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Abstract: Let G be a finite subgroup of the mapping class group of genus �, which acts on

a compact Riemann surface of genus �. In this paper, we introduce a new method to determine

the rotation angle of an element g 2 G around the fixed points of g. Our main result is

Theorem 3.2.
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1. Introduction. Let �� be a compact Rie-

mann surface of genus � � 2 and G a subgroup of

the mapping class group of genus �. We can assume

that the action of G on �� is effective and

biholomorphic (see [4]). Let p be an odd prime

number which divides the order jGj of G. Then it

follows from the Cauchy’s theorem that there exists

an element g 2 G of order p. Let q1; � � � ; qb be the

fixed point set of g and suppose that g acts on the

tangent space TqiM via multiplication by �ti ð1 �
ti < pÞ where � is the primitive p-th root of unity.

Then gs acts on the tangent space TqiM via multi-

plication by �sti . We call ft1; � � � ; tbg the rotation

angle of g. Two rotation angles ft1; � � � ; tbg,
ft01; � � � ; t0bg are defined to be equivalent iff there

exists an integer s such that a permutation of

fst01; � � � ; st0bg is equivalent to ft1; � � � ; tbg mod.p. For

example, since 3ð1; 2Þ � ð3; 1Þ (mod 5Þ, f1; 3g is

equivalent to f1; 2g when p ¼ 5. Let Zp be the cyclic

group generated by g and suppose that the genus of

��=Zp is � . Then it follows from the Riemann-

Hurwitz equation that

2�� 2 ¼ pð2� � 2Þ þ bðp� 1Þ:ð1Þ

Set ��
0 ¼ �� n fq1; � � � ; qbg and ��

0 ¼ ��
0=Zp. Then

there exists an exact sequence

�1ð��
0Þ ��!

��
�1ð��

0Þ ��!
@

Zp ð� : ��
0 �! ��

0Þ:
Let xi be an element of �1ð��

0Þ represented by a

counterclockwise loop around �ðqiÞ and t denote the

mod.p-inverse of t. Then the equality @ðxiÞ ¼ ti 2
Zp holds and we have

Xb

i¼1

ti ¼ 0 2 Zp:ð2Þ

Conversely if �; b; t1; � � � ; tb satisfy the conditions

(1), (2), then Zp acts on �� with b fixed points and

the rotation angle ft1; � � � ; tbg (see [2,3]). In this

paper, a rotation angle ft1; � � � ; tbg is called possible

when ft1; � � � ; tbg satisfies the conditions (1), (2).

Let L ¼ �‘T�� be the tensor product of ‘

T��’s, which is a complex G-line bundle over ��

and D‘ the L-valued Dirac (Dolbeault) operator on

��. Then in [5] an additive group homomorphism

ID‘
: G �! R=Z is defined by using the equivariant

determinant of D‘ and a calculation formula for

ID‘
ðgÞ is given by using the rotation angle of g.

Using the formula, we can obtain a condition for

rotation angle of g.

2. Admissible rotation angle. Let g 2 G

be an element of odd prime order p and ft1; � � � ; tbg
the rotation angle of g.

Definition 2.1. For integers z; ‘ such that

1 � z; ‘ < p, we set

�pðz; ‘; t1; � � � ; tbÞ

¼
ðp� 1Þð1� �Þð2‘þ 1Þ

2p

þ
1

12p

Xb

i¼1

8><
>:fðp� 1Þð7p� 11Þzti
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þ 6
X½ð‘þpþ1Þzti
p �

j¼½ð‘þ1Þzti
p �þ1

fp
jp� 1

zti

� �
� ‘� 1

� �9>=
>;

where fpðxÞ ¼ x2 � ðp� 2Þx� ðp� 1Þ2 and ½ � is

the Gauss’ symbol. In this paper, a rotation angle

ft1; � � � ; tbg is called admissible when ft1; � � � ; tbg is

possible and �pðz; ‘; t1; � � � ; tbÞ is an integer for any

1 � z; ‘ < p.

Note that �pðz; ‘; t1; � � � ; tbÞ � ID‘
ðgzÞ (mod ZÞ

(see [5, Proposition 3.2]).

