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Abstract: In this paper we shall give an explicit formula for the coefficient of the

expansion of a given generating function raised to an arbitrary power, when that function has an

appropriate form. One of the many examples is the generalized Euler numbers and we shall

clarify the situation surrounding the congruence Ep�1
2

6� 0ðmod pÞ; p � 1ðmod 4Þ, a prime, and

restore the priority. At the same time we shall state the true meaning of such a congruence.

Key words: Generating functions; the generalized Euler numbers; explicit formula;
congruences.

1. Generating functions. First we state

notation and terminology. If fðzÞ is a generating

function (a power series) for a sequence fAng
(where fng may be a subsequence of natural

numbers), we denote the sequence of coefficients

of the expansion of fðzÞx (with the power function

taking the principal value) by A
ðxÞ
n , where x is a

fixed real number 6¼ 0:

fðzÞ ¼
X1
n¼0

An

n!
zn;ð1:1Þ

ðfðzÞÞx ¼
X1
n¼0

A
ðxÞ
n

n!
zn

absolutely convergent in a neighborhood of the

origin. We shall suppress the last proviso and

conduct formally-looking, legitimate manipulations

in what follows.

Suppose fðzÞ has a subsidiary generating

function gðzÞ so that

fðzÞ ¼ ð1þ gðzÞÞ�1 and jgðzÞj < 1:ð1:2Þ

We assume further that the expansion of gðzÞn
starts from some terms onwards:

gðzÞn ¼
X1

m¼MðnÞ

a
ðnÞ
m

m!
zm;ð1:3Þ

where MðnÞ is a non-negative integer. Note that

we tacitly assume gðzÞ ¼
P1

m¼0
am
m! z

m.

We introduce the Stirling numbers sðn; kÞ of

the first kind generated by

zðz� 1Þ � � � ðz� nþ 1Þð1:4Þ

¼
Xn
k¼1

sðn; kÞzk;

where we omit the case n ¼ 0 (cf. e.g. [16]).

We may now state our Theorem.

Theorem. Let

�ðm; kÞ ¼ ð�1Þk
XM�1ðmÞ

n¼k

1

n!
sðn; kÞaðnÞm ;ð1:5Þ

where M�1ðmÞ indicates the inverse function

of M (in most cases, it is simply M�1ðmÞ ¼ m).

Then

AðxÞ
m ¼

XM�1ðmÞ

k¼1

�ðm; kÞxk; m � 1:ð1:6Þ

Proof. The lines of proof is quite simple:

binomial expansion plus base change (1.4).

Indeed, we have first of all,

fðzÞx ¼ ð1þ gðzÞÞ�xð1:7Þ

¼
X1
n¼0

�x

n

� �
gðzÞn:

Using (1.3), we obtain

fðzÞx ¼ ð1þ gðzÞÞ�xð1:8Þ

¼
X1
n¼0

�x

n

� � X1
m¼MðnÞ

a
ðnÞ
m

m!
zm

¼
X1
m¼0

zm

m!

XM�1ðmÞ

n¼0

�x

n

� �
aðnÞm :

Comparing (1.1) and (1.8), we conclude that
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AðxÞ
m ¼

XM�1ðmÞ

n¼0

�x

n

� �
aðnÞm :ð1:9Þ

Hereafter, we exclude the case MðxÞ ¼ 0 and so

the summation in (1.9) is over n � 1. Then by (1.4),

we may change the base

�x

n

� �
¼

1

n!

Xn
k¼1

sðn; kÞð�xÞk:ð1:10Þ

Substituting (1.10) in (1.9), we obtain

AðxÞ
mð1:11Þ

¼
XM�1ðmÞ

n¼0

Xn
k¼1

ð�1Þk

n!
sðn; kÞaðnÞm xk;

whence, by changing the order of summation, we

see that the coefficient of xk is exactly �ðm; kÞ, and
the proof is complete. �

If we assume further that the expansion

log fðzÞ ¼
X1
n¼1

fAnAn

n!
zn;ð1:12Þ

holds in a neighborhood of the origin, we get the

following Corollary.

