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Abstract: We prove that the growth functions associated with Artin-monoids of finite

type�Þ are rational functions whose numerators is equal to 1. We give an explicit formula for the

denominator polynomial NMðtÞ and give three conjectures on it: 1. NMðtÞ is irreducible up to a

factor 1-t, 2. there are l-1 real distinct roots of NMðtÞ on the interval (0,1), and 3. the smallest real

root on (0,1) is the unique smallest absolute values of all roots of NMðtÞ.
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1. Introduction. Let Gþ
M be the Artin mon-

oid [B-S, §1.2] generated by the letters ai, i 2 I with

respect to a Coxeter matrix M ¼ ðmijÞi;j2I [B]. That
is, Gþ

M is a monoid generated by the letters ai, i 2 I

which are subordinate to the relation generated by

aiajai � � � ¼ ajaiaj � � � i; j 2 I;ð1:1Þ

where both hand sides of (1.1) are words of

alternating sequences of letters ai and aj of the

same length mij ¼ mji with the initials ai and aj,

respectively. More precisely, Gþ
M is the quotient of

the free monoid generated by the letters ai (i 2 I)

by the equivalence relation: two words U and V in

the letters are equivalent, if there exists a sequence

U0 :¼ U;U1; � � � ; Um :¼ V such that the word Uk

(k ¼ 1; � � � ;m) is obtained by replacing a phrase in

Uk�1 of the form on LHS of (1.1) by RHS of (1.1) for

some i; j 2 I. We write by U ¼
�
V if U and V are

equivalent. The equivalence class (i.e. an element of

Gþ
M) of a word W is denoted by the same notation

W . By the definition, equivalent words have the

same length. Hence, we define the degree homo-

morphism:

deg : Gþ
M �! Z�0ð1:2Þ

by assigning the length to each equivalence class of

words.

In [S, §12], we introduced the space of partition

functions �ðGþ
M; IÞ for the monoid Gþ

M and, as for

the first step to determine it, we asked to determine

the space �ðPGþ
M
;IÞ of opposite series (see §5) of the

growth series PGþ
M
;IðtÞ for the Artin monoid of finite

typeM, where the growth seriesPGþ
M
;IðtÞ is defined by

PGþ
M
;IðtÞ :¼

X

n2Z�0

#fW 2 Gþ
M j degðW Þ � ng tn:ð1:3Þ

In the present paper, we, conjecturally, answer

to the question. Namely, in §2, we show that the

growth series has an expression

PGþ
M
;IðtÞ ¼

1

ð1� tÞNMðtÞ
;ð1:4Þ

where NMðtÞ is a polynomial determined from the

Coxeter-Dynkin graph of M(see Lemma 2.1, c.f.

[D](1.21) Corollaire). In §3, we show that zeroes of

NMðtÞ ¼ 0 lie in the disc centered at 0 of radius

1þ " for a small ". In §4, we conjecture that there

are l� 1 distinct real roots on the interval ð0; 1Þ and
that the smallest one, say rM , among them is a

unique root of the equation NW ðtÞ ¼ 0 taking the

smallest absolute values. Finally in §5, we remark

that the conjectures imply that �ðPGþ
M
;IÞ consists of

a single element of the form 1=ð1� rMsÞ, where rM
is expressed as the limit of a sequence of rational

numbers.

2. Growth series PGþ
M
;IðtÞ. For a Coxeter

matrix M, consider the spherical growth series of

the monoid Gþ
M :

_PPGþ
M
;IðtÞ :¼

X

n2Z�0

#ðdeg�1ðnÞÞ tn;ð2:1Þ

so that PGþ
M
;IðtÞ ¼ _PPGþ

M
;IðtÞ=ð1� tÞ. The goal of the

present section is the following
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Theorem 2.1. Let Gþ
M be the Artin monoid

with respect to a Coxeter matrix M of finite type.

Then the spherical growth series of the monoid is

given by the Taylor expansion of the rational

function of the form

_PPGþ
M
;IðtÞ ¼

1

NMðtÞ ;ð2:2Þ

where the denominator NMðtÞ is a monic polynomial

in t given by

NMðtÞ :¼
X

J�I

ð�1Þ#ðJÞ tdegð�J Þ:ð2:3Þ

Here, the summation index J runs over all subsets of

I, and �J is the fundamental element in Gþ
M

associated to the set J ([B-S, §5 Definition]. See

also Lemma-De�nition 1 and Remark 2.1 of the

present note).

