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Abstract: For a few quadratic fields, the non-existence is proved of continuous irreducible

mod 2 Galois representations of degree 2 unramified outside f2;1g.
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1. Introduction. In this paper, we prove

the following theorem, which settles some special

cases of versions (cf. Conj. 1.1 of [3]; Conj. 1 of [12];

and Question 1 of [5]) of Serre’s modularity

conjecture [15,17] for a few quadratic fields:

Theorem. Let F be one of the following

quadratic fields:

Qð
ffiffiffiffiffiffiffi
�1

p
Þ;Qð

ffiffiffiffiffiffiffi
�2

p
Þ;Qð

ffiffiffiffiffiffiffi
�3

p
Þ;Qð

ffiffiffiffiffiffiffi
�5

p
Þ;Qð

ffiffiffiffiffiffiffi
�6

p
Þ:

Then there exist no continuous irreducible represen-

tations � : GF ! GL2ðF2Þ unramified outside

f2;1g.
Here, GF denotes the absolute Galois group

GalðF=F Þ of F , and F2 is an algebraic closure of the

finite field F2 of two elements.

The proof is based on the method of discrim-

inant bound as in [1,2,7,8,11,16,19]. However, we

need to improve the known upper bounds at the

prime 2. This is done in Section 2. The proof of the

Theorem is given in Section 3.

It is desirable to have such a theorem for mod p

representations for other primes p, but this seems

almost impossible at least by our method.

The first version of this paper did not include

the cases of Qð
ffiffiffiffiffiffiffi
�6

p
Þ. After it was circulated, M. H.

�Sengün communicated to us that, combining his

lower bound in [13] and our upper bound in Section

2, he could prove the non-existence in these cases.

Then we examined those cases and found that our

proof actually covered them as well. Thus we are

grateful to him very much for his communication.

Some additional results on the finiteness and

non-existence of mod 2 Galois representations of

quadratic fields can be found in [8].

Convention. For a finite extension E=F of

non-Archimedean local fields, we denote by DE=F

the different ideal of E=F . The 2-adic valuation v2 is

normalized by v2ð2Þ ¼ 1, and is used to measure the

order of ideals (such as DE=F ) in algebraic exten-

sions of the 2-adic field Q2. We denote by ð� �
�Þ and

ð1 �
1Þ respectively the subgroups fða0 b

dÞg and fð10 b
1Þg

of GL2ðF2Þ.

2. Local lemmas. Let F be a finite exten-

sion of Q2, D ¼ GF its absolute Galois group, and I

its inertia subgroup. In this section, we consider

mod 2 representations � : D! GL2ðF2Þ of D. Let

E=F be the extension cut out by �. We shall

estimate the different DE=F of E=F . Let E0 (resp.

E1) be the maximal unramified (resp. tamely

ramified) subextension of E=F , and let e1 ¼ ½E1 :
E0� be the tame ramification index of E=F . Then

we have DE=F ¼ DE=E1
DE1=E0

, and v2ðDE1=E0
Þ ¼

ð1� 1=e1Þ=eF , where eF is the ramification index

of F=Q2. Thus it remains for us to calculate DE=E1
.

We assume E=F is wildly ramified, with wild

ramification index 2m. Then the wild inertia sub-

group G1 of G :¼ Imð�Þ is a non-trivial 2-group and,

after conjugation, we may assume it is contained

in ð1 �
1Þ. Since G1 is normal in G and the normalizer

of G1 in GL2ðF2Þ is ð� �
�Þ, we may assume that � is

of the form

� ¼
 1 �

 2

� �
;ð2:1Þ

where  i : D! F
�
2 are characters of D. Note that

the  i’s have odd order, so that they are at most

tamely ramified.

Lemma 1. Let the notation be as above.

Assume further that F=Q2 has ramification index
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2. If E=F has ramification index 2m (i.e. if e1 ¼ 1),

then there exists a non-negative integer m2 � m

such that

v2ðDE=F Þ ¼
9
4 �

2m2þ1
2m and m2 � m� 1; or

2� 2m2þ1
2m

:

(

If � is non-abelian, then the former case does not

occur.

