Lindelöf theorems for monotone Sobolev functions with variable exponent

By Toshihide FUTAMURA*) and Tetsu SHIMOMURA**)

(Communicated by Shigefumi MORI, M.J.A., Jan. 15, 2008)

Abstract: Our aim in this note is to deal with Lindelöf theorems for monotone Sobolev functions with variable exponent.

Key words: Monotone Sobolev functions; Lindelöf theorem; variable exponent.

1. Introduction. Let **B** be the unit ball of the *n*-dimensional Euclidean space \mathbf{R}^n . We denote by $\delta_{\mathbf{B}}(x)$ the distance of x from the boundary $\partial \mathbf{B}$, that is, $\delta_{\mathbf{B}}(x) = 1 - |x|$. We denote by B(x,r) the open ball centered at x with radius r and set $\lambda B(x,r) = B(x,\lambda r)$ for $\lambda > 0$.

A continuous function u on \mathbf{B} is called monotone in the sense of Lebesgue (see [8]) if the equalities

$$\max_{\overline{D}} u = \max_{\partial D} u \quad \text{and} \quad \min_{\overline{D}} u = \min_{\partial D} u$$

hold whenever D is a domain with compact closure $\overline{D} \subset \mathbf{B}$. If u is a monotone function on \mathbf{B} satisfying

$$\int_{\mathbf{B}} |\nabla u(z)|^p dz < \infty \quad \text{for some} \quad p > n - 1,$$

then

(1.1)
$$|u(x) - u(y)|$$

$$\leq C(n,p)r^{1-n/p} \left(\int_{2R} |\nabla u(z)|^p dz \right)^{1/p}$$

whenever $y \in B = B(x,r)$ with $2B \subset \mathbf{B}$, where C(n,p) is a positive constant depending only on n and p (see [11, Chapter 8] and [15, Section 16]). Using this inequality (1.1), the first author and Mizuta proved Lindelöf theorems for monotone Sobolev functions on the half space of \mathbf{R}^n in [2]. For related results, see Koskela-Manfredi-Villamor [6], Manfredi-Villamor [9,10], Mizuta [11,12], the first author and Mizuta [3,4] and the first

author [1].

Our aim in this note is to establish Lindelöf theorems for monotone Sobolev functions u on \mathbf{B} satisfying

$$(1.2) \qquad \int_{\mathbf{B}} |\nabla u(z)|^{p(z)} dz < \infty$$

with variable exponents $p(\cdot)$ satisfying so called a log-Hölder condition. For generalized Lebesgue spaces, we refer to Orlicz [13], Kováčik-Rákosník [7] and Růžička [14]. In this note, we are concerned with a positive continuous function $p(\cdot)$ on \mathbf{R}^n satisfying the following conditions:

(p1)
$$p_{-}(\mathbf{B}) \equiv \inf_{\mathbf{B}} p(x) > n - 1,$$

(p2)
$$|p(x) - p(y)| \le \frac{C}{\log(1/|x - y|)}$$

whenever |x - y| < 1/e, $x \in \mathbf{B}$ and $y \in \mathbf{B}$, for some constant C > 0.

Theorem. Let u be a monotone function on **B** satisfying (1.2). Define a set E of all $\xi \in \partial \mathbf{B}$ which satisfies

$$\limsup_{r\to 0} r^{p(\xi)-n} \int_{B(\xi,r)\cap \mathbf{B}} |\nabla u(z)|^{p(z)} \ dz > 0.$$

If $\xi \in \partial \mathbf{B} \setminus E$ and there exists a rectifiable curve γ in \mathbf{B} tending to ξ along which u has a finite limit L, then u has a nontangential limit L at ξ .

Remark 1. We know that E is of $C_{1,p(\cdot)}$ -capacity zero. For the definition of $(1, p(\cdot))$ -capacity $C_{1,p(\cdot)}$ and this fact, we refer to [5].

2. Proof of the Theorem. Throughout this paper, let C denote various constants independent of the variables in question.

For a proof of the Theorem, we prepare the following lemmas.

