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Lindelof theorems for monotone Sobolev functions
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Abstract:
functions with variable exponent.
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Let B be the unit ball of
the n-dimensional Euclidean space R". We denote
by ég(x) the distance of x from the boundary 0B,
that is, ég(z) = 1 — |z|. We denote by B(xz,r) the
open ball centered at z with radius r and set
AB(z,r) = B(z, Ar) for A > 0.

A continuous function v on B is called mono-
tone in the sense of Lebesgue (see [8]) if the
equalities

1. Introduction.

maxu = maxu and minu = minu
D oD D oD
hold whenever D is a domain with compact
closure D C B. If u is a monotone function on B
satisfying

/ |Vu(2)|P dz < oo for some p>n-—1,
B

then

(L1 Ju(z) —u(y)]

1/p
< Cn, )= ( [ vaer dz)
2B

whenever y € B = B(z,r) with 2B C B, where
C(n,p) is a positive constant depending only on n
and p (see [11,Chapter 8] and [15,Section 16]).
Using this inequality (1.1), the first author and
Mizuta proved Lindel6f theorems for monotone
Sobolev functions on the half space of R" in [2].
For related results, see Koskela-Manfredi-Villamor
[6], Manfredi-Villamor [9,10], Mizuta [11,12],
the first author and Mizuta [3,4] and the first
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Our aim in this note is to deal with Lindelof theorems for monotone Sobolev
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author [1].

Our aim in this note is to establish Lindelof
theorems for monotone Sobolev functions v on B
satisfying
(1.2) / IVu(2)PPdz < oo

B
with variable exponents p(-) satisfying so called a
log-Holder condition. For generalized Lebesgue
spaces, we refer to Orlicz [13], Kovacik-Rékosnik
[7] and Ruzicka [14]. In this note, we are concerned
with a positive continuous function p(-) on R"
satisfying the following conditions:

(p1) p-(B) =infp(z) >n—1,

C

(p2) |p(z) —p(y)| < oa(1/le —9l)
whenever |z —y| < 1/e, z € B and y € B, for
some constant C' > 0.

Theorem. Let u be a monotone function on
B satisfying (1.2). Define a set E of all € € OB which
satisfies

lim sup rp(@*"/ IVu(z)["?) dz > 0.
r—0 B(&r)NB

If ¢ € OB\ E and there exists a rectifiable curve vy in
B tending to £ along which u has a finite limit L,
then u has a nontangential limit L at &.

Remark 1. We know that FE is of Cjy)-
capacity zero. For the definition of (1, p(-))-capacity
Ci () and this fact, we refer to [5].

2. Proof of the Theorem. Throughout this
paper, let C' denote various constants independent
of the variables in question.

For a proof of the Theorem, we prepare the
following lemmas.

Lemma 1.
B satisfying

Let u be a monotone function on
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(2.1) / Vu(2)Pdz < 1.
B
Then
lu(z) — u(y)| < Cop(x) + Cop(x)' /"
1/p(x)
(2.2) x < / |vu(z)P<Z>dz>
2B(z)

for whenever x € B and y € B(z), where B(x) =

B(x,é(x)/4).

Proof. For x € B, consider the
p«(x) = inf.cop(y) p(2). Since w is monotone in
4B(x) and p.(z) > p_(B) > n — 1, we see that

1/p.(x)
pAE)dZ)
for every y € B(x). First note that
6B(x)1—"/m(m)

= 6p() 17"/1)(1)5]3 (z) “n(p(z)—p. )/ (p(x)p. (2))

function

|u(z) — u(y)|

< 5B(x)1*n/P(z)5B(x)*C/ log(1/ém(x))

< Cég (x)lfn/p(z) )

Set G ={z € 2B(z) :

/ IVu(z) " dz

2B(z)

- / Vu(2) P Vu(z)
G

+/ |Vu(z)

2B(z)\G

< / |Vu(2) PP dz + Cép(z)",
2B(z)

|[Vu(z)| > 1}. Then

p@)-2() g,

@ 4

so that we obtain by (2.1)

|u(z) — u(y)|

Up. (@)
< Cbp(x) ) ( /2 RO Ip(z>dz>

1/p(@)
< Cbp ()" ") ( /2 RO Ip%z)

+ Cé(x),

as required. O
The following lemma can be proved by (2.2).
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Lemma 2 (cf. [2, Lemma 1]). Let u be a
monotone function on B satisfying (1.2). If £ €
0B\ E and there exists a sequence {r;} such that
27971 < ;< 27 and u((1 — r;)€) has a finite limit L,
then u has a nontangential limit L at &.