Here, we say � is (non-)abelian if the group

Imð�Þ is (non-)abelian.

Proof. By assumption, we have E1 ¼ E0 and

the characters  i are unramified. By local class field

theory, the Galois group G1 ¼ GalðE=E1Þ, which is

an elementary 2-group, is identified with a quotient

of the group ð1þ �AÞ=ð1þ �AÞ2, where A is the ring

OE1
of integers of E1, � is a uniformizer of A, and

ð1þ �AÞ2 is the subgroup of the square elements in

the multiplicative group ð1þ �AÞ. The character

group X ¼ HomðG1;C
�Þ of G1 is identified with

a subgroup of Homðð1þ �AÞ=ð1þ �AÞ2;C�Þ. The

subgroup Xi of X consisting of the characters with

conductor dividing �i is identified with a subgroup

of Homðð1þ �AÞ=ð1þ �iAÞð1þ �AÞ2;C�Þ. It is easy
to see that

f1g ¼ X1 � X2 ¼ X3 � X4 � X5 ¼ X:

Indeed, the equality X2 ¼ X3 follows from the

fact that ð1þ �2AÞ ¼ ð1þ �3AÞð1þ �AÞ2, and the

equality X5 ¼ X follows from the fact that

ð1þ �5AÞ � ð1þ �AÞ2; cf. the proof of Lemma 2.1

of [7]. Just as in [19], we can show that the index

ðX5 : X4Þ is 1 or 2, since the image of ð1þ �4AÞ
in ð1þ �AÞ=ð1þ �AÞ2 has order 2. To see this,

consider the equation

1þ a�4 ¼ ð1þ x�2Þ2ð2:2Þ

for a given a 2 A� and unknown x 2 A�. If 2 ¼ c�2

with c 2 A�, then the equation (2.2) has a solution

x if and only if the congruence

cxþ x2 � a (mod �Þ

has a solution. Since the F2-linear map } : A=�A!
A=�A given by x 7! cxþ x2 has dimF2

Cokerð}Þ ¼ 1,

the equation (2.2) has a solution for ‘‘half’’ of

the a’s.

By assumption, X5 has order 2m. Suppose X2

has order 2m2 . Then the 2-adic order of the different

DE=F ¼ DE=E1
can be calculated as follows by

using the Führerdiskriminantenproduktformel

([14], Chap. VI, §3):

(1-i) If ðX5 : X4Þ ¼ 2, then

v2ðDE=F Þ ¼
1

2
	 1

2m
�
ð2m � 2m�1Þ � 5

þ ð2m�1 � 2m2Þ � 4þ ð2m2 � 1Þ � 2
�

¼
9

4
�

2m2 þ 1

2m
:

(1-ii) If ðX5 : X4Þ ¼ 1, then

v2ðDE=F Þ ¼
1

2
	 1

2m
ð2m � 2m2Þ � 4þ ð2m2 � 1Þ � 2ð Þ

¼ 2� 2m2 þ 1

2m
:

Let  i be the characters in (2.1). If � is non-

abelian (or equivalently, if  1 6¼  2 as characters on

D), then GalðE0=F Þ ¼ G=G1 acts on G1 (identified

with a subgroup of ð1 �
1Þ) via  1 

�1
2 (cf. [11], Proof of

Prop. 2.3). This induces a similar action on X which

respects the filtration Xi. Each orbit in X5 rX4 by

this action has odd cardinality j Imð 1 
�1
2 Þj, while

X5 rX4 has 2-power cardinality if it is non-empty.