Lemma 1. Let u be a monotone function on **B** satisfying

²⁰⁰⁰ Mathematics Subject Classification. Primary 31B25, 46E35

^{*)} Department of Mathematics, Daido Institute of Technology, 10-3 Takiharu, Nagoya 457-8530, Japan.

^{**)} Department of Mathematics, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan.

 $^{^\}dagger$ — Dedicated to Professor Yoshihiro Mizuta on the occasion of his sixtieth birthday.

$$(2.1) \qquad \qquad \int_{\mathbf{B}} |\nabla u(z)|^{p(z)} dz \le 1.$$

Then

$$|u(x) - u(y)| \le C\delta_{\mathbf{B}}(x) + C\delta_{\mathbf{B}}(x)^{1 - n/p(x)}$$

(2.2)
$$\times \left(\int_{2B(x)} |\nabla u(z)|^{p(z)} dz \right)^{1/p(x)}$$

for whenever $x \in \mathbf{B}$ and $y \in B(x)$, where $B(x) = B(x, \delta_{\mathbf{B}}(x)/4)$.

Proof. For $x \in \mathbf{B}$, consider the function $p_*(x) = \inf_{z \in 2B(x)} p(z)$. Since u is monotone in 4B(x) and $p_*(x) \ge p_-(\mathbf{B}) > n-1$, we see that

$$|u(x) - u(y)|$$

 $\leq C\delta_{\mathbf{B}}(x)^{1 - n/p_*(x)} \left(\int_{2B(x)} |\nabla u(z)|^{p_*(x)} dz \right)^{1/p_*(x)}$

for every $y \in B(x)$. First note that

$$\begin{split} \delta_{\mathbf{B}}(x)^{1-n/p_{*}(x)} &= \delta_{\mathbf{B}}(x)^{1-n/p(x)} \delta_{\mathbf{B}}(x)^{-n(p(x)-p_{*}(x))/(p(x)p_{*}(x))} \\ &\leq \delta_{\mathbf{B}}(x)^{1-n/p(x)} \delta_{\mathbf{B}}(x)^{-C/\log(1/\delta_{\mathbf{B}}(x))} \\ &\leq C \delta_{\mathbf{B}}(x)^{1-n/p(x)}. \end{split}$$

Set
$$G = \{z \in 2B(x) : |\nabla u(z)| \ge 1\}$$
. Then
$$\int_{2B(x)} |\nabla u(z)|^{p_*(x)} dz$$

$$= \int_G |\nabla u(z)|^{p(z)} |\nabla u(z)|^{p_*(x)-p(z)} dz$$

$$+ \int_{2B(x)\backslash G} |\nabla u(z)|^{p_*(x)} dz$$

$$\le \int_{2B(x)} |\nabla u(z)|^{p(z)} dz + C\delta_{\mathbf{B}}(x)^n,$$

so that we obtain by (2.1)

$$\begin{aligned} |u(x) - u(y)| \\ &\leq C\delta_{\mathbf{B}}(x)^{1 - n/p(x)} \left(\int_{2B(x)} |\nabla u(z)|^{p(z)} dz \right)^{1/p_*(x)} \\ &+ C\delta_{\mathbf{B}}(x) \\ &\leq C\delta_{\mathbf{B}}(x)^{1 - n/p(x)} \left(\int_{2B(x)} |\nabla u(z)|^{p(z)} dz \right)^{1/p(x)} \\ &+ C\delta_{\mathbf{B}}(x), \end{aligned}$$

as required.

The following lemma can be proved by (2.2).

Lemma 2 (cf. [2, Lemma 1]). Let u be a monotone function on \mathbf{B} satisfying (1.2). If $\xi \in \partial \mathbf{B} \setminus E$ and there exists a sequence $\{r_j\}$ such that $2^{-j-1} \leq r_j < 2^{-j}$ and $u((1-r_j)\xi)$ has a finite limit L, then u has a nontangential limit L at ξ .

