On the rotation angles of a finite subgroup of a mapping class group

By Kenji Tsuboi
Tokyo University of Marine Science and Technology,
4-5-7 Kounan, Minato-ku, Tokyo 108-8477, Japan
(Communicated by Shigefumi Mori, M.J.A., Nov. 12, 2008)

Abstract

Let G be a finite subgroup of the mapping class group of genus σ, which acts on a compact Riemann surface of genus σ. In this paper, we introduce a new method to determine the rotation angle of an element $g \in G$ around the fixed points of g. Our main result is Theorem 3.2.

Key words: Riemann surface; mapping class group; finite group; elliptic operator.

1. Introduction. Let Σ^{σ} be a compact Riemann surface of genus $\sigma \geq 2$ and G a subgroup of the mapping class group of genus σ. We can assume that the action of G on Σ^{σ} is effective and biholomorphic (see [4]). Let p be an odd prime number which divides the order $|G|$ of G. Then it follows from the Cauchy's theorem that there exists an element $g \in G$ of order p. Let q_{1}, \cdots, q_{b} be the fixed point set of g and suppose that g acts on the tangent space $T_{q_{i}} M$ via multiplication by $\alpha^{t_{i}}(1 \leq$ $t_{i}<p$) where α is the primitive p-th root of unity. Then g^{s} acts on the tangent space $T_{q_{i}} M$ via multiplication by $\alpha^{s t_{i}}$. We call $\left\{t_{1}, \cdots, t_{b}\right\}$ the rotation angle of g. Two rotation angles $\left\{t_{1}, \cdots, t_{b}\right\}$, $\left\{t_{1}^{\prime}, \cdots, t_{b}^{\prime}\right\}$ are defined to be equivalent iff there exists an integer s such that a permutation of $\left\{s t_{1}^{\prime}, \cdots, s t_{b}^{\prime}\right\}$ is equivalent to $\left\{t_{1}, \cdots, t_{b}\right\}$ mod. p. For example, since $3(1,2) \equiv(3,1)(\bmod 5),\{1,3\}$ is equivalent to $\{1,2\}$ when $p=5$. Let \mathbf{Z}_{p} be the cyclic group generated by g and suppose that the genus of $\Sigma^{\sigma} / \mathbf{Z}_{p}$ is τ. Then it follows from the RiemannHurwitz equation that

$$
\begin{equation*}
2 \sigma-2=p(2 \tau-2)+b(p-1) \tag{1}
\end{equation*}
$$

Set $\Sigma_{0}^{\sigma}=\Sigma^{\sigma} \backslash\left\{q_{1}, \cdots, q_{b}\right\}$ and $\Sigma_{0}^{\tau}=\Sigma_{0}^{\sigma} / \mathbf{Z}_{p}$. Then there exists an exact sequence

$$
\pi_{1}\left(\Sigma_{0}^{\sigma}\right) \xrightarrow{\pi_{*}} \pi_{1}\left(\Sigma_{0}^{\tau}\right) \xrightarrow{\partial} \mathbf{Z}_{p} \quad\left(\pi: \Sigma_{0}^{\sigma} \longrightarrow \Sigma_{0}^{\tau}\right)
$$

Let x_{i} be an element of $\pi_{1}\left(\Sigma_{0}^{\tau}\right)$ represented by a counterclockwise loop around $\pi\left(q_{i}\right)$ and \bar{t} denote the

[^0]mod. p-inverse of t. Then the equality $\partial\left(x_{i}\right)=\bar{t}_{i} \in$ \mathbf{Z}_{p} holds and we have
\[

$$
\begin{equation*}
\sum_{i=1}^{b} \bar{t}_{i}=0 \in \mathbf{Z}_{p} \tag{2}
\end{equation*}
$$

\]

Conversely if $\tau, b, t_{1}, \cdots, t_{b}$ satisfy the conditions (1), (2), then \mathbf{Z}_{p} acts on Σ^{σ} with b fixed points and the rotation angle $\left\{t_{1}, \cdots, t_{b}\right\}$ (see $[2,3]$). In this paper, a rotation angle $\left\{t_{1}, \cdots, t_{b}\right\}$ is called possible when $\left\{t_{1}, \cdots, t_{b}\right\}$ satisfies the conditions (1), (2).

