A note on norm estimates of the numerical radius

By Takashi Sano
Department of Mathematical Sciences, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
(Communicated by Shigefumi Mori, M.J.A., Dec. 12, 2007)

Abstract

For a bounded linear operator A on a Hilbert space \mathcal{H}, let $\|A\|$ denote the operator norm and $w(A)$ the numerical radius. It is well-known that $$
\frac{1}{2}\|A\| \leqq w(A) \leqq\|A\|
$$

For equalities, we consider linear operators A with $A^{2}=0$ and normaloid matrices.
Key words: Numerical radius; normaloid matrix.

1. Introduction. Let \mathcal{H} be a complex Hilbert space. Let $B(\mathcal{H})$ denote the set of bounded linear operators on \mathcal{H}. For $A \in B(\mathcal{H})$, we denote the operator norm by $\|A\|$, the spectral radius by $r(A)$, and the numerical radius by $w(A)$:

$$
r(A):=\sup \{|\lambda|: \lambda \in \sigma(A)\}
$$

where $\sigma(A)$ is the spectrum of A, and

$$
w(A):=\sup \{|\langle A x, x\rangle|: x \in \mathcal{H},\|x\|=1\} .
$$

It is known that

$$
\frac{1}{2}\|A\| \leqq w(A) \leqq\|A\|, \quad r(A) \leqq w(A)
$$

(See [2], for instance.)
The purpose of this note is to study equalities in these inequalities and related topics; although most of the results are known to specialists, we include them for this note to be self-contained.

In section 2, we study operators $A \in B(\mathcal{H})$ with $A^{2}=0$ and equality $\|A\|=2 w(A)$. In section 3 , we recall Pták's theorem and observe normaloid matrices and equality $\|A\|=w(A)$. We also show that for $A \in M_{2}(\mathbf{C})$

$$
\left\|A^{2}\right\|=\|A\|^{2} \Longleftrightarrow A \text { is normal. }
$$

2. Operator \boldsymbol{A} with $\boldsymbol{A}^{2}=\mathbf{0}$. In this section, we prove:

Theorem 2.1. For $A \in B(\mathcal{H})$

$$
A^{2}=0 \Longrightarrow\|A\|=2 w(A)
$$

Bouldin [1, Theorem 1] gives the estimation of $w(A)$ in terms of the angle between the ranges of A and A^{*}, and as a corollary [1, Corollary 2] he has Theorem 2.1 from the equivalent condition that the ranges are orthogonal. See also [2, Theorem 1.3-4]. Kittaneh [5, Corollary 1] shows Theorem 2.1 as a corollary of his norm inequality

$$
w(A) \leqq \frac{1}{2}\left(\|A\|+\left\|A^{2}\right\|\right)
$$

Haagerup and de la Harpe [3] observe nilpotent operators A with $A^{n}=0$ and show

$$
w(A) \leqq\|A\| \cos \frac{\pi}{n+1}
$$

In particular, when $A^{2}=0$, Theorem 2.1 follows.
We give an alternate proof using a block matrix description of A :

Proof. Let $\mathcal{M}:=\overline{\operatorname{ran}\left(A^{*}\right)}$. On the orthogonal decomposition $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$, let us consider a block matrix representation of A :

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]
$$

Then A^{*} is of the form

$$
A^{*}=\left[\begin{array}{ll}
A_{11}^{*} & A_{21}^{*} \\
A_{12}^{*} & A_{22}^{*}
\end{array}\right]
$$

Since $\mathcal{M}^{\perp}=\operatorname{ker}(A), \quad A_{12}=A_{22}=0$. By assumption, $\left(A^{*}\right)^{2}=0$; hence, $A^{*}=0$ on \mathcal{M}. This means that $A_{11}^{*}=A_{12}^{*}=0$. Therefore, we have

$$
A=\left[\begin{array}{cc}
0 & 0 \\
A_{21} & 0
\end{array}\right]
$$

This representation implies that

$$
\begin{aligned}
\|A\|= & \left\|A_{21}\right\|=\sup \left\{\left|\left\langle A_{21} x, y\right\rangle\right|:\right. \\
& \left.x \in \mathcal{M}, y \in \mathcal{M}^{\perp},\|x\|=1,\|y\|=1\right\}
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
w(A)= & \sup \left\{\frac{|\langle A(x \oplus y), x \oplus y\rangle|}{\|x \oplus y\|^{2}}:\right. \\
& \left.x \in \mathcal{M}, y \in \mathcal{M}^{\perp}, x \oplus y \neq 0\right\} \\
= & \sup \left\{\frac{\left|\left\langle A_{21} x, y\right\rangle\right|}{\|x\|^{2}+\|y\|^{2}}:\right. \\
& \left.x \in \mathcal{M}, y \in \mathcal{M}^{\perp},\|x\|^{2}+\|y\|^{2} \neq 0\right\} \\
= & \sup \left\{\frac{\left|\left\langle A_{21} x, y\right\rangle\right|}{\|x\|^{2}+\|y\|^{2}}:\right. \\
& \left.x \in \mathcal{M}, y \in \mathcal{M}^{\perp},\|x\|=\|y\| \neq 0\right\} \\
= & \sup \left\{\frac{\left|\left\langle A_{21} x, y\right\rangle\right|}{2}:\right. \\
& \left.x \in \mathcal{M}, y \in \mathcal{M}^{\perp},\|x\|=\|y\|=1\right\} \\
= & \frac{\|A\|}{2}
\end{aligned}
$$

Here, the first equality follows from the definition of $w(A)$, the third one from the arithmetic-geometric inequality, and the others from preceding arguments. Therefore, the proof is complete.
3. Normaloid matrices. An operator $A \in$ $B(\mathcal{H})$ is said to be normaloid if $\|A\|=r(A)$. We recall the well-known fact (see $[2,4]$):

Proposition 3.1. For $A \in B(\mathcal{H})$, the following are equivalent:
(i) $\|A\|=r(A)$;
(ii) $\left\|A^{n}\right\|=\|A\|^{n}(\forall n \in \mathbf{N})$;
(iii) $\|A\|=w(A)$.