Lemma 3. Let $\{p_j\}$ be a sequence such that $p_* = \inf p_j > 1$ and $p^* = \sup p_j < \infty$. Then

$$\sum |a_{j}b_{j}| \leq 2 \left(\sum |a_{j}|^{p_{j}}\right)^{1/q} \left(\sum |b_{j}|^{p_{j}'}\right)^{1/q'}$$

where $1/p_j + 1/p_j' = 1$, $q = p_*$ if $\sum |a_j|^{p_j} \ge \sum |b_j|^{p_j'}$ and $q = p^*$ if $\sum |a_j|^{p_j} \le \sum |b_j|^{p_j'}$.

Proof. Let $A = \sum |a_j|^{p_j}$ and $B = \sum |b_j|^{p_j'}$. In case $A \ge B$, for $0 < k \le 1$, we have

$$\sum |a_j b_j| \le k \Big(\sum |a_j|^{p_j} + \sum |b_j/k|^{p'_j} \Big)$$

$$\le k \Big\{ A + k^{-(p_*)'} B \Big\}.$$

Here considering k such that $k^{(p_*)'} = B/A$, we find

$$\sum |a_j b_j| \le 2A^{1/p_*} B^{1/(p_*)'},$$

as required.

The remaining case can be proved similarly. \square Now we can prove the Theorem.

Proof of the Theorem. Without loss of generality we may assume that (2.1) holds. For r > 0 sufficiently small, take $x(r) \in \gamma \cap \partial B(\xi, r)$ and set $y(r) = (1 - r)\xi$. We can take a finite chain of balls B_0, B_1, \ldots, B_N such that

- (i) $B_j = B(x_j), x_j \in \partial B(\xi, r) \cap \mathbf{B}, x_0 = x(r)$ and $y(r) \in B_N$;
- (ii) $\{\delta_{\mathbf{B}}(x_j)\}$ increase and $\delta_{\mathbf{B}}(x_j) \geq C|x(r) x_j|$ for some constant C > 0;
- (iii) $B_j \cap B_k \neq \emptyset$ if and only if $|j k| \leq 1$.

See [3, Lemma 2.2]. Set $p_j = p(x_j)$ and pick $z_j \in B_{j-1} \cap B_j$ for $1 \le j \le N$; set $z_0 = x(r)$ and $z_{N+1} = y(r)$. Since $p(\xi) > n - 1$, there exists $\alpha > 0$ such that $n - p(\xi) < \alpha < 1$. Further, by the continuty of $p(\cdot)$, we may assume that $p(x(r)) - (n - \alpha) > (p(\xi) - (n - \alpha))/2$. By Lemmas 1 and 3, we see that

$$\begin{split} |u(x(r)) - u(y(r))| \\ &\leq \sum_{j=0}^{N} |u(z_{j+1}) - u(z_{j})| \\ &\leq C \sum_{j=0}^{N} \delta_{\mathbf{B}}(x_{j})^{1-n/p_{j}} \left(\int_{2B_{j}} |\nabla u(z)|^{p(z)} dz \right)^{1/p_{j}} \end{split}$$