Example 2.2. Set p ¼ 7; � ¼ 9. Then direct

computation shows that a possible rotation angle is

equivalent to one of f1; 1; 1; 1; 5g, f1; 1; 1; 3; 6g,
f1; 1; 1; 4; 4g, f1; 1; 2; 3; 5g, f1; 1; 2; 4; 6g, f1; 1; 3;
3; 4g, in which only f1; 1; 2; 4; 6g is an admissible

angle.

Example 2.3. Set � ¼ p� 1 and let fðpÞ;
gðpÞ be the numbers of equivalence classes of possible

rotation angles and admissible rotation angles

respectively. Then direct computation shows that

gð3Þ=fð3Þ ¼ 1=1; gð5Þ=fð5Þ ¼ 2=3;

gð7Þ=fð7Þ ¼ 2=4; gð11Þ=fð11Þ ¼ 3=8:

3. Main Results. Let G be a finite subgroup

of the mapping class group of genus � and g an

element of G of prime order p.

Definition 3.1. In this paper, h 2 G is called

a free ordering of g 2 G if, for some n, there exist

�1; �2; � � � ; �n 2 G such that g ¼ �1�2 � � � �n and h ¼
��ð1Þ��ð2Þ � � � ��ðnÞ for some permutation � on n letters.

If h is a free ordering of g, it is denoted by g ��!FO h.

For example, �3�2�
2
1 is a free ordering of

�1�2�3�1 and denoted by �1�2�3�1 ��!FO �3�2�
2
1 . Then

we have the next theorem.

Theorem 3.2. Assume that �1 � � � �n ¼ 1 for

�1; � � � ; �n 2 G and that a free ordering of �1 � � � �n is

equal to gq for a natural number q which is not a

multiple of p. Then the rotation angle ft1; � � � ; tbg of g
is admissible.

Proof. Since ID‘
is an additive group homo-

morphism, it follows from the assumption that

qID‘
ðgÞ ¼ ID‘

ðgqÞ ¼ ID‘
ð�1 � � � �nÞ ¼ ID‘

ð1Þ ¼ 0 2R=Z.

Moreover since pID‘
ðgÞ ¼ ID‘

ðgpÞ ¼ ID‘
ð1Þ ¼ 0 2

R=Z and q is not a multiple of p, it follows that

ID‘
ðgÞ ¼ 0 2 R=Z. Now the result of the theorem

follows from Proposition 3.2 in [5]. �

Corollary 3.3. Assume that gq is contained

in the commutator subgroup ½G;G� for a natural

number q which is not a multiple of p. Then the

rotation angle ft1; � � � ; tbg of g is admissible.

Proof. It follows from the assumption that

there exists elements �1; �2 2 G such that

��1
1 ��1

2 �1�2 ¼ gq. Since ��1
1 �1�

�1
2 �2 ¼ 1, the result

of the corollary immediately follows from the

theorem above. �

Example 3.4. Let G be a perfect group

whose order is divided by an odd prime number p

and g 2 G an element of order p. Then it follows

from the corollary above that the rotation angle of g

is admissible.

Example 3.5. Let Dn be the dihedral group

generated by �; � with the relation �n ¼ �2 ¼
1; ��1�� ¼ ��1. Let p be an odd prime number which

divides n and set m ¼ n=p. Then the order of g ¼ �m

is p and we have

1 ¼ ð��1��Þm�m ¼ ��1g�g ��!FO ��1�g2 ¼ g2:

Hence the rotation angle of g is admissible.

Remark 3.6. It follows from Corollary 2.5 in

[1] that the dihedral group Dp with odd prime p acts

on �p�1. (See Example 2.3.)

Example 3.7. Let Sn be the symmetric

group of n � 3 letters 1; 2; � � � ; n. Then Sn is

generated by transpositions and the order jSnj of

Sn is n!. Let p be an odd prime number which is less

than or equal to n and g 2 Sn an element of order p.

Suppose that g ¼ �1 � � � �m for transpositions

�1; � � � ; �m. Then we have

1 ¼ �21 � � � �2m ��!FO �1 � � � �m�1 � � � �m ¼ g2:

Hence the rotation angle of g is admissible.
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