
A characterization of convex cones

By Kyeonghee JO

Division of Liberal Arts and Sciences, Mokpo National Maritime University,

Mokpo, Chonnam, 530-729, Korea

(Communicated by Masaki KASHIWARA, M.J.A., Nov. 12, 2008)

Abstract: Any convex cone has an accumulation point in the base by the action of its

automorphism group. In this paper, we prove the converse of this statement, more precisely, a

convex domain � with a face F of codimension 1 is a cone over F if there is an Autð�Þ-orbit
accumulating at a point of F .
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1. Introduction. A convex domain in an

affine space is sometimes called a cone even if it is

not an affine cone. For example, a triangle and a

convex domain � ¼ fðx; y; zÞ 2 R3 j y > x2; z > 0g
can be considered as cones. It’s because that a

triangle is projectively equivalent to a quadrant and

� is projectively equivalent to both an elliptic cone

fðx; y; zÞ 2 R3 j x2 þ y2 < z2; z > 0g and an affine

cone fðx; y; zÞ 2 R3 j y=z > ðx=zÞ2; z > 0g. So when

a convex domain � of an affine space is projectively

equivalent to an affine cone, � is called a projective

convex cone, or we say � is a convex cone in

projective sense. In this paper, convex cones will

mean projective convex cones instead of affine

cones. Note that for each convex cone �, we can

always choose an affine chart of the projective space

where � is an affine cone.

Conversely, an affine open cone is projectively

equivalent to a convex domain which is the interior

of a convex hull of a point and a face of codimension

1 by choosing another affine space. When a convex

cone � is the interior of the convex hull of a point a

and a face F , we say F is a base of a convex cone �,

or � is a cone over F (with a cone point a).

We can imagine many kinds of convex domains

with a face of codimension 1 such as the interior of a

half circle and polyhedra. Then what characteristics

distinguish convex cones from the others? We can

ask if there is any condition about the automor-

phism group for a domain with a face of codimen-

sion 1 to be a cone.

In the mid-twentieth century, the space of

quasi-homogeneous domains, domains whose auto-

morphism group have compact fundamental sets,

was being researched deeply by several mathema-

ticians such as N. H. Kuiper, J. P. Benzécri, E. B.

Vinberg, and J. Vey [1,3,4,6, etc], and several

results about characterizations of cones were

proved. In 1960, Benzécri [1] proved that a quasi-

homogeneous properly convex domain with a face of

codimension 1 is a convex cone, that is, there is no

quasi-homogeneous properly convex domain which

is not a convex cone but has a face of codimension 1.

In 1970, Vey proved that a quasi-homogeneous

properly convex affine domain is an affine cone if it

contains an affine open cone [4]. We can see that

Benzécri’s result is stronger than Vey’s, because a

properly convex affine domain containing an affine

open cone has an infinite boundary face of codi-

mension 1 when considered as a domain in the

projective space.

Every boundary point of a quasi-homogeneous

convex domain � is an accumulation point of an

orbit under the action of its projective automor-

phism group. So if � has a face F of codimension 1,

we have a sequence fgig of projective transforma-

tions preserving � and a point x 2 � such that giðxÞ
converges to a point of F . In this paper, we prove

that actually the existence of such a sequence of

automorphisms is a sufficient condition for a convex

domain having a face of codimension 1 to be a cone,

no matter whether the domain is quasi-homoge-

neous:

Theorem 1. Let � be a convex domain with

a face F of codimension 1. Then � is a cone over

F if the automorphism group of � has an orbit

accumulating at a point of F .
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Note that the converse statement of this

theorem is obviously true, because every point of

the base F is an accumulation point by the action of

the automorphism group in case � is a cone over F .

2. Basic definitions and lemmas. As

mentioned in the introduction, we will consider

domains of an affine space in projective category

via the well-known equivariant embedding from

ðRn;Affðn;RÞÞ into ðRPn;PGLðnþ 1;RÞÞ. By this

correspondence, a domain � of RPn will be called

convex if there exists an affine space H � RPn such

that � is a convex subset of H, and Autð�Þ, the
automorphism group of �, will mean the space of all

projective transformations preserving �. A convex

domain � is called properly convex if it does not

contain any complete line.

Definition 2. Let � be a properly convex

domain of RPn.