$$\begin{split} &+ C \sum_{j=0}^{N} \delta_{\mathbf{B}}(x_{j}) \\ &\leq C \sum_{j=0}^{N} \delta_{\mathbf{B}}(x_{j})^{1-(n-\alpha)/p_{j}} \\ &\times \left(\int_{2B_{j}} |\nabla u(z)|^{p(z)} \delta_{\mathbf{B}}(z)^{-\alpha} dz \right)^{1/p_{j}} + Cr \\ &\leq C \left(\sum_{j=0}^{N} \delta_{\mathbf{B}}(x_{j})^{p'_{j}\{1-(n-\alpha)/p_{j}\}} \right)^{1/q'(r)} \\ &\times \left(\sum_{j=0}^{N} \int_{2B_{j}} |\nabla u(z)|^{p(z)} \delta_{\mathbf{B}}(z)^{-\alpha} dz \right)^{1/q(r)} + Cr \\ &\leq C \left(\int_{B(\xi,2r)\cap\mathbf{B}} |\nabla u(z)|^{p(z)} |r-|z-\xi||^{-\alpha} dz \right)^{1/q(r)} \\ &\times I^{(q(r)-1)/q(r)} + Cr, \\ \text{where} \quad I = \sum_{j=0}^{N} \delta_{\mathbf{B}}(x_{j})^{p'_{j}\{1-(n-\alpha)/p_{j}\}}, \quad \min p_{j} \leq q(r) \leq \\ \max p_{j} \text{ and } 1/q(r) + 1/q'(r) = 1. \text{ Here note that} \\ &\frac{p_{j} - (n-\alpha)}{p_{j} - 1} \\ &= \frac{p(x(r)) - (n-\alpha)}{p(x(r)) - 1} - \frac{(n-\alpha-1)\{p(x(r)) - p_{j}\}}{\{p(x(r)) - 1\}(p_{j} - 1)} \end{split}$$

and

$$\left| \frac{(n - \alpha - 1)\{p(x(r)) - p_j\}}{\{p(x(r)) - 1\}(p_j - 1)} \right| \le \frac{C}{\log(1/|x(r) - x_j|)} \le \frac{C}{\log(1/\delta_{\mathbf{R}}(x_j))}.$$

Therefore we have

$$\begin{split} I & \leq \sum_{j=0}^{N} \delta_{\mathbf{B}}(x_{j})^{\frac{p(x(r)) - (n-\alpha)}{(p(x(r))-1)}} \delta_{\mathbf{B}}(x_{j})^{-\frac{C}{\log(1/\delta_{\mathbf{B}}(x_{j}))}} \\ & \leq C \sum_{j=0}^{N} \delta_{\mathbf{B}}(x_{j})^{\{p(x(r)) - (n-\alpha)\}/(p(x(r))-1)} \\ & \leq C r^{\{p(x(r)) - (n-\alpha)\}/(p(x(r))-1)}, \end{split}$$

since $p(x(r)) - (n - \alpha) > (p(\xi) - (n - \alpha))/2 > 0$. Further, since

$$\left| \frac{\{p(x(r)) - (n - \alpha)\}(q(r) - 1)}{p(x(r)) - 1} - \{p(\xi) - (n - \alpha)\} \right| \le \frac{C}{\log(1/r)},$$

we have

$$I^{q(r)-1} \le Cr^{p(\xi)-(n-\alpha)}r^{-C/\log(1/r)} \le Cr^{p(\xi)-(n-\alpha)}.$$

Then we obtain

$$\begin{aligned} |u(x(r)) - u(y(r))|^{q(r)} &\leq C r^{p(\xi) - (n - \alpha)} \\ &\times \int_{B(\xi, 2r) \cap \mathbf{B}} |\nabla u(z)|^{p(z)} |r - |z - \xi||^{-\alpha} dz + Cr. \end{aligned}$$

Moreover, since $0 < \alpha < 1$, we see that

$$\int_{2^{-j-1}}^{2^{-j}} |r - |z - \xi||^{-\alpha} dr \le C 2^{-j(1-\alpha)}.$$

Hence it follows that

$$\begin{split} &\inf_{2^{-j-1} \leq r < 2^{-j}} |u(x(r)) - u(y(r))|^{q(r)} \\ &\leq C \int_{2^{-j-1}}^{2^{-j}} \left(r^{p(\xi) - (n-\alpha)} \int_{B(\xi, 2r) \cap \mathbf{B}} |\nabla u(z)|^{p(z)} \right. \\ &\times |r - |z - \xi||^{-\alpha} dz \right) \frac{dr}{r} + C2^{-j} \\ &\leq C2^{-j\{p(\xi) - (n-\alpha) - 1\}} \int_{B(\xi, 2^{-j+1}) \cap \mathbf{B}} |\nabla u(z)|^{p(z)} \\ &\times \left(\int_{2^{-j-1}}^{2^{-j}} |r - |z - \xi||^{-\alpha} dr \right) dz + C2^{-j} \\ &\leq C2^{-j\{p(\xi) - n\}} \int_{B(\xi, 2^{-j+1}) \cap \mathbf{B}} |\nabla u(z)|^{p(z)} dz + C2^{-j}. \end{split}$$