Corollary. In the case M�1ðmÞ ¼ m, �ðm; kÞ
has another representation

�ðm; kÞð1:13Þ

¼ m!

k!

X
v1;���;vk2N

v1þ���þvk¼m

gAv1Av1 � � �gAvkAvk

v1! � � � vk!
:

Proof. As was done in my previous papers,

we note that by (1.6)

k!�ðm; kÞ ¼
dk

dxk
AðxÞ

m jx¼0:

Hence, differentiating the second expression in (1.1)

k-times in the form

ex log fðzÞ ¼
X1
m¼0

A
ðxÞ
m

m!
zm

and putting x ¼ 0, we deduce that

k!
X1
m¼k

�ðm; kÞ
zm

m!
¼ log fðzÞð Þk:ð1:14Þ

Substituting (1.12) in (1.14) and using multinomial

expansion, we conclude (1.13). �

Example 1. The Nörlund polynomials B
ðxÞ
n

and b
ðxÞ
n are generated by

z

ez � 1

� �x

¼
X1
n¼0

BðxÞ
n

zn

n!
ð1:15Þ

and

z

logð1þ zÞ

� �x

¼
X1
n¼0

bðxÞn znð1:16Þ

(cf. [4,12] etc.) respectively.

In the case of (1.15), fðzÞ ¼ z
ez�1 and gðzÞ ¼

1
z ðez � 1� zÞ. Then gðzÞn ¼ z�nðez � 1� zÞn, and

for the associated Stirling numbers bðn; kÞ we

have an expansion [12, (1.12)]:

ðez � 1� zÞk ¼ k!
X1
m¼2k

bðm; kÞ
zm

m!
:ð1:17Þ

Hence

gðzÞn ¼
X1
m¼2n

n!bðm;nÞ
zm�n

m!

¼
X1
m¼n

m!n!

ðmþ nÞ!
bðmþ n; nÞ z

m

m!
;

whence MðnÞ ¼ n and a
ðnÞ
m ¼ 1�

mþ n
n

� bðmþ n; nÞ.

Theorem gives

BðxÞ
n ¼

Xn
k¼1

�ðn; kÞxk;ð1:18Þ

where

�ðn; kÞð1:19Þ

¼ ð�1Þk
Xn
j¼k

sðj; kÞ
1

j!
�nþ j

j

� bðnþ j; jÞ;

which is Theorem 1 of [12].

Using Carlitz’s result [3], we get

log fðzÞ ¼
X1
n¼1

ð�1Þn�1Bn

n

zn

n!
;ð1:20Þ

where Bn significs the n-th Bernoulli number.

Corollary now gives [12, Theorem 2]:

�ðn; kÞð1:21Þ

¼ ð�1Þn�k n!

k!

X
v1;���;vk2N
v1þ���þvk¼n

Bv1 � � �Bvk

ðv1 � � � vkÞv1! � � � vk!

for n � k.

In the case of (1.16), we have

fðzÞ ¼
z

logð1þ zÞ and gðzÞ ¼
1

z
logð1þ zÞ � zð Þ:
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Using the associated Stirling numbers dðn; kÞ
(cf. [4,12] etc.),

ðlogð1þ zÞ � zÞkð1:22Þ

¼ k!
X1
n¼2k

ð�1Þn�kdðn; kÞ
zn

n!
;

similarly as above we have

bðxÞn ¼
Xn
k¼1

�ðn; kÞxk

and

�ðn; kÞ ¼ ð�1Þn�k
Xn
j¼k

sðj; kÞdðnþ j; jÞ
ðnþ jÞ! ;

which is Theorem 3 of [12]. Similarly, an expansion

for �ðn; kÞ corresponding to (1.21) is obtained,

which is Theorem 4 of [12], thus covering all

the results.