(i) A face of � is an equivalence class with respect

to the equivalence relation given as follows:

(a) x � y if x 6¼ y and � has an open line

segment l containing both x and y.

(b) x � y if x ¼ y.

(ii) The support of a face F , which will be denoted

by hF i, is the projective subspace generated

by F .

(iii) Zero dimensional faces are called extreme

points. Note that p is an extreme point if

and only if there is no open line segment which

lies in @� entirely and contains p.

(iv) � is called a convex sum of its faces F1 and F2,

which will be denoted by � ¼ F1 _þþF2, if

hF1i \ hF2i ¼ � and � is the interior of the

convex hull of F 1 [ F 2 when we consider it as

a bounded set in an affine space An in RPn.

When the dimension of F1 is n� 1 and F2 is a

point p, � is called a cone over F1 with a cone

point p.

Given a properly convex subset F of dimension

n� 1 and a point p which is not contained in the

support of F , there are two convex cones over F

with a cone point p which are projectively equiv-

alent each other.

Lemma 3. If a properly convex domain �

has an ðn� 1Þ dimensional face F and an extreme

point z which is not contained in F . Then one of two

convex cones over F with a cone point z is contained

in � and the other does not intersect �.

Proof. Let C1 and C2 be two convex cones over

F with a cone point z. We can choose a projective

hyperplane H in RPn such that � is a bounded

convex set in an affine space E ¼ RPn nH. Then

the interior of the convex hull of F and z in E must

be one of two convex cones, say C1. If we consider E

as a vector space with the origin z, we can choose a

smallest affine cone C with the origin as a cone

point which contains C1. When we see C2 in E, it

consists of two components, an affine cone �C and

C n C1. We know C1 is a subset of �. Suppose that

there is a point x of � inside C2. Then x is contained

in either �C or C n C1. If x 2 �C, then the convex

hull of x and F contains z in the interior, which

contradicts the fact that z 2 @�. If x 2 C n C1, then

the open line segment with end points x and z

intersects F , which contradicts the fact that F �
@�. �

Since PMðnþ 1;RÞ, which is the projectiviza-

tion of the group of all (nþ 1) by (nþ 1) matrices,

is a compactification of PGLðnþ 1;RÞ, any infinite

sequence of non-singular projective transformations

contains a convergent subsequence. Note that the

limit projective transformation may be singular.

For a singular projective transformation g we will

denote the projectivization of the kernel and range

of g by KerðgÞ and RanðgÞ. Then g maps RPn n
KerðgÞ onto RanðgÞ.

When gi is a sequence of projective trans-

formations in PGLðnþ 1;RÞ which converges to a

singular projective transformation g, for any com-

pact subset C � RPn which does not meet KerðgÞ
the sequence giðCÞ converges uniformly to gðCÞ [1].
We will need later the following well-known basic

facts.

Lemma 4. Let � be a properly convex do-

main in RPn and fgig � Autð�Þ. Suppose that the

sequence fgig converges to a singular projective

transformation g and that, for a point x 2 �, the

sequence fgiðxÞg converges to a point in a face F of

�. Then

(i) KerðgÞ \ � ¼ ; and KerðgÞ \ � 6¼ ;,
(ii) the interior of KerðgÞ \ � in KerðgÞ is a face

of �,

(iii) RanðgÞ is the support of F ,

(iv) gð�Þ ¼ F .

Proof. See [2] for a proof. �

3. The proof of Theorem 1. Any convex

domain in Rn is expressed by the product of Rk

and an ðn� kÞ-dimensional properly convex do-

main. So to prove Theorem 1, it suffices to show the

following
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Lemma 5. Let � be a properly convex do-

main in RPn and F an ðn� 1Þ-dimensional face of

�. Suppose that there is a point x in � such that the

orbit Autð�Þx accumulates at a point in F . Then

there is a point � 2 @� such that � is a convex cone

over F with a cone point �, i.e.,

� ¼ f�g _þþF:

Proof. By the hypothesis, there is a point p in

F and a sequence fgig in Autð�Þ such that giðxÞ
converges to p and the sequence fgig converges to a

projective transformation g as i goes to 1. Ob-

viously g is singular because giðxÞ converges to a

boundary point. By Lemma 4, RanðgÞ is the support
of F , gð�Þ ¼ F , KerðgÞ \ � ¼ ;, and KerðgÞ \
� 6¼ ;. Since RanðgÞ is ðn� 1Þ-dimensional,

dimKerðgÞ ¼ 0. If z is the point in @� such that

KerðgÞ ¼ fzg, then z must be a zero-dimensional

face of �. There are two cases.

