A note on norm estimates of the numerical radius

By Takashi SANO

Department of Mathematical Sciences, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan

(Communicated by Shigefumi MORI, M.J.A., Dec. 12, 2007)

Abstract: For a bounded linear operator A on a Hilbert space \mathcal{H} , let ||A|| denote the operator norm and w(A) the numerical radius. It is well-known that

$$\frac{1}{2} \|A\| \leq w(A) \leq \|A\|.$$

For equalities, we consider linear operators A with $A^2 = 0$ and normaloid matrices.

Key words: Numerical radius; normaloid matrix.

1. Introduction. Let \mathcal{H} be a complex Hilbert space. Let $B(\mathcal{H})$ denote the set of bounded linear operators on \mathcal{H} . For $A \in B(\mathcal{H})$, we denote the operator norm by ||A||, the spectral radius by r(A), and the numerical radius by w(A):

$$r(A) := \sup\{|\lambda| : \lambda \in \sigma(A)\},\$$

where $\sigma(A)$ is the spectrum of A, and

$$w(A) := \sup\{|\langle Ax, x \rangle| : x \in \mathcal{H}, ||x|| = 1\}.$$

It is known that

$$\frac{1}{2} \|A\| \le w(A) \le \|A\|, \quad r(A) \le w(A).$$

(See [2], for instance.)

The purpose of this note is to study equalities in these inequalities and related topics; although most of the results are known to specialists, we include them for this note to be self-contained.

In section 2, we study operators $A \in B(\mathcal{H})$ with $A^2 = 0$ and equality ||A|| = 2w(A). In section 3, we recall Pták's theorem and observe normaloid matrices and equality ||A|| = w(A). We also show that for $A \in M_2(\mathbf{C})$

$$||A^2|| = ||A||^2 \iff A \text{ is normal.}$$

2. Operator A with $A^2 = 0$. In this section, we prove:

Theorem 2.1. For $A \in B(\mathcal{H})$ $A^2 = 0 \Longrightarrow ||A|| = 2w(A).$

O2008 The Japan Academy

Bouldin [1, Theorem 1] gives the estimation of w(A) in terms of the angle between the ranges of A and A^* , and as a corollary [1, Corollary 2] he has Theorem 2.1 from the equivalent condition that the ranges are orthogonal. See also [2, Theorem 1.3-4]. Kittaneh [5, Corollary 1] shows Theorem 2.1 as a corollary of his norm inequality

$$w(A) \leq \frac{1}{2} (\|A\| + \|A^2\|).$$

Haagerup and de la Harpe [3] observe nilpotent operators A with $A^n = 0$ and show

$$w(A) \leq \|A\| \cos \frac{\pi}{n+1}.$$

In particular, when $A^2 = 0$, Theorem 2.1 follows.

We give an alternate proof using a block matrix description of A:

Proof. Let $\mathcal{M} := \overline{\operatorname{ran}(A^*)}$. On the orthogonal decomposition $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, let us consider a block matrix representation of A:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}.$$

Then A^* is of the form

$$A^* = \begin{bmatrix} A_{11}^* & A_{21}^* \\ A_{12}^* & A_{22}^* \end{bmatrix}.$$

Since $\mathcal{M}^{\perp} = \ker(A)$, $A_{12} = A_{22} = 0$. By assumption, $(A^*)^2 = 0$; hence, $A^* = 0$ on \mathcal{M} . This means that $A_{11}^* = A_{12}^* = 0$. Therefore, we have

$$A = \begin{bmatrix} 0 & 0 \\ A_{21} & 0 \end{bmatrix}.$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 15A60, 47A12.

This representation implies that

$$||A|| = ||A_{21}|| = \sup\{|\langle A_{21}x, y\rangle|: \\ x \in \mathcal{M}, y \in \mathcal{M}^{\perp}, ||x|| = 1, ||y|| = 1\}.$$

Hence, we have

$$w(A) = \sup\left\{\frac{|\langle A(x \oplus y), x \oplus y \rangle|}{||x \oplus y||^2} :$$

$$x \in \mathcal{M}, y \in \mathcal{M}^{\perp}, x \oplus y \neq 0\right\}$$

$$= \sup\left\{\frac{|\langle A_{21}x, y \rangle|}{||x||^2 + ||y||^2} :$$

$$x \in \mathcal{M}, y \in \mathcal{M}^{\perp}, ||x||^2 + ||y||^2 \neq 0\right\}$$

$$= \sup\left\{\frac{|\langle A_{21}x, y \rangle|}{||x||^2 + ||y||^2} :$$

$$x \in \mathcal{M}, y \in \mathcal{M}^{\perp}, ||x|| = ||y|| \neq 0\right\}$$

$$= \sup\left\{\frac{|\langle A_{21}x, y \rangle|}{2} :$$

$$x \in \mathcal{M}, y \in \mathcal{M}^{\perp}, ||x|| = ||y|| = 1\right\}$$

$$= \frac{||A||}{2}.$$

Here, the first equality follows from the definition of w(A), the third one from the arithmetic-geometric inequality, and the others from preceding arguments. Therefore, the proof is complete.