Let $L=\otimes^{\ell} T \Sigma^{\sigma}$ be the tensor product of ℓ $T \Sigma^{\sigma}$'s, which is a complex G-line bundle over Σ^{σ} and D_{ℓ} the L-valued Dirac (Dolbeault) operator on Σ^{σ}. Then in [5] an additive group homomorphism $I_{D_{\ell}}: G \longrightarrow \mathbf{R} / \mathbf{Z}$ is defined by using the equivariant determinant of D_{ℓ} and a calculation formula for $I_{D_{\ell}}(g)$ is given by using the rotation angle of g. Using the formula, we can obtain a condition for rotation angle of g.
2. Admissible rotation angle. Let $g \in G$ be an element of odd prime order p and $\left\{t_{1}, \cdots, t_{b}\right\}$ the rotation angle of g.

Definition 2.1. For integers z, ℓ such that $1 \leq z, \ell<p$, we set

$$
\begin{aligned}
& \Psi_{p}\left(z, \ell, t_{1}, \cdots, t_{b}\right) \\
& \quad=\frac{(p-1)(1-\sigma)(2 \ell+1)}{2 p} \\
& \quad+\frac{1}{12 p} \sum_{i=1}^{b}\left\{\left\{(p-1)(7 p-11) z t_{i}\right.\right.
\end{aligned}
$$

$$
\left.+6 \sum_{j=\left[\frac{(\ell+1) z t_{i}}{p}\right]+1}^{\left[\frac{(\ell+p+1) z t_{i}}{p}\right]} f_{p}\left(\left[\frac{j p-1}{z t_{i}}\right]-\ell-1\right)\right\}
$$

where $f_{p}(x)=x^{2}-(p-2) x-(p-1)^{2}$ and [] is the Gauss' symbol. In this paper, a rotation angle $\left\{t_{1}, \cdots, t_{b}\right\}$ is called admissible when $\left\{t_{1}, \cdots, t_{b}\right\}$ is possible and $\Psi_{p}\left(z, \ell, t_{1}, \cdots, t_{b}\right)$ is an integer for any $1 \leq z, \ell<p$.

Note that $\Psi_{p}\left(z, \ell, t_{1}, \cdots, t_{b}\right) \equiv I_{D_{\ell}}\left(g^{z}\right)(\bmod \mathbf{Z})$ (see [5, Proposition 3.2]).

Example 2.2. Set $p=7, \sigma=9$. Then direct computation shows that a possible rotation angle is equivalent to one of $\{1,1,1,1,5\},\{1,1,1,3,6\}$, $\{1,1,1,4,4\}, \quad\{1,1,2,3,5\}, \quad\{1,1,2,4,6\}, \quad\{1,1,3$, $3,4\}$, in which only $\{1,1,2,4,6\}$ is an admissible angle.

Example 2.3. Set $\sigma=p-1$ and let $f(p)$, $g(p)$ be the numbers of equivalence classes of possible rotation angles and admissible rotation angles respectively. Then direct computation shows that

$$
\begin{aligned}
& g(3) / f(3)=1 / 1, g(5) / f(5)=2 / 3 \\
& g(7) / f(7)=2 / 4, g(11) / f(11)=3 / 8
\end{aligned}
$$

3. Main Results. Let G be a finite subgroup of the mapping class group of genus σ and g an element of G of prime order p.

Definition 3.1. In this paper, $h \in G$ is called a free ordering of $g \in G$ if, for some n, there exist $\gamma_{1}, \gamma_{2}, \cdots, \gamma_{n} \in G$ such that $g=\gamma_{1} \gamma_{2} \cdots \gamma_{n}$ and $h=$ $\gamma_{\rho(1)} \gamma_{\rho(2)} \cdots \gamma_{\rho(n)}$ for some permutation ρ on n letters. If h is a free ordering of g, it is denoted by $g \xrightarrow{\mathrm{FO}} h$.

For example, $\gamma_{3} \gamma_{2} \gamma_{1}^{2}$ is a free ordering of $\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{1}$ and denoted by $\gamma_{1} \gamma_{2} \gamma_{3} \gamma_{1} \xrightarrow{\text { FO }} \gamma_{3} \gamma_{2} \gamma_{1}^{2}$. Then we have the next theorem.