Thus we must have X5 ¼ X4, and we are in the case

(1-ii) above. �

Specializing the F=Q2, we calculate the value

of v2ðDE=F Þ more precisely as follows:

Lemma 2. Assume F=Q2 is a totally rami-

fied quadratic extension. Then the extension E=F

has ramification index 2m. If � is non-abelian,

then there exists a non-negative integer m2 � m

such that

v2ðDE=F Þ ¼ 2�
2m2 þ 1

2m
:

If � is abelian, then we have m � 3 and v2ðDE=F Þ �
15=8. In fact, more precisely, we have:

v2ðDE=F Þ ¼
15=8 if m ¼ 3,

7=4; 3=2 or 5=4 if m ¼ 2,

5=4; 1 or 1=2 if m ¼ 1.

8><
>:

Proof. F=Q2 being totally ramified, any abe-

lian extension of F has no non-trivial tame ram-

ification since O�
F is a pro-2 group. Thus the

characters  i in (2.1) are unramified, and E=F has

ramification index 2m.
If � is non-abelian, then v2ðDE=F Þ has the

second value in Lemma 1. If � is abelian (or

equivalently, if  1 ¼  2 as characters on D), then

G1 is identified with a quotient of O�
F =ðO�

F Þ
2. The
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group O�
F =ðO�

F Þ
2 has order 8. The different is the

largest in the case where G1 ’ O�
F =ðO�

F Þ
2, in which

case m ¼ 3, ðX5 : X4Þ ¼ ðX4 : X3Þ ¼ ðX2 : X1Þ ¼ 2,

and

v2ðDE=F Þ ¼
1

2
	 1
8
ð4� 5þ 2� 4þ 1� 2Þ ¼ 15

8
:

Other cases can be calculated similarly. Note that

ðXiþ1 : XiÞ ¼ 1 or 2 since the residue field of OF

is F2. �

Recall that e1 ¼ ½E1 : E0� denotes the tame

ramification index of E=F .

Lemma 3. If F=Q2 is the unramified quad-

ratic extension, then we have e1 ¼ 1 or 3. If � is

non-abelian, there exist non-negative integers m2 �
m4 � m such that

v2ðDE=F Þ ¼
2� 1

2m�1 if e1 ¼ 1,
8
3
� 2m4þ2m2þ1

3	2m�1 if e1 ¼ 3.

(

If � is abelian, then m � 3 and v2ðDE=F Þ � 35=12. In

fact, more precisely, we have:

v2ðDE=F Þ ¼
35=12 if m ¼ 3,

8=3 or 13=6 if m ¼ 2,

13=6 or 5=3 if m ¼ 1,

8><
>:

if e1 ¼ 3. If e1 ¼ 1, then the values of v2ðDE=F Þ are

the above values minus 2=3.

Proof. By local class field theory, the charac-

ters  i in (2.1) are identified with characters of

F�=ð1þ 2OF Þ�. Since O�
F=ð1þ 2OF Þ� ’ F�

4 , the

tamely ramified extension E1=E0 has degree either

1 or 3.

As in the proof of Lemma 1, identify the Galois

group G1 ¼ GalðE=E1Þ (resp. the character group

X ¼ HomðG1;C
�Þ) with a quotient of ð1þ �AÞ=

ð1þ �AÞ2 (resp. a subgroup of Homðð1þ �AÞ=
ð1þ �AÞ2;C�Þ), where A ¼ OE1

and � is a un-

iformizer of A. Let Xi be the subgroup of X

consisting of the characters of G1 with conductor

dividing �i.

If e1 ¼ 1, then the value of v2ðDE=F Þ can be

calculated as in Proposition 2.3 of [11]; we have

f1g ¼ X1 � X2 � X3 ¼ X and ðX3 : X2Þ � 2. If �

is abelian (i.e.  1 ¼  2), then X is in fact identified

with a subgroup of the character group of ð1þ
2OF Þ=ð1þ 2OF Þ2, and one has ðX2 : X1Þ � 4 since F
has residue field F4. Thus jX3j � 8, and

ð2:3Þ

v2ðDE=F Þ ¼

1
8ð4� 3þ 3� 2Þ ¼ 9

4 if m ¼ 3,
1
4
ð2� 3þ 1� 2Þ ¼ 2 or
1
4
ð3� 2Þ ¼ 3

2
if m ¼ 2,

3
2
or 2

2
¼ 1 if m ¼ 1.