Remark 2.2. The formula (2.2) can be de-

duced from a more general formula due to Deligne

[D, (1.21)] on a generating function of the number of

positive equivalent classes of galleries associated

with a simplicial arrangement of real hyperplanes.

Since we restrict our attention to Artin monoids

and want to be self-contained, we formulate it as in

the present form and give a proof of it.

Proof. The proof is achieved by a recursion

formula (2.9) on the coefficients of the growth

series. For the proof of the formula, we use the

method used to solve the word problem for the

Artin monoid [B-S, §6.1], which we recall below.

A word U is said to be divisible (from the left)

by a word V , and denoted by V jU, if there exists a

word W such that U ¼
�
VW . There exists an

algorithm, which terminates in finite steps, to

decide whether V jU or not for given words U and

V (see [B-S, §3]). Since V ¼
�
V 0, U ¼

�
U 0 and V jU

implies V 0jU 0, we use the notation ‘‘j’’ of divisibility
also between elements of the monoid Gþ

M .

We have the following basic concepts [B-S, §5

Definition and §6.1]

Lemma-Definition 1. For any subset J �
I, there exists a unique element �J 2 Gþ

M , called the

fundamental element, such that i) aij�J for all

i 2 J, and ii) if W is a word such that aijW for all

i 2 J, then �J jW .

2. To a word W , we associate the subset of I:

IðW Þ :¼ fi 2 I j aijWg:ð2:4Þ

One has �IðWÞjW and if �J jW then J � IðW Þ.

If W ¼
�
W 0 then IðW Þ ¼ IðW 0Þ. Therefore, we use

the same notation IðW Þ for an element W in Gþ
M .

We return to the proof of Theorem. For n 2
Z�0 and a subset J � I, put

Gþ
n :¼ fW 2 Gþ

M j degðW Þ ¼ ngð2:5Þ
Gþ

n;J :¼ fW 2 Gþ
n j IðW Þ ¼ Jg:ð2:6Þ

By the definition, we have the disjoint decomposi-

tion:

Gþ
n ¼ qJ�I Gþ

n;J ;ð2:7Þ

where J runs over all subsets of I. Note that Gþ
n;; ¼

; if n > 0 but Gþ
0;; ¼ f;g 6¼ ;. For any subset J of I,

the union qJ�K�IG
þ
n;K , where the index K runs over

all subsets of I containing J , is equal to the subset

of Gþ
n consisting of elements divisible by �J . That

is, it is the image of Gþ
n�degð�J Þ under the multi-

plication by �J from the left. On the other hand,

since Gþ
M is injectively embedded in the Artin group

GM [B-S, Proposition 5.5], the multiplication map

of �J is injective. Hence we obtain a bijection:

Gþ
n�degð�J Þ ’ qJ�K�IG

þ
n;K . This implies a numerical

relation:

#ðGþ
n�degð�J ÞÞ ¼

X

J�K�I

#ðGþ
n;KÞ:ð2:8Þ

Then, for n > 0, using this formula, we get the

recursion relation:

X

J�I

ð�1Þ#ðJÞ#ðGþ
n�degð�J ÞÞ ¼ 0:ð2:9Þ

Together with #ðGþ
0 Þ ¼ 1 for n ¼ 0, this is equiv-

alent to the formula:

_PPGþ
M
;IðtÞNMðtÞ ¼ 1:ð2:10Þ

This completes the proof of Theorem. �

By the definition (2.3), one has NMð1Þ ¼P
J�Ið�1Þ#J ¼ 0. That is, NMðtÞ has the factor

1� t. Then, we conjecture the following

Conjecture 1. The polynomial ~NNMðtÞ :¼
NMðtÞ=ð1� tÞ is irreducible over Z for any inde-

composable Coxeter matrix M of finite type.

