On the rotation angles of a finite subgroup of a mapping class group

By Kenji TSUBOI

Tokyo University of Marine Science and Technology, 4-5-7 Kounan, Minato-ku, Tokyo 108-8477, Japan

(Communicated by Shigefumi MORI, M.J.A., Nov. 12, 2008)

Abstract: Let G be a finite subgroup of the mapping class group of genus σ , which acts on a compact Riemann surface of genus σ . In this paper, we introduce a new method to determine the rotation angle of an element $g \in G$ around the fixed points of g. Our main result is Theorem 3.2.

Key words: Riemann surface; mapping class group; finite group; elliptic operator.

1. Introduction. Let Σ^{σ} be a compact Riemann surface of genus $\sigma \geq 2$ and G a subgroup of the mapping class group of genus σ . We can assume that the action of G on Σ^{σ} is effective and biholomorphic (see [4]). Let p be an odd prime number which divides the order |G| of G. Then it follows from the Cauchy's theorem that there exists an element $g \in G$ of order p. Let q_1, \dots, q_b be the fixed point set of g and suppose that g acts on the tangent space $T_{q_i}M$ via multiplication by α^{t_i} $(1 \leq$ $t_i < p$) where α is the primitive *p*-th root of unity. Then g^s acts on the tangent space $T_{q_i}M$ via multiplication by α^{st_i} . We call $\{t_1, \cdots, t_b\}$ the rotation angle of g. Two rotation angles $\{t_1, \dots, t_b\}$, $\{t'_1, \cdots, t'_b\}$ are defined to be equivalent iff there exists an integer s such that a permutation of $\{st'_1, \dots, st'_b\}$ is equivalent to $\{t_1, \dots, t_b\}$ mod. p. For example, since $3(1,2) \equiv (3,1) \pmod{5}$, $\{1,3\}$ is equivalent to $\{1, 2\}$ when p = 5. Let \mathbf{Z}_p be the cyclic group generated by g and suppose that the genus of $\Sigma^{\sigma}/\mathbf{Z}_p$ is τ . Then it follows from the Riemann-Hurwitz equation that

(1)
$$2\sigma - 2 = p(2\tau - 2) + b(p - 1).$$

Set $\Sigma_0^{\sigma} = \Sigma^{\sigma} \setminus \{q_1, \dots, q_b\}$ and $\Sigma_0^{\tau} = \Sigma_0^{\sigma} / \mathbf{Z}_p$. Then there exists an exact sequence

$$\pi_1(\Sigma_0^{\sigma}) \xrightarrow{\pi_*} \pi_1(\Sigma_0^{\tau}) \xrightarrow{\partial} \mathbf{Z}_p \quad (\pi : \Sigma_0^{\sigma} \longrightarrow \Sigma_0^{\tau}).$$

Let x_i be an element of $\pi_1(\Sigma_0^{\tau})$ represented by a counterclockwise loop around $\pi(q_i)$ and \overline{t} denote the

 $\odot 2008$ The Japan Academy

mod.*p*-inverse of *t*. Then the equality $\partial(x_i) = \overline{t}_i \in \mathbf{Z}_p$ holds and we have

(2)
$$\sum_{i=1}^{b} \overline{t}_i = 0 \in \mathbf{Z}_p.$$

Conversely if τ, b, t_1, \dots, t_b satisfy the conditions (1), (2), then \mathbb{Z}_p acts on Σ^{σ} with *b* fixed points and the rotation angle $\{t_1, \dots, t_b\}$ (see [2,3]). In this paper, a rotation angle $\{t_1, \dots, t_b\}$ is called possible when $\{t_1, \dots, t_b\}$ satisfies the conditions (1), (2).

Let $L = \otimes^{\ell} T \Sigma^{\sigma}$ be the tensor product of ℓ $T \Sigma^{\sigma}$'s, which is a complex *G*-line bundle over Σ^{σ} and D_{ℓ} the *L*-valued Dirac (Dolbeault) operator on Σ^{σ} . Then in [5] an additive group homomorphism $I_{D_{\ell}}: G \longrightarrow \mathbf{R}/\mathbf{Z}$ is defined by using the equivariant determinant of D_{ℓ} and a calculation formula for $I_{D_{\ell}}(g)$ is given by using the rotation angle of *g*. Using the formula, we can obtain a condition for rotation angle of *g*.

2. Admissible rotation angle. Let $g \in G$ be an element of odd prime order p and $\{t_1, \dots, t_b\}$ the rotation angle of g.

Definition 2.1. For integers z, ℓ such that $1 \leq z, \ell < p$, we set

$$\begin{split} \Psi_p(z,\ell,t_1,\cdots,t_b) \\ &= \frac{(p-1)(1-\sigma)(2\ell+1)}{2p} \\ &+ \frac{1}{12p} \sum_{i=1}^b \left\{ \{(p-1)(7p-11)zt_i\} \right\} \end{split}$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 58C30; Secondary 30F99.

No. 10]

where $f_p(x) = x^2 - (p-2)x - (p-1)^2$ and [] is the Gauss' symbol. In this paper, a rotation angle $\{t_1, \dots, t_b\}$ is called admissible when $\{t_1, \dots, t_b\}$ is possible and $\Psi_p(z, \ell, t_1, \dots, t_b)$ is an integer for any $1 \leq z, \ell < p$.

Note that $\Psi_p(z, \ell, t_1, \dots, t_b) \equiv I_{D_\ell}(g^z) \pmod{\mathbf{Z}}$ (see [5, Proposition 3.2]).