Since $\xi \notin E$ and u has a finite limit L at ξ along γ , we find a sequence $\{r_j\}$ such that $2^{-j-1} \le r_i < 2^{-j}$ and

$$\lim_{j \to \infty} u(y(r_j)) = \lim_{j \to \infty} u(x(r_j)) = L.$$

Thus u has a nontangential limit L at ξ by Lemma 2.

Remark 2. Let u be a monotone function on **B** satisfying (1.2). Then u has a nontangential limit at $\xi \in \partial \mathbf{B}$ except in a set of $C_{1,p(\cdot)}$ -capacity zero.

In fact, to show this, we define

$$E_1 = \left\{ \xi \in \partial \mathbf{B} : \int_{\mathbf{B}} \left| \xi - y \right|^{1-n} \left| \nabla u(y) \right| dy = \infty \right\}$$

and set $F = E \cup E_1$, where E is as in the Theorem. Note here from [5, Lemmas 4.1 and 4.4] that F is of $C_{1,p(\cdot)}$ -capacity zero. If $\xi \notin E_1$, then u has a finite limit L along a line γ . In view of the Theorem, we see that if $\xi \in \partial \mathbf{B} \setminus F$, then u has a nontangential limit L at ξ .

References

- [1] T. Futamura, Lindelöf theorems for monotone Sobolev functions on uniform domains, Hiroshima Math. J. **34** (2004), no. 3, 413–422.
- [2] T. Futamura and Y. Mizuta, Lindelöf theorems

- for monotone Sobolev functions, Ann. Acad. Sci. Fenn. Math. **28** (2003), no. 2, 271–277.
- [3] T. Futamura and Y. Mizuta, Boundary behavior of monotone Sobolev functions on John domains in a metric space, Complex Var. Theory Appl. 50 (2005), no. 6, 441–451.
- [4] T. Futamura and Y. Mizuta, Continuity of weakly monotone Sobolev functions of variable exponent, in *Potential theory in Matsue*, 127–143, Adv. Stud. Pure Math. 44, Math. Soc. Japan, Tokyo, 2006.
- [5] T. Futamura, Y. Mizuta and T. Shimomura, Sobolev embeddings for Riesz potential space of variable exponent, Math. Nachr. 279 (2006), no. 13, 1463–1473.
- [6] P. Koskela, J. J. Manfredi and E. Villamor, Regularity theory and traces of A-harmonic functions, Trans. Amer. Math. Soc. 348 (1996), no. 2, 755–766.
- [7] O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Math. J. **41** (**116**) (1991), no. 4, 592–618.

- [8] H. Lebesgue, Sur le probléme de Dirichlet, Rend. Cir. Mat. Palermo 24 (1907), 371–402.
- [9] J. J. Manfredi and E. Villamor, Traces of monotone Sobolev functions, J. Geom. Anal. 6 (1996), no. 3, 433–444.
- [10] J. J. Manfredi and E. Villamor, Traces of monotone Sobolev functions in weighted Sobolev spaces, Illinois J. Math. 45 (2001), no. 2, 403–422.
- [11] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
- [12] Y. Mizuta, Tangential limits of monotone Sobolev functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math. **20** (1995), no. 2, 315–326.
- [13] W. Orlicz, Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200–211.
- [14] M. Růžička, Electrorheological fluids: modeling and Mathematical theory, Lecture Notes in Math., 1748, Springer, Berlin, 2000.
- [15] M. Vuorinen, Conformal geometry and quasiregular mappings, Lectures Notes in Math., 1319, Springer, Berlin, 1988.