3. Normaloid matrices. An operator $A \in B(\mathcal{H})$ is said to be *normaloid* if ||A|| = r(A). We recall the well-known fact (see [2,4]):

Proposition 3.1. For $A \in B(\mathcal{H})$, the following are equivalent:

(i) ||A|| = r(A);

(ii) $||A^n|| = ||A||^n \ (\forall n \in \mathbf{N});$

(iii) ||A|| = w(A).

In this section, we assume that dim $\mathcal{H} < \infty$ so that we present statements in terms of matrices; let $M_n(\mathbf{C})$ denote the set of *n*-square complex matrices.

We have a characterization of normaloid matrices:

Proposition 3.2. For $A \in M_n(\mathbf{C})$ with ||A|| = 1, A is normaloid if and only if there is a reducing subspace $\mathcal{K} (\subseteq \mathbf{C}^n)$ such that $A_{|\mathcal{K}}$ is unitary.

Proof. Sufficiency is clear. Necessity: by assumption, we have a unit eigenvector $x \in \mathbf{C}^n$ for an eigenvalue λ ($|\lambda| = 1$). Since

$$\|A^*x - \overline{\lambda}x\|^2 = \|A^*x\|^2 - 2\operatorname{Re}\langle A^*x, \overline{\lambda}x\rangle + \|x\|^2$$
$$\leq \|x\|^2 - 2\operatorname{Re}\langle x, \overline{\lambda}Ax\rangle + \|x\|^2 = 0,$$

 $A^*x = \overline{\lambda}x$: that is, x is a normal eigenvector. Hence, the subspace $\mathcal{K} := \mathbf{C}x$ reduces A, and the restriction of A to \mathcal{K} is unitary. Therefore, we get the conclusion.

Corollary 3.3. For $A \in M_2(\mathbf{C})$,

A is normal \iff A is normaloid.

Note that this result is generalized: in fact,

 $spectraloid \iff normal$

on $M_2(\mathbf{C})$ and a short proof using Schur's lemma can be seen in [2, Theorem 6.5-1]. See [2] for related results on $M_3(\mathbf{C})$ and $M_4(\mathbf{C})$.

Proof. We assume that ||A|| = 1. We show the implication \Leftarrow . In Proposition 3.2, if \mathcal{K} is of dimension 2, A itself is unitary, hence A is normal. If \mathcal{K} is of dimension 1, then so is the orthocomplement \mathcal{K}^{\perp} . Therefore, $A = A_{\mathcal{K}} \oplus A_{\mathcal{K}^{\perp}}$ is normal. \Box For $A \in M_n(\mathbf{C})$, we recall Pták's theorem

without proof:

Theorem 3.4. (Pták [6]). For $A \in M_n(\mathbf{C})$

 $||A^n|| = ||A||^n \iff A \text{ is normaloid.}$

Combining this with Corollary 3.3, we have **Corollary 3.5.** For $A \in M_2(\mathbb{C})$

 $||A^2|| = ||A||^2 \iff A \text{ is normal.}$

Halmos [4, p.110] says that the implication \Rightarrow follows from "an unpleasant computation", and its proof is omitted. Here we present an alternate proof which seems to be simpler.

Proof. Assume that $||A|| = ||A^2|| = 1$. Then we have a unit vector $x \in \mathbf{C}^2$ such that

$$||A^2x|| = ||x|| = 1,$$

from which it follows that ||Ax|| = 1. Since

$$\langle (1 - A^*A)x, x \rangle = 0, \quad \langle (1 - A^*A)Ax, Ax \rangle = 0,$$

and

$$1 - A^* A \ge 0,$$

we have

$$x, Ax \in \ker(1 - A^*A).$$

If x and Ax are linearly independent, $\ker(1 - A^*A) = \mathbf{C}^2$ or $A^*A = 1$: A is an isometry (and hence

No. 1]

unitary) so that A is normal.

Suppose that x and Ax are linearly dependent: $Ax = \lambda x$ for some $\lambda \in \mathbf{C}$. Since ||Ax|| = ||x|| = 1, $|\lambda| = 1$. It follows as in the proof of Proposition 3.2 that $A^*x = \overline{\lambda}x$ or x is a normal eigenvector for A.

Hence, $\mathcal{K} := \mathbf{C}x$ reduces A and $A_{|\mathcal{K}}$ is unitary. Applying Proposition 3.2 and Corollary 3.3, we get the conclusion.

References

 R. Bouldin, The numerical range of a product II, J. Math. Anal. Appl. 33 (1971), 212–219.

- [2] K. E. Gustafson and D. K. M. Rao, Numerical Range, Springer, New York, 1997.
- [3] U. Haagerup and P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space, Proc. Amer. Math. Soc. 115 (1992), no. 2, 371–379.
- [4] P. R. Halmos, A Hilbert Space Problem Book, 2nd Ed., Springer, New York, 1982.
- [5] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), no. 1, 11–17.
- [6] V. Pták, Norms and spectral radius of matrices, Czechoslovak Math. J. 12 (87) (1962), 555– 557.