Lemma 3. Let {p;} be a sequence such that
p« = infp; > 1 and p* = supp; < co. Then

) 1/q ) 1/q
> laibl =23 Jait) (D0 i)
where 1/p; + 1/p =1, g =p. if Tla" 2 ¥ Io"
and ¢ = p" if T lajl” < 3 [bsl"

Proof. Let A=73"|aj|” and B=7Y |bj|p«,f. In
case A > B, for 0 < k <1, we have

> laibyl < k(3 lail” + 3 Ibi/ki")
<k{a+ KB},
Here considering k such that k#-) = B/A, we find
Z la;b;] < 24/ gl

as required.
The remaining case can be proved similarly. (]
Now we can prove the Theorem.

Proof of the Theorem. Without loss of
generality we may assume that (2.1) holds. For
r > 0 sufficiently small, take z(r) € yNIB(, r) and

set y(r) = (1 —r)&. We can take a finite chain of
balls By, B, ..., By such that
(i) Bj = B(zj), zj € 0B({,r)NB, x¢=xz(r) and
y(r) € By;

(ii) {6B(z;)} increase and ég(z;) > Clz(r) — x|
for some constant C' > 0;

(iii) B; N By # 0 if and only if |j — k| < 1.

See [3,Lemma 2.2]. Set p; = p(z;) and pick z; €
B;_1NBj for 1 <j<N; set zp=x(r) and zy+1 =
y(r). Since p(§) > n — 1, there exists @ > 0 such that
n — p(§) < a < 1. Further, by the continuty of p(-),
we may assume that p(z(r)) —(n—a) > (p(&) —
(n —«))/2. By Lemmas 1 and 3, we see that

lu(z(r)) — u(y(r))]
N
< Z ZJ+1 )l
7=0

N I/Pj
Z 1 n/p; (/ |Vu(z)p<z>dz>
2B;

| /\
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(n—a)/p;
1/p;
|Vu(z)|p(z)63(z)_adz> +Cr

1/d'(r)
C(Z(SB P,{l n— a/p]}>
1/4(r)
x (Z / |vu(z)|P<Z>5B(z)—°dz> +Cr
j=0 7 2B;

1/q(r)
< C(/ IVu(2)PP|r — |z — fll“dz>
B({,Qr)ﬂB

=

x Hr0) 4 o,
where I = Z(SB p{l (n= a>/pf}7 minp; < ¢(r) <
maxp; and 1//q0(7") +1/¢ (r) = 1. Here note that
pj—(n—a)
pi—1
_p(r) —(n—a) (n—a-D{p((r) —pj}
p(z(r)) —1 {p(z(r)) = 1}(p; - 1)

and
(n— 0~ 1)ipla(r) ~p} | _
@) -0 —1) |~ log(/z(r) — )
C
= Tog(1/on(z)

Therefore we have

p(z I) (n— a) C

I<Zéij WG b (7))

N
Z )—(n—a)}/(p(x(r))-1

j=0
Crir((r)=(n—-a)}/(p(z(r))-1

| /\

IN

5

since  p(z(r)) —(n—a) > (p(§) — (n—a))/2 > 0.

Further, since
.{p —(n—a)}(q(r) - 1)
p(z(r)) —1

—{p() —(n—a)}
C

< -

~ log(1/r)’

we have
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1901 < Opp©)—(n—a),=C/log(1/r) < Cyp(§)—(n—a)

Then we obtain
u(x(r)) — u(y(r)|"")
X / IVu(2)P|r — |z — €| dz + Cr.
B(&2r)nB

(n—a)

< OO~

Moreover, since 0 < a < 1, we see that
92-J
/ r— |z — &l "dr < 2770,
2751
Hence it follows that

inf fu(z(r)) — uly(r)|""

2777 1<p<27d
92-J

<rp(§)—("—a) / Vu(z) ‘P(Z>
2-i-1 B(£,2r)NB

d :
X |r—|z— f||adz> - + 27
r

<C

< CoipO-(n-a)-1} / V()P
B (2 1)B

9=
X (/ |r—|Z—§||_adr>dz+02‘j
9-i-1

< Co-ie-n / Vu(z)["Pdz + C277,
(c2)nB

Since £ ¢ E and v has a finite limit L at £ along v, we
find a sequence {r;} such that 277! <r; <277 and

Jim u(y(rj)) = lim u(z(r;)) = L.

Thus » has a nontangential limit L at & by

Lemma 2. (Il
Remark 2. Let u be a monotone function on

B satisfying (1.2). Then u has a nontangential limit

at { € 0B except in a set of C (-capacity zero.
In fact, to show this, we define

B = {5 coB: [l o " (Tulu)ldy - oo}

and set ' = F U E;, where FE is as in the Theorem.
Note here from [5, Lemmas 4.1 and 4.4] that F is of
Ci p()-capacity zero. If £¢ Ei, then u has a finite
limit L along a line 7. In view of the Theorem, we
see that if £ € 9B\ F, then v has a nontangential
limit L at €.
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