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Abstract: We will investigate the dynamics of a holomorphic self-map f of a compact

complex manifold M such that the sequence ffngn�1 has at least one subsequence which

converges uniformly on M.
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1. Introduction. Let f denote a holomor-

phic self-map of a compact complex manifold M.

We suppose that the sequence ffngn�1 has at least

one subsequence which converges uniformly on M.

Our purpose is to investigate the dynamics of f by

using results in [4]. First, we will show that the

number of possible periods of periodic points of f is

finite. This implies that there exists an integer p � 1

such that the dynamics of fp on the minimal image

of M is an ‘irrationally rotation’ around a point-

wise-fixed closed submanifold. Moreover, when the

number of periodic points of f is finite, we will show

that the number of periodic points of f equals the

Euler characteristic of the minimal image of M.

2. Results. Let f be a holomorphic self-map

of a (connected) compact complex manifold M.

We denote the n-th iterate of f by fn, i.e. fn :¼
f � � � � � f (n times). Since M is compact, the image

fnðMÞ for any n � 1 is a compact irreducible

analytic subset of M. Hence, there is an integer

m � 1 such that fmðMÞ ¼ fmþ1ðMÞ ¼ � � �. We call

fmðMÞ the minimal image and denote it by Mf .

The restriction f jMf is a surjective holomorphic

self-map of Mf . When f jMf is of topological degree

1, the set Mf is a complex submanifold in M (for

instance, see [4]). Particularly, when ffngn�1 is a

normal family on M, it is the case.

Let us introduce a concept of tameness of f .

Definition 2.1. Let f be a holomorphic self-

map of a compact complex manifold M. We say

that f is tame if the sequence ffngn�1 has at least

one subsequence which converges uniformly on M.

We have an equivalent condition for f to be

tame.

Theorem 2.2 (Theorem 2.4 (a) in [4]). Let f

be a holomorphic self-map of a compact complex

manifold M. Then, ffngn�1 is a normal family on M

if and only if f is tame.

To state our theorem, we will prepare some

notions and notations.

Definition 2.3. Let f be a holomorphic

self-map of a compact complex manifold M and

let p 2 M. We say that p is a fixed point of f if

fðpÞ ¼ p. We denote by FixðfÞ the set of fixed points

of f . Let k be an integer � 1. We say that p is a

periodic point of period k of f if fkðpÞ ¼ p and

fiðpÞ 6¼ p for 0 < i < k. We denote by PerðfÞ the

set of periodic points of f , in other words,

PerðfÞ :¼
S

n�1 FixðfnÞ.
Let us denote by �ðNÞ the Euler characteristic

of a compact manifold N and by ]A the cardinality

of a set A.

Theorem 2.4. Let f be a tame holomorphic

self-map of a compact complex manifold M. Then,

the number of possible periods of periodic points

of f is finite and PerðfÞ forms a (not necessarily

connected) closed complex submanifold in M. More-

over, if dimC PerðfÞ ¼ 0, then ]PerðfÞ ¼ �ðMfÞ.
Proof. When f is tame, the minimal image

Mf is a complex submanifold in M and f jMf is

an automorphism on Mf . So, without loss of

generality, we may assume that M ¼ Mf and f is

an automorphism on M. Let AutðMÞ denote the

space of holomorphic automorphisms on M with

C0-topology. By the Bochner-Montgomery theorem

[2], the space AutðMÞ has a structure of (complex)

Lie group.

By results in [4], the closure ffngn�1ð�AutðMÞÞ
is a commutative Lie subgroup of AutðMÞ and

there are integers p � 1; q � 0 such that
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ffngn�1 ’ ðZ=pZÞ �Tq;

where the symbol’ stands for an isomorphism in the

sense of Lie groups and Tq stands for a torus of

real dimension q. Particularly, ffngn�1 contains

the identity map IdM on M and ffngn�1 ¼ ffngn2Z.
Let V0 denote the connected component of ffngn�1

which contains IdM . Then, V0 ’ Tq and fpð2 V0Þ
generates V0.

Let a be any integer � 1. Assume that z 2
FixðfaÞ. Then, fpaðzÞ ¼ z. Since fp generates V0, it

follows that fpa also generates V0. Hence, there is a

sequence ffnjpagj�1 which converges to fp uniform-

ly on M as j ! þ1. So,

z ¼ lim
j!þ1

fnjpaðzÞ ¼ fpðzÞ:

This implies that FixðfaÞ � FixðfpÞ. Thus, the

number of possible periods of periodic points of

f is finite and

PerðfÞ ¼ FixðfpÞ;

where FixðfpÞ is obviously a closed analytic subset

in M.

In order to show that FixðfpÞ is non-singular,

we have only to consider the linearization of fp in a

neighborhood of any point z 2 FixðfpÞ. The method

of the linearization is already known (for instance,

see the proof of Proposition 2.5.9 in [1]) and

actually fp is conjugate to a diagonal matrix. (Since

the sequence of the iterates of fp is normal and

all the eigenvalues of any fixed point of fp have

modulus 1, the Jordan normal form should be a

diagonal matrix.)

Now, we will assume that dimC PerðfÞ ¼ 0, i.e.
PerðfÞ is a finite set. Let us show ]PerðfÞ ¼ �ðMÞ. It
can be done like the proof of the Hopf index theorem

for vector fields. First, we will note that all fixed

points of fp are non-degenerate, i.e. 1 is not an

eigenvalue. (Around any fixed point z of fp, we

can linearize fp. So, if 1 is an eigenvalue of z, it

follows that dimC FixðfpÞ � 1. This is a contra-

diction to the assumption dimC PerðfÞ ¼ 0.) Hence,

we can use the Lefschetz fixed-point formula

(see p. 421 [3]), that is,
X

z2FixðfpÞ
�fpðzÞ ¼ LðfpÞ;

where �fpðzÞ is the index of fp at z and LðfpÞ is the
Lefschetz number of fp. Here, �fpðzÞ ¼ 1 for any z 2
FixðfpÞ because fp is holomorphic. Since fp is an

element of V0, it follows that f
p is homotopic to IdM .

Hence LðfpÞ ¼ �ðMÞ. So, the formula implies that

]FixðfpÞ ¼ �ðMÞ, that is, ]PerðfÞ ¼ �ðMÞ. �
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