Example 2 ([9,13]). The generalized Euler

numbers E
ðxÞ
2n are defined by

2

ez þ e�z

� �x

¼
X1
n¼0

E
ðxÞ
2n

z2n

ð2nÞ! :ð1:23Þ

Hence fðzÞ ¼ 2
ezþe�z ¼ 1

sinh z and gðzÞ ¼ 1
2 ðez þ e�z �

2Þ. Since the central factorial numbers T ðn; kÞ
(cf. [14]) are generated by

ez þ e�z � 2ð Þkð1:24Þ

¼ ð2kÞ!
X1
n¼k

T ðn; kÞ
z2n

ð2nÞ!
:

We have

gðzÞn ¼ 2�nð2nÞ!
X1
m¼n

T ðm;nÞ
z2m

ð2mÞ! :

Hence MðnÞ ¼ n and

aðnÞm ¼ 2�nð2nÞ!T ðm;nÞ;

so that by Theorem

E
ðxÞ
2m ¼

Xn
k¼1

�ðm; kÞxk;ð1:25Þ

and

�ðm; kÞð1:26Þ

¼ ð�1Þk
Xm
n¼k

sðn; kÞ
2�nð2nÞ!

n!
T ðm;nÞ;

which is Theorem 2.1 of [13].

To deduce [13, Theorem 2.3] we use another

generating function

f1ðzÞ ¼ sec z jzj <
�

2

� �
:

f1ðzÞx ¼ ðsec zÞxð1:27Þ

¼
X1
n¼0

ð�1ÞnEðxÞ
2n

z2n

ð2nÞ!
:

Now in view of the expansion

log sec z ¼
X1
n¼0

ð�1Þn�1E
ð2Þ
2n�2

z2n

ð2nÞ!ð1:28Þ

([13, (2.11)] etc.) Corollary gives [13, Theorem 2.3]

�ðn; kÞ ¼ð1:29Þ

ð�1Þk ð2nÞ!
k!

X
v1;���;vk2N
v1þ���þvk¼n

E
ð2Þ
2v1�2 � � �E

ð2Þ
2vk�2

ð2v1Þ! � � � ð2vkÞ!

for n � k.

We may unify many existing explicit formulas

under our Theorem and Corollary and then apply

them to generalized Bernoulli and Euler polyno-

mials, which we shall carry out elsewhere.

In §2 we give a clarification of the congruence

(2.1) as an application of Example 2, which has

been done in [13], our treatment, however, being

thorough and enlightening.

2. Location of the congruence on Euler

numbers. First suppose p is a prime such that

p � 1 ðmod 4Þ. Then there is a conjecture about

Euler numbers that was posed in 1980:

Ep�1
2

6� 0 ðmod pÞ:ð2:1Þ

In [11] we stated that Liu [10] proved (2.1) for

p � 5 ðmod 8Þ and Yuan [19] proved the general

case using the result of [10] and the class number

formula for the imaginary quadratic field Qð
ffiffiffiffiffiffiffiffiffi
�4p

p
Þ.

As pointed out by Professors Tanigawa and

Kanemitsu, this statement is historically incorrect.

We would like to clarify the situation and restore

the priority of Professor Ernvall [6]. According to

[6], (2.1) in the case p � 5 ðmod 8Þ was proved

by E. Lehmer [8] prior to [10] by 66 years, and also

by Ernvall [6] in an elementary way. (2.1) in

the general case was proved by Ernvall [6] prior

to Yuan [19] by 22 years. The proof is only 4 lines

and depends on the result [5] that

Ep�1
2

� 4
Xp�1
4

a¼1

a
p�1
2 : ðmod pÞ:ð2:2Þ
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If we take the following reasoning and Dirichlet’s

result for granted, we are to say that (2.1) were

almost proved by Ernvall in 1979. Indeed by Euler’s

criterion, we have a
p�1
2 � a

p

� �
ðmod pÞ, where the

latter indicates the Legendre symbol. Hence the

right-hand side of (2.2) amounts to the 1/4 interval

character sum:

Ep�1
2

� 4
Xp�1
4

a¼1

a

p

� �
ðmod pÞ:ð2:3Þ

Then it was already known to Dirichlet (although

Ernvall refers to more recent Berndt [1]) that the

1/4 interval character sum can be expressed as
4p
�
Lð1; �0�4Þ, where �0ðaÞ ¼ a

p

� �
and �4 is a non-

principal Dirichlet character mod 4. This in turn

reduces to 2hð�4pÞ, where hð�4pÞ designates the

class number of Qð
ffiffiffiffiffiffiffiffiffi
�4p

p
Þ, which is a natural

number. This latter fact allowed Dirichlet to prove

Lð1; �Þ 6¼ 0, which assures the infinitude of primes

in an arithmetic progression mod p.