The conjecture is positively confirmed (by a use

of computer) for the types Al, Bl, Cl, Dl (l � 30),
E6, E7, E8, F4, G2, H3 and H4. The following proof

for the types I2ðpÞ (p 2 Z�3) is due to S. Yasuda:

there is only one root of ~NNI2ðpÞðtÞ ¼ ð1� 2tþ
tpÞ=ð1� tÞ inside the disc jtj � 1, and any integral

factor fðtÞ of ~NNMðtÞ with no root inside jtj � 1 is �1,

since the product of all the roots of fðtÞ is �1.
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The conjecture is not necessary to determine

�ðPGþ
M
;IÞ, but shall play an important role when we

study the global space V ðGþ
M; IÞ of limit elements

[S, §11.4.10], on which the Galois group of the

splitting field of ~NNMðtÞ acts.
Remark 2.3. Actually, degð�JÞ is equal to

the number of reflections in the Coxeter group GMjJ
associated to MjJ :¼ ðmijÞi;j2J [B-S, §5.7], which is

also equal to the length of the longest element of the

Coxeter group GMjJ .
Remark 2.4. The fact that the growth func-

tions for the Artin monoids are rational functions

with the numerator equal to 1 was also observed by

P. Xu [X] and M. Fuchiwaki et al. [F-F-S-T] for a

few examples of type A of low rank.

3. A bound of the zeroes of the polyno-

mial NMðtÞ. The following lemma gives a bound

of the zeroes of the polynomial NMðtÞ.
Lemma 3.1. For a Coxeter matrix M, define

a numerical invariant:

aM :¼
degð�IÞ �maxfdegð�JÞ j J � I; J 6¼ Ig

#I
:

ð3:1Þ
Then, one has

1. aM � 1 for any finite type Coxeter matrix M,

2. all the roots of NMðtÞ ¼ 0 are contained in

the open disc of radius 21=aM centered at the

origin.

Proof. 1. This is shown by using the classifi-

cation of finite Coxeter groups:

Al�1 : degð�Al
Þ ¼ ðlþ 1Þl=2

maxfdegð�JÞg ¼ lðl� 1Þ=2 aAl
¼ 1;

Bl�2 : degð�Bl
Þ ¼ l2

maxfdegð�JÞg ¼ ðl� 1Þ2 aBl
¼ ð2l� 1Þ=l;

Dl�4 : degð�Dl
Þ ¼ lðl� 1Þ

maxfdegð�JÞg ¼ ðl� 1Þðl� 2Þ aDl
¼ 2ðl� 1Þ=l;

E6 : degð�E6
Þ ¼ 36

maxfdegð�JÞg ¼ 20 aE6
¼ 8=3;

E7 : degð�E7
Þ ¼ 63

maxfdegð�JÞg ¼ 36 aE7
¼ 27=7;

E8 : degð�E8
Þ ¼ 120

maxfdegð�JÞg ¼ 63 aE8
¼ 57=8;

F4 : degð�F4
Þ ¼ 24

maxfdegð�JÞg ¼ 9 aF4
¼ 15=4;

G2 : degð�G2
Þ ¼ 6

maxfdegð�JÞg ¼ 1 aG2
¼ 5=2;

H3 : degð�H3
Þ ¼ 15

maxfdegð�JÞg ¼ 5 aH3
¼ 10=3;

H4 : degð�H3
Þ ¼ 60

maxfdegð�JÞg ¼ 15 aH4
¼ 45=4;

I2ðp�3Þ : degð�I2ðpÞÞ ¼ p

maxfdegð�JÞg ¼ 1 aI2ðpÞ ¼ ðp� 1Þ=2:

2. We compare the roots of NMðtÞ ¼ 0 with

those of tdegð�I Þ ¼ 0 by Rouché’s theorem as follows:

Let t 2 C be a point with jtj ¼ 21=aM . Then

jNMðtÞ � ð�1Þ#ðIÞtdegð�IÞj
¼

X

J�I;J 6¼I

ð�1Þ#ðJÞtdegð�J Þ
����

����

�
X

J�I;J 6¼I

jtdegð�J Þj

� ð2#ðIÞ � 1Þjtjmaxf�J jJ�I; J 6¼Ig < jtjdegð�I Þ:

Due to Rouché’s theorem, the number of roots of

NMðtÞ ¼ 0 in the disc of radius 21=aM is equal to that

of tdegð�I Þ ¼ 0. That is, all the roots of NMðtÞ ¼ 0 are

in the disc fjtj < 21=aMg. �

4. Conjectures on the zeroes of the poly-

nomial NMðtÞ. We give two conjectures on the

distribution of the zeroes of NMðtÞ. We formulate

them more than necessary to determine �ðPGþ
W
;IÞ,

because of their possible applications to the

study of the global space V ðGþ
M; IÞ of limit elements

[S, §11].