Theorem 3.2. Assume that $\gamma_{1} \cdots \gamma_{n}=1$ for $\gamma_{1}, \cdots, \gamma_{n} \in G$ and that a free ordering of $\gamma_{1} \cdots \gamma_{n}$ is equal to g^{q} for a natural number q which is not a multiple of p. Then the rotation angle $\left\{t_{1}, \cdots, t_{b}\right\}$ of g is admissible.

Proof. Since $I_{D_{\ell}}$ is an additive group homomorphism, it follows from the assumption that $q I_{D_{\ell}}(g)=I_{D_{\ell}}\left(g^{q}\right)=I_{D_{\ell}}\left(\gamma_{1} \cdots \gamma_{n}\right)=I_{D_{\ell}}(1)=0 \in \mathbf{R} / \mathbf{Z}$. Moreover since $p I_{D_{\ell}}(g)=I_{D_{\ell}}\left(g^{p}\right)=I_{D_{\ell}}(1)=0 \in$ \mathbf{R} / \mathbf{Z} and q is not a multiple of p, it follows that $I_{D_{\ell}}(g)=0 \in \mathbf{R} / \mathbf{Z}$. Now the result of the theorem follows from Proposition 3.2 in [5].

Corollary 3.3. Assume that g^{q} is contained
in the commutator subgroup $[G, G]$ for a natural number q which is not a multiple of p. Then the rotation angle $\left\{t_{1}, \cdots, t_{b}\right\}$ of g is admissible.

Proof. It follows from the assumption that there exists elements $\gamma_{1}, \gamma_{2} \in G$ such that $\gamma_{1}^{-1} \gamma_{2}^{-1} \gamma_{1} \gamma_{2}=g^{q}$. Since $\gamma_{1}^{-1} \gamma_{1} \gamma_{2}^{-1} \gamma_{2}=1$, the result of the corollary immediately follows from the theorem above.

Example 3.4. Let G be a perfect group whose order is divided by an odd prime number p and $g \in G$ an element of order p. Then it follows from the corollary above that the rotation angle of g is admissible.

Example 3.5. Let D_{n} be the dihedral group generated by γ, τ with the relation $\gamma^{n}=\tau^{2}=$ $1, \tau^{-1} \gamma \tau=\gamma^{-1}$. Let p be an odd prime number which divides n and set $m=n / p$. Then the order of $g=\gamma^{m}$ is p and we have

$$
1=\left(\tau^{-1} \gamma \tau\right)^{m} \gamma^{m}=\tau^{-1} g \tau g \xrightarrow{\mathrm{FO}} \tau^{-1} \tau g^{2}=g^{2}
$$

Hence the rotation angle of g is admissible.
Remark 3.6. It follows from Corollary 2.5 in [1] that the dihedral group D_{p} with odd prime p acts on Σ^{p-1}. (See Example 2.3.)

Example 3.7. Let S_{n} be the symmetric group of $n \geq 3$ letters $1,2, \cdots, n$. Then S_{n} is generated by transpositions and the order $\left|S_{n}\right|$ of S_{n} is $n!$. Let p be an odd prime number which is less than or equal to n and $g \in S_{n}$ an element of order p. Suppose that $g=\tau_{1} \cdots \tau_{m}$ for transpositions $\tau_{1}, \cdots, \tau_{m}$. Then we have

$$
1=\tau_{1}^{2} \cdots \tau_{m}^{2} \xrightarrow{\mathrm{FO}} \tau_{1} \cdots \tau_{m} \tau_{1} \cdots \tau_{m}=g^{2}
$$

Hence the rotation angle of g is admissible.

References

[1] E. Bujalance et al., On compact Riemann surfaces with dihedral groups of automorphisms, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 3, 465-477.
[2] H. Glover and G. Mislin, Torsion in the mapping class group and its cohomology, J. Pure Appl. Algebra 44 (1987), no. 1-3, 177-189.
[3] W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford Ser. (2) 17 (1966), 86-97.
[4] S. P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235-265.
[5] K. Tsuboi, The finite group action and the equivariant determinant of elliptic operators, J. Math. Soc. Japan 57 (2005), no. 1, 95-113.

[^0]: 2000 Mathematics Subject Classification. Primary 58C30; Secondary 30F99.