8>>>><
>>>>:

If � is non-abelian (i.e.  1 6¼  2), then as in the last

part of the proof of Lemma 1, we have X3 ¼ X2, and

hence

v2ðDE=F Þ ¼
1

2m
ð2m � 1Þ � 2ð Þ ¼ 2�

1

2m�1
:

Assume e1 ¼ 3. Then as in the proof of

Lemma 1, one can show that

f1g ¼ X1 � X2 ¼ X3 � X4 ¼ X5 � X6 � X7 ¼ X;

with ðX7 : X6Þ ¼ 1 or 2. By assumption, X7 has

order 2m. Suppose jX2j ¼ 2m2 and jX4j ¼ 2m4 . If � is

abelian, then X is identified with a subgroup of the

character group of ð1þ 2OF Þ=ð1þ 2OF Þ2 (so X1 ¼
X2 and X5 ¼ X6), and v2ðDE=E1

Þ is calculated to

have the same values as in (2.3). Adding the tame

part v2ðDE1=E0
Þ ¼ 2=3, we see that v2ðDE=F Þ has the

values as in the statement of the lemma. If � is

non-abelian, then as in the former case, we have

X7 ¼ X6, and hence

v2ðDE=E1
Þ ¼

1

3
	
1

2m
�
ð2m � 2m4Þ � 6

þ ð2m4 � 2m2Þ � 4þ ð2m2 � 1Þ � 2
�

¼ 2�
2m4 þ 2m2 þ 1

3 	 2m�1
:

Adding the tame part, we obtain

v2ðDE=F Þ ¼
8

3
� 2m4 þ 2m2 þ 1

3 	 2m�1
:

�

3. Proof of the Theorem. Suppose there

were a continuous irreducible representation � :

GF ! GL2ðF2Þ unramified outside f2;1g. Let K=F
be the extension cut out by � and G ¼ Imð�Þ its

Galois group. As in [19], we distinguish the two

cases where G is solvable and non-solvable.

First we deal with the solvable case. If G is

solvable, then it sits in an exact sequence

1 ! H ! G! Z=2Z ! 1; H � F
�
2 � F

�
2 ;

as in Theorem 1 in §22 of [18]. Hence K is an abelian
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extension of odd degree, unramified outside f2;1g,
over the quadratic extension K0=F corresponding to

H. By using class field theory and noticing that

Qð
ffiffiffi
3

p
Þ and Qð

ffiffiffi
6

p
Þ have narrow class number 2

(resp. Qð
ffiffiffiffiffiffiffi
�5

p
Þ and Qð

ffiffiffiffiffiffiffi
�6

p
Þ have class number 2),

we can show that, for each F ¼ Qð
ffiffiffi
2

p
Þ, Qð

ffiffiffi
3

p
Þ,

Qð
ffiffiffi
5

p
Þ, Qð

ffiffiffi
6

p
Þ (resp. F ¼ Qð

ffiffiffiffiffiffiffi
�1

p
Þ, Qð

ffiffiffiffiffiffiffi
�2

p
Þ,

Qð
ffiffiffiffiffiffiffi
�3

p
Þ, Qð

ffiffiffiffiffiffiffi
�5

p
Þ, Qð

ffiffiffiffiffiffiffi
�6

p
Þ), there are 7 possibil-

ities (resp. 3 possibilities) for such K0. By examin-

ing Jones’ tables [6], we find them as follows:

If F ¼ Qð
ffiffiffi
2

p
Þ, then

K0 ¼ Qð
ffiffiffiffiffiffiffiffiffiffiffi
�

ffiffiffi
2

pp
Þ, Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffi
2

pp
Þ, Qð

ffiffiffi
2

p
;

ffiffiffiffiffiffiffi
�1

p
Þ,

Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
2

pp
Þ, Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ

ffiffiffi
2

pp
Þ;