Conjecture 2. There are ðl� 1Þ mutually

distinct real roots of NMðtÞ ¼ 0 on the interval

ð0; 1Þ, where l :¼ #I is the rank of GM .

Conjecture 3. Let rM be the smallest of the

real roots in Conjecture 2. Then, the absolute

values of the other roots of NMðtÞ ¼ 0 are larger

than rW .

Conjectures 2 and 3 are positively confirmed

(using either Sturm criterion or computer calcula-

tions) for the types Al, Bl, Cl, Dl (l � 30), E6, E7,

E8, F4, G2, H3, H4 and I2ðpÞ (p � 3). Lemma 3.1

together with Conjecture 3 claims that all the roots

of NMðtÞ ¼ 0 lives in the annulus rW � jtj < 21=aM .

Examples show that the angles of the roots are

somehow homogeneously distributed (see the fol-

lowing figures). However, we do not know how one

can precisely formulate these phenomena. More

insights on the distribution of the roots of NMðtÞ ¼
0 can be obtained by the following computer

drawings of the zeros for the types A30, D20 and

E8 due to Shunsuke Tsuchioka (see http://www.

kurims.kyoto-u.ac.jp/~saito/FFST/ for more ex-

amples). We observe the followings
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i) Most of the roots, except for the following 3 cases

a), b) and c), are lying outside of the unit circle with

rather homogeneous distribution of angles.

a) There are l� 1 distinct roots on the interval

ð0; 1Þ and a simple root at t ¼ 1. Then, roots

around t ¼ 1 are less dense than the other aria.

b) Two horns are glowing at the point t ¼ �1

toword the inside of the unit disc. Then, roots

around t ¼ �1 are less dense than the other

aria.

c) For types A and D, there are some warts inside

the unit circle (see the Figures).

ii) The values rM (see Conjecture 3) for the series

Al, Bl and Dl are decreasing as l tends to 1, but is

bounded from below by a positive constant 0.30. . ..
Remark 4.1. There is a progress on conjec-

tures 1, 2 and 3 by Seidai Yasuda.

5. The space of opposite series

�ðPGþ
M
;IÞ. We return to the determination of

the space �ðPGþ
M
;IÞ of opposite series for PGþ

M
;I

[S, (11.2.3)], where recall that a series in R½½s		 is
called an opposite series for PGþ

M
;I if it is an

accumulation point (with respect to the classical

topology) of the sequence of polynomials

XnðPGþ
M
;IÞ :¼

Xn

k¼0

#deg�1ðn� kÞ
#deg�1ðnÞ

sk;ð5:1Þ

n ¼ 0; 1; 2; � � � :

Let �top
PGþ

M
;I
ðtÞ be the reduced polynomial van-

ishing at the loci of the poles of PGþ
M
;I of the smallest

radius and highest order (among them). Actually,

Conjectures 2 and 3 imply �top
PGþ

M
;I
ðtÞ ¼ t� rM .

Then, Duality Theorem [S, §11 Theorem] says, in

general, that if degð�top
PGþ

M
;I
Þ ¼ h, then putting

�op
PGþ

M
;I
ðsÞ :¼ sh�top

PGþ
M
;I
ðs�1Þ, the opposite series have

the form bðsÞ=�op
PGþ

M
;I
ðsÞ for a polynomial bðsÞ of

-1.5

-1

-0.5

0

 0.5

1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

"A30"

NA30
(t) = 0

-1.5

-1

-0.5

0

 0.5

1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5

"D20"

ND20
(t) = 0

-1.5

-1

-0.5

0

 0.5

1

 1.5

-1.5 -1 -0.5 0 0.5 1 1.5
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Zero loci of NMðtÞ ¼ 0 for the types A30;D20 and E8 (presented by S. Tsuchioka) The zeroes are indicated by +.
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degree < h (see [S, §11.2 Assertion]). This, in our

particular case of h ¼ 1, implies that the sequence

Xn converges in R½½s		 to the unique element:

aðsÞ ¼ 1

1� rMs
;ð5:2Þ

where the smallest real root rM 2 R>0 is given by

rM ¼ limn!1
#deg�1ðn� 1Þ
#deg�1ðnÞ

:ð5:3Þ
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