-1} + c^{q-1})}{a^{3}c^{3}}.$$
In particular, if $\Lambda = K$, then $e_{K}(z) = z - z^{q}$, so that

$$s_1(a,c)_K + s_1(c,a)_K = -\frac{a^{q-1} + c^{q-1}}{ac},$$

$$s_3(a,c)_K + s_3(c,a)_K$$

$$= \frac{2s_2(a,c)_K + 2s_2(c,a)_K}{ac} + \frac{a^{q-1} + c^{q-1}}{a^3c^3}.$$

Acknowledgement. This work was partially supported by Grant-in-Aid for Scientific Research (No. 18540050), Japan Society for the Promotion of Science.

References

- D. Goss, The algebraist's upper half-plane, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 3, 391– 415.
- Y. Hamahata, Dedekind sums for finite fields, In: Diophantine Analysis and Related Fields: DARF 2007/2008. AIP Conference Proceedings, American Institute of Physics, (2008), 976, pp. 96–102.
- [3] S. Okada, Analogies of Dedekind sums in function fields, Mem. Gifu Teach. Coll., 24, (1989) 11–16.
- [4] R. Sczech, Dedekindsummen mit elliptischen Funktionen, Invent. Math. **76** (1984), no. 3, 523–551.