If F ¼ Qð
ffiffiffi
3

p
Þ, then

K0 ¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffi
3

pp
Þ, Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1�

ffiffiffi
3

pp
Þ, Qð

ffiffiffi
3

p
;

ffiffiffiffiffiffiffi
�1

p
Þ,

Qð
ffiffiffi
3

p
;

ffiffiffi
2

p
Þ, Qð

ffiffiffi
3

p
;

ffiffiffiffiffiffiffi
�2

p
Þ;

If F ¼ Qð
ffiffiffi
5

p
Þ, then

K0 ¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�

ffiffiffi
5

p
Þ=2Þ

p
, Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1�

ffiffiffi
5

pp
Þ, Qð

ffiffiffi
5

p
;

ffiffiffiffiffiffiffi
�1

p
Þ,

Qð
ffiffiffi
5

p
;

ffiffiffi
2

p
Þ, Qð

ffiffiffi
5

p
;

ffiffiffiffiffiffiffi
�2

p
Þ;

If F ¼ Qð
ffiffiffi
6

p
Þ, then

K0 ¼ Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
6

pp
Þ, Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�

ffiffiffi
6

pp
Þ, Qð

ffiffiffi
6

p
;

ffiffiffiffiffiffiffi
�1

p
Þ,

Qð
ffiffiffi
6

p
;

ffiffiffi
2

p
Þ, Qð

ffiffiffi
6

p
;

ffiffiffiffiffiffiffi
�2

p
Þ;

If F ¼ Qð
ffiffiffiffiffiffiffi
�1

p
Þ, then

K0 ¼ Qð
ffiffiffiffiffiffiffi
�1

p
;

ffiffiffi
2

p
Þ, Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffi
�1

pp
Þ;

If F ¼ Qð
ffiffiffiffiffiffiffi
�2

p
Þ, then

K0 ¼ Qð
ffiffiffiffiffiffiffi
�2

p
;

ffiffiffiffiffiffiffi
�1

p
Þ, Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ffiffiffiffiffiffiffi
�2

pp
Þ;

If F ¼ Qð
ffiffiffiffiffiffiffi
�3

p
Þ, then

K0 ¼ Qð
ffiffiffiffiffiffiffi
�3

p
;

ffiffiffiffiffiffiffi
�1

p
Þ, Qð

ffiffiffiffiffiffiffi
�3

p
;

ffiffiffi
2

p
Þ, Qð

ffiffiffiffiffiffiffi
�3

p
;

ffiffiffiffiffiffiffi
�2

p
Þ;

If F ¼ Qð
ffiffiffiffiffiffiffi
�5

p
Þ, then

K0 ¼ Qð
ffiffiffiffiffiffiffi
�5

p
;

ffiffiffiffiffiffiffi
�1

p
Þ, Qð

ffiffiffiffiffiffiffi
�5

p
;

ffiffiffi
2

p
Þ, Qð

ffiffiffiffiffiffiffi
�5

p
;

ffiffiffiffiffiffiffi
�2

p
Þ;

If F ¼ Qð
ffiffiffiffiffiffiffi
�6

p
Þ, then

K0 ¼ Qð
ffiffiffiffiffiffiffi
�6

p
;

ffiffiffiffiffiffiffi
�1

p
Þ, Qð

ffiffiffiffiffiffiffi
�6

p
;

ffiffiffi
2

p
Þ, Qð

ffiffiffiffiffiffiffi
�6

p
;

ffiffiffiffiffiffiffi
�2

p
Þ.

All these K0 have class number either 1 or 2. Let

OK0;2 ¼ OK 0 
Z Z2 denote the 2-adic completion of

the integer ring OK0 of K0. Then its multiplicative

group O�
K0;2 is isomorphic to the direct-product of

Z�4
2 and a cyclic group of order dividing 12 (A non-

trivial 3-torsion subgroup appears only if K0 con-
tains Qð

ffiffiffiffiffiffiffi
�3

p
Þ or Qð

ffiffiffi
5

p
Þ). Thus there can exist an

abelian extension K=K0 of odd degree at most 3.