On the other hand, 4 times the 1/4 interval

character sum implies that the right-hand side is

� 4 p�1
4 ¼ p� 1. Hence Ep�1

2
is congruent to the least

positive residue mod p, and a fortiori (2.1) must

hold.

Thus, we have revealed that the deeper and

proper understanding of (2.1) is that Ep�1
2

is

congruent to 4 times the 1/4 interval character

sum, which via the Dirichlet L-function, amounts to

the class number of Qð
ffiffiffiffiffiffiffiffiffi
�4p

p
Þ.

It was also pointed out by Professor Kanemitsu

that our statement about our Lemma [13]

Xp�1
4

a¼1

a

p

� �
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j � 4pj

p
�

Lð1; �0�4Þ ¼
ffiffiffi
p

p

�
Lð1; �0�4Þ

that we gave a simple and direct elementary proof

is not correct because we applied to (3.24):

1

4p

X4p
a¼1

a�0�4ðaÞ ¼ �
1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j � 4pj

p
Lð1; �0�4Þ;

which is one of many finite expressions for Lð1; �Þ
and of the class number of imaginary quadratic

fields.

He also pointed out that Professor Berndt’s

important work [1] was completed by Yamamoto

[18] whose method allows to express any short

interval character sum in terms of a linear combi-

nation of Lð1; �Þ and a fortiori, of a linear combi-

nation of class numbers.

We note the following relation between Euler

numbers and generalized Bernoulli numbers [15].

If BnðxÞ is the n-th Bernoulli polynomial, then

the Euler polynomial is EnðxÞ ¼ 2nþ1

nþ1 ðBnþ1ðxþ1
2 Þ �

Bnþ1ðx2ÞÞ. Hence

En ¼ 2n
2nþ1

nþ 1
Bnþ1

3

4

� �
� Bnþ1

1

4

� �� �
:

On the other hand, the generalized Bernoulli

number Bn;� with a primitive Dirichlet character

� mod f is defined by

Bn;� ¼ fn�1
Xf
a¼1

�ðaÞBn

a

f

� �
:

For f ¼ 4; � ¼ �4, we have

Bnþ1;�4
¼ 4n Bnþ1

1

4

� �
�Bnþ1

3

4

� �� �
:

Hence, for n ¼ p�1
2 , we have

Ep�1
2

ð2:4Þ

¼ �
4

pþ 1
Bpþ1

2 ;�4
¼ �2L �

p� 1

2
; �4

� �
:

Thus, we see that the quantity has much

deeper meaning than stated by (2.1), and we are

to study its property through algebraic number

theoretic as well as p-adic theoretic point of view.

This will be conducted elsewhere.

We now turn to the proof of (2.3) by the results

on E
ðkÞ
2n in §1. The point is to use the negative

exponents, say �m;m 2 N. Then by Example 2,X1
n¼0

E
ð�mÞ
2n

z2n

ð2nÞ!
¼ fðzÞ�m ¼ 2�mðez þ e�zÞm

¼ 2�m
Xm
j¼0

m

j

� �
eð2j�mÞz

¼ 2�m
Xm
j¼0

m

j

� �X1
k¼0

1

k!
ð2j�mÞkzk

¼ 2�m
X1
k¼0

zk

k!