Example 2.2. Set $p = 7, \sigma = 9$. Then direct computation shows that a possible rotation angle is equivalent to one of $\{1, 1, 1, 1, 5\}$, $\{1, 1, 1, 3, 6\}$, $\{1, 1, 1, 4, 4\}$, $\{1, 1, 2, 3, 5\}$, $\{1, 1, 2, 4, 6\}$, $\{1, 1, 3, 3, 4\}$, in which only $\{1, 1, 2, 4, 6\}$ is an admissible angle.

Example 2.3. Set $\sigma = p - 1$ and let f(p), g(p) be the numbers of equivalence classes of possible rotation angles and admissible rotation angles respectively. Then direct computation shows that

$$g(3)/f(3) = 1/1, g(5)/f(5) = 2/3,$$

 $g(7)/f(7) = 2/4, g(11)/f(11) = 3/8.$

3. Main Results. Let G be a finite subgroup of the mapping class group of genus σ and g an element of G of prime order p.

Definition 3.1. In this paper, $h \in G$ is called a free ordering of $g \in G$ if, for some n, there exist $\gamma_1, \gamma_2, \dots, \gamma_n \in G$ such that $g = \gamma_1 \gamma_2 \dots \gamma_n$ and h = $\gamma_{\rho(1)} \gamma_{\rho(2)} \dots \gamma_{\rho(n)}$ for some permutation ρ on n letters. If h is a free ordering of g, it is denoted by $g \xrightarrow{\text{FO}} h$.

For example, $\gamma_3\gamma_2\gamma_1^2$ is a free ordering of $\gamma_1\gamma_2\gamma_3\gamma_1$ and denoted by $\gamma_1\gamma_2\gamma_3\gamma_1 \xrightarrow{\text{FO}} \gamma_3\gamma_2\gamma_1^2$. Then we have the next theorem.

Theorem 3.2. Assume that $\gamma_1 \cdots \gamma_n = 1$ for $\gamma_1, \cdots, \gamma_n \in G$ and that a free ordering of $\gamma_1 \cdots \gamma_n$ is equal to g^q for a natural number q which is not a multiple of p. Then the rotation angle $\{t_1, \cdots, t_b\}$ of g is admissible.

Proof. Since $I_{D_{\ell}}$ is an additive group homomorphism, it follows from the assumption that $qI_{D_{\ell}}(g) = I_{D_{\ell}}(g^q) = I_{D_{\ell}}(\gamma_1 \cdots \gamma_n) = I_{D_{\ell}}(1) = 0 \in \mathbf{R}/\mathbf{Z}$. Moreover since $pI_{D_{\ell}}(g) = I_{D_{\ell}}(g^p) = I_{D_{\ell}}(1) = 0 \in \mathbf{R}/\mathbf{Z}$ and q is not a multiple of p, it follows that $I_{D_{\ell}}(g) = 0 \in \mathbf{R}/\mathbf{Z}$. Now the result of the theorem follows from Proposition 3.2 in [5].

Corollary 3.3. Assume that g^q is contained

in the commutator subgroup [G,G] for a natural number q which is not a multiple of p. Then the rotation angle $\{t_1, \dots, t_b\}$ of g is admissible.

Proof. It follows from the assumption that there exists elements $\gamma_1, \gamma_2 \in G$ such that $\gamma_1^{-1}\gamma_2^{-1}\gamma_1\gamma_2 = g^q$. Since $\gamma_1^{-1}\gamma_1\gamma_2^{-1}\gamma_2 = 1$, the result of the corollary immediately follows from the theorem above.

Example 3.4. Let G be a perfect group whose order is divided by an odd prime number p and $g \in G$ an element of order p. Then it follows from the corollary above that the rotation angle of g is admissible.

Example 3.5. Let D_n be the dihedral group generated by γ, τ with the relation $\gamma^n = \tau^2 = 1, \tau^{-1}\gamma\tau = \gamma^{-1}$. Let p be an odd prime number which divides n and set m = n/p. Then the order of $g = \gamma^m$ is p and we have

$$1 = (\tau^{-1}\gamma\tau)^m \gamma^m = \tau^{-1}g\tau g \xrightarrow{\text{FO}} \tau^{-1}\tau g^2 = g^2.$$

Hence the rotation angle of g is admissible.

Remark 3.6. It follows from Corollary 2.5 in [1] that the dihedral group D_p with odd prime p acts on Σ^{p-1} . (See Example 2.3.)

Example 3.7. Let S_n be the symmetric group of $n \ge 3$ letters $1, 2, \dots, n$. Then S_n is generated by transpositions and the order $|S_n|$ of S_n is n!. Let p be an odd prime number which is less than or equal to n and $g \in S_n$ an element of order p. Suppose that $g = \tau_1 \cdots \tau_m$ for transpositions τ_1, \dots, τ_m . Then we have

$$1 = \tau_1^2 \cdots \tau_m^2 \xrightarrow{\text{FO}} \tau_1 \cdots \tau_m \tau_1 \cdots \tau_m = g^2.$$

Hence the rotation angle of g is admissible.

References

- E. Bujalance et al., On compact Riemann surfaces with dihedral groups of automorphisms, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 3, 465–477.
- H. Glover and G. Mislin, Torsion in the mapping class group and its cohomology, J. Pure Appl. Algebra 44 (1987), no. 1–3, 177–189.
- W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford Ser. (2) 17 (1966), 86–97.
- [4] S. P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235–265.
- [5] K. Tsuboi, The finite group action and the equivariant determinant of elliptic operators, J. Math. Soc. Japan 57 (2005), no. 1, 95–113.