But in each case, the 3-torsion subgroup of O�
K 0;2 is

killed (when the reciprocity map is applied) by the

global unit �3 ¼ ð�1þ
ffiffiffiffiffiffiffi
�3

p
Þ=2 or "2 ¼ ð3þ

ffiffiffi
5

p
Þ=2

(N.B. The latter is totally positive). Thus there is

no abelian extension K=K 0 of odd degree unramified

outside f2;1g.

Remark. The quadratic fields F in the

Theorem do not have abelian extensions of odd

degree which are unramified outside f2;1g. Thus if

a representation � : GF ! GL2ðF2Þ unramified out-

side f2;1g has solvable image, then the image is

unipotent, and the extension K=F cut out by � is

contained in the compositum of the above seven

(resp. three) quadratic extensions K0 of F .
Next we prove the non-solvable case. This is

done by the comparison of the Tate and Odlyzko

bounds for discriminants. We denote by dK=Q the

discriminant of K=Q, and d
1=n
K ¼ jdK=Qj1=n the

root discriminant of K, where n ¼ ½K : Q�. By the

Odlyzko bound [10], we have

d
1=n
K >

17:020 if n � 120,

20:895 if n � 1000.

�

If G ¼ GalðK=F Þ is non-solvable, then n ¼ 2jGj �
120. On the other hand, by Lemmas 2 and 3,

we have

d
1=n
K �

2 	 22 ¼ 8 if F ¼ Qð
ffiffiffiffiffiffiffi
�1

p
Þ,

2
ffiffiffi
2

p
	 22 < 11:314 if F ¼ Qð

ffiffiffiffiffiffiffi
�2

p
Þ,

2
ffiffiffi
3

p
	 22 < 13:857 if F ¼ Qð

ffiffiffi
3

p
Þ,ffiffiffi

3
p

	 235=12 < 13:079 if F ¼ Qð
ffiffiffiffiffiffiffi
�3

p
Þ,ffiffiffi

5
p

	 235=12 < 16:885 if F ¼ Qð
ffiffiffi
5

p
Þ,

2
ffiffiffi
5

p
	 22 < 17:889 if F ¼ Qð

ffiffiffiffiffiffiffi
�5

p
Þ,

2
ffiffiffi
6

p
	 22 < 19:596 if F ¼ Qð

ffiffiffiffiffiffiffi
�6

p
Þ.

8>>>>>>>>>>>><
>>>>>>>>>>>>:

Thus we have a contradiction in all cases but F ¼
Qð

ffiffiffiffiffiffiffi
�5

p
Þ and Qð

ffiffiffiffiffiffiffi
�6

p
Þ. To deal with these three

cases, let 2m be the wild ramification index of K=F

at 2. Then the 2-Sylow subgroup of G has order

� 2m. Ifm � 2, then by Lemma 2 applied to a 2-adic

completion of K=F , we have v2ðDK=F Þ � 7=4, and

hence

d
1=n
K � 2

ffiffiffi
5

p
	 27=4 < 15:043 if F ¼ Qð

ffiffiffiffiffiffiffi
�5

p
Þ,

2
ffiffiffi
6

p
	 27=4 < 16:479 if F ¼ Qð

ffiffiffiffiffiffiffi
�6

p
Þ,

(

which contradicts the Odlyzko bound. If m � 3,
then by §§251–253 of [4], the image of G in

PGL2ðF2Þ contains a conjugate of PSL2ðF8Þ, which
has order 504. Hence the Odlyzko bound applies

with n ¼ 2jGj > 1000, whence a contradiction in the

remaining cases as well. �

Acknowledgments. The writing of this pa-

per was greatly encouraged by ‘‘Ecole d’été sur la
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