Xm
j¼0

m

j

� �
ð2j�mÞk:

Comparing both sides, we see that k can take

only even integer values, and therefore

E
ð�mÞ
2n ¼ 2�m

Xm
j¼0

m

j

� �
ðm� 2jÞ2nð2:5Þ

¼ 21�m
X½m=2�

j¼0

m

j

� �
ðm� 2jÞ2n:
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Recall from (1.26)

E
ð�mÞ
2n ¼

Xn
j¼1

�ðn; jÞð�mÞj:

Choosing m ¼ p� r (p an odd prime � 1ðmod 4ÞÞ,
we have on one hand, 1 � r < p

E
ðr�pÞ
2n ¼

Xn
j¼1

�ðn; jÞðr� pÞj �
Xn
j¼1

�ðn; jÞrjð2:6Þ

¼ E
ðrÞ
2n ðmod pÞ:

On the other hand,

E
ðr�pÞ
2n � 2p�1E

ðr�pÞ
2n

¼ 2r
X½p�r
2 �

j¼0

p� r

j

� �
ðp� r� 2jÞ2n ðmod pÞ

by (2.5) and Fermat’s little theorem, which, in

conjunction with (2.6), gives

E
ðrÞ
2nð2:7Þ

� 2r
X½p�r
2 �

j¼0

p� r

j

� �
ðp� r� 2jÞ2n ðmod pÞ:

Choosing r ¼ 1, we obtain, on noting p� 1
j

� �
�

�1
j

� �
� ð�1Þj ðmod pÞ,

E2n ¼ E
ð1Þ
2n � 2

Xp�1
2

j¼0

ð�1Þjðp� 1� 2jÞ2n ðmod pÞ

(cf. also Sun [17]).

By the change of variable a ¼ p�1
2 � j, we have

E2n � 2
Xp�1
2

a¼1

ð�1Það2aÞ2n ðmod pÞ;

and in particular, for 2n ¼ p�1
2 ,

Ep�1
2

� 2
Xp�1
2

a¼1

ð�1Það2aÞ
p�1
2 ðmod pÞ;

which is the first congruence of (3.26) of [13],

whence we may derive (2.3) in the same way.

We now note that as is implicit in (2.6)

E
ðkþmÞ
2n � E

ðkÞ
2n ðmod mÞ:ð2:8Þ

With (2.8), we contend that (2.7) in the form

E
ðrÞ
2nð2:9Þ

� 2r�1
Xp�r

j¼0

p� r

j

� �
ðp� r� 2jÞ2n ðmod pÞ

for an odd prime p, is a shortcut to a proof of

other results of ours. We illustrate by Theorem 1

(see [11]). Suppose r � 2kþ 1 ðmod pÞ; 1 � k �
p�1
2 . Then

Xp�1
2

i¼1

E
ðrÞ
2nþ2i �

Xp�1
2

i¼1

E
ð2kþ1Þ
2nþ2i

¼ 22k
Xp�2k�1

j¼0

p� 2k� 1

j

� �
ðp� r� 2jÞ2nþ1

�
Xp�1
2

i¼1

ðp� 2k� 1� 2jÞ2i ðmod pÞ:

The inner geometric series sum to 0 and we have

[11, (1.7)]:

Xp�1
2

i¼1

E
ðrÞ
2nþ2i � 0 ðmod pÞ:

Finally, suppose p is a prime � 3 ðmod 4Þ and
let us locate [13, (3.15)]:

E
ð2Þ
p�3
2

ð2:10Þ

� 2
ffiffiffi
p

p

�

2

p

� �
� 2

� �
Lð1; �0Þ ðmod pÞ:

On the other hand, by the well-known relation

2nE
ð2Þ
2n�2 ¼ 22nð22n � 1ÞB2n;

with 2n ¼ ðpþ 1Þ=2, we deduce that

E
ð2Þ
p�3
2

� ðpþ 1ÞEð2Þ
p�3
2

¼ 2 2pþ1 � 2
pþ1
2

� �
Bpþ1

2
ð2:11Þ

¼ 4 2� 2

p

� �� �
Bpþ1

2
ðmod pÞ:

Hence, comparing (2.10) and (2.11), we deduce that

hð ffiffiffiffiffiffiffi�p
p Þ ¼

ffiffiffi
p

p

�
Lð1; �0Þ � �2Bpþ1

2
ðmod pÞ;

which is known to Vorono€�� and stated in Borevich

and Shafarevich [2] and later reincorporated in

Ireland-Rosen [7].

Remark. In a recent paper of W.-P. Zhang

and Z.-F. Xu [20], they refer to the papers of myself

(p. 284) and P. Yuan and attribute the priority

to us, which statement is to be corrected according

to section 2 above.
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