In this section, we assume that $\operatorname{dim} \mathcal{H}<\infty$ so that we present statements in terms of matrices; let $M_{n}(\mathbf{C})$ denote the set of n-square complex matrices.

We have a characterization of normaloid matrices:

Proposition 3.2. For $A \in M_{n}(\mathbf{C})$ with $\|A\|=1, A$ is normaloid if and only if there is a reducing subspace $\mathcal{K}\left(\subseteq \mathbf{C}^{n}\right)$ such that $A_{\mid \mathcal{K}}$ is unitary.

Proof. Sufficiency is clear. Necessity: by assumption, we have a unit eigenvector $x \in \mathbf{C}^{n}$ for an eigenvalue $\lambda(|\lambda|=1)$. Since

$$
\begin{aligned}
\left\|A^{*} x-\bar{\lambda} x\right\|^{2} & =\left\|A^{*} x\right\|^{2}-2 \operatorname{Re}\left\langle A^{*} x, \bar{\lambda} x\right\rangle+\|x\|^{2} \\
& \leqq\|x\|^{2}-2 \operatorname{Re}\langle x, \bar{\lambda} A x\rangle+\|x\|^{2}=0
\end{aligned}
$$

$A^{*} x=\bar{\lambda} x$: that is, x is a normal eigenvector. Hence, the subspace $\mathcal{K}:=\mathbf{C} x$ reduces A, and the restriction of A to \mathcal{K} is unitary. Therefore, we get the conclusion.

Corollary 3.3. For $A \in M_{2}(\mathbf{C})$,
A is normal $\Longleftrightarrow A$ is normaloid.
Note that this result is generalized: in fact,

$$
\text { spectraloid } \Longleftrightarrow \text { normal }
$$

on $M_{2}(\mathbf{C})$ and a short proof using Schur's lemma can be seen in [2, Theorem 6.5-1]. See [2] for related results on $M_{3}(\mathbf{C})$ and $M_{4}(\mathbf{C})$.

Proof. We assume that $\|A\|=1$. We show the implication \Leftarrow. In Proposition 3.2, if \mathcal{K} is of dimension 2, A itself is unitary, hence A is normal. If \mathcal{K} is of dimension 1 , then so is the orthocomplement \mathcal{K}^{\perp}. Therefore, $A=A_{\mathcal{K}} \oplus A_{\mathcal{K}^{\perp}}$ is normal.

For $A \in M_{n}(\mathbf{C})$, we recall Pták's theorem without proof:

Theorem 3.4. (Pták [6]). For $A \in M_{n}(\mathbf{C})$

$$
\left\|A^{n}\right\|=\|A\|^{n} \Longleftrightarrow A \text { is normaloid. }
$$

Combining this with Corollary 3.3, we have
Corollary 3.5. For $A \in M_{2}(\mathbf{C})$

$$
\left\|A^{2}\right\|=\|A\|^{2} \Longleftrightarrow A \text { is normal. }
$$

Halmos [4, p.110] says that the implication \Rightarrow follows from "an unpleasant computation", and its proof is omitted. Here we present an alternate proof which seems to be simpler.

Proof. Assume that $\|A\|=\left\|A^{2}\right\|=1$. Then we have a unit vector $x \in \mathbf{C}^{2}$ such that

$$
\left\|A^{2} x\right\|=\|x\|=1
$$

from which it follows that $\|A x\|=1$. Since

$$
\left\langle\left(1-A^{*} A\right) x, x\right\rangle=0, \quad\left\langle\left(1-A^{*} A\right) A x, A x\right\rangle=0
$$

and

$$
1-A^{*} A \geqq 0
$$

we have

$$
x, A x \in \operatorname{ker}\left(1-A^{*} A\right) .
$$

If x and $A x$ are linearly independent, $\operatorname{ker}(1-$ $\left.A^{*} A\right)=\mathbf{C}^{2}$ or $A^{*} A=1: A$ is an isometry (and hence
unitary) so that A is normal.
Suppose that x and $A x$ are linearly dependent: $A x=\lambda x$ for some $\lambda \in \mathbf{C}$. Since $\|A x\|=\|x\|=1$, $|\lambda|=1$. It follows as in the proof of Proposition 3.2 that $A^{*} x=\bar{\lambda} x$ or x is a normal eigenvector for A.

Hence, $\mathcal{K}:=\mathbf{C} x$ reduces A and $A_{\mid \mathcal{K}}$ is unitary. Applying Proposition 3.2 and Corollary 3.3, we get the conclusion.

References

[1] R. Bouldin, The numerical range of a product II, J. Math. Anal. Appl. 33 (1971), 212-219.
[2] K. E. Gustafson and D. K. M. Rao, Numerical Range, Springer, New York, 1997.
[3] U. Haagerup and P. de la Harpe, The numerical radius of a nilpotent operator on a Hilbert space, Proc. Amer. Math. Soc. 115 (1992), no. 2, 371-379.
[4] P. R. Halmos, A Hilbert Space Problem Book, 2nd Ed., Springer, New York, 1982.
[5] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), no. 1, 11-17.
[6] V. Pták, Norms and spectral radius of matrices, Czechoslovak Math. J. 12 (87) (1962), 555557.