Case 1: z =2 hF i.
In this case, giðF Þ converges uniformly to a

subset gðF Þ of F because KerðgÞ \ F ¼ ;. Since we

can find an open subset U of � such that every point

x of U is an interior point of the line segment

connecting a point of F and z, the interior of gðF Þ is
not empty in hF i and thus gðF Þ ¼ F . Each of the

two convex sums of fzg and F is mapped onto F by

g and the two cones over hF i n F with a cone point z

(the complement of the closure of the union of two

convex sums of fzg and F ) is mapped onto hF i n F .

So � should be one of the two convex sums of fzg
and F because gð�Þ ¼ F and � is connected and

convex.

Case 2: z 2 hF i.
In this case, z 2 @F because fzg is a zero-

dimensional face of �. If b is a boundary point of �

such that the line segment bz contains a point t of �,
then gðbÞ ¼ gðtÞ and giðbÞ converges to gðbÞ. Since
gðtÞ is a point of F , giðbÞ 2 F for sufficiently large i.

This observation implies that the face containing b

must be ðn� 1Þ-dimensional if b is a boundary point

of � such that bz \ � 6¼ ;.
Now we consider the set E which consists of

such b’s, i.e.,

fb 2 @� j bz \ � 6¼ ;g:

Obviously z is not contained in E. Here we claim

that E is an ðn� 1Þ-dimensional face of �: For each

b 2 E, there is a hyperplane Hb such that Eb ¼
E \Hb is an ðn� 1Þ-dimensional face of � which

contains b. So E is the disjoint union of all Eb’s, i.e.,

E ¼ [b2EEb. Suppose there are two points b1 and b2
in E such that Hb1 6¼ Hb2 . Then the open line

segment b1b2 is contained in � by convexity. So for

each i ¼ 1; 2, there is a point ai in the boundary of

Ebi such that aiz \ b1b2 6¼ ; which means ai 2 E.

This contradiction completes the proof of our

claim.

From Lemma 3, we can choose a convex cone

over E with a cone point z inside �. So we may

denote it by fzg _þþE. Suppose there exists a point

y 2 � \ @ðfzg _þþEÞ. Since fzg [ E � @�, we can

choose a point � 2 @E such that y is a point of an

open line segment z� and this implies that the

boundary point � is an element of E, which is

a contradiction. So we can conclude that � \
@ðfzg _þþEÞ ¼ ; and thus � ¼ fzg _þþE. Since E \
KerðgÞ ¼ ;, giðEÞ converges uniformly to a subset

gðEÞ of F which has a non-empty interior and this

implies that giðEÞ ¼ F for sufficiently large i. From

this we see

� ¼ gið�Þ ¼ giðfzg _þþEÞ
¼ fgiðzÞg _þþgiðEÞ ¼ fgiðzÞg _þþF

for sufficiently large i, which completes the proof by

choosing giðzÞ as �. �

If we consider all things in affine category, then

we can say more:

Corollary 6. Let � be a convex domain in

Rn and F an ðn� 1Þ-dimensional face of �. Suppose

that there is a sequence fgig of affine transforma-

tions which preserve � and a point x in the interior

of � such that the sequence fgiðxÞg accumulates at a

point of F . Then

� ¼ Rþ � F:

Proof. Let g be a limit singular projective

transformation of the sequence fgig. First, we

assume � is properly convex. By Lemma 5, there

is a point � 2 @� such that � ¼ f�g _þþF when � is

considered as a subset of RPn. So it suffices to show

that � lies in the infinite boundary of �, that is,

� 2 @� \RPn�1
1 . As we can see in the proof of

Lemma 5, f�g is either the kernel KerðgÞ or the gi-

image of KerðgÞ for some i. Since RanðgÞ \Rn

contains F , KerðgÞ is a subset of RPn�1
1 by

Lemma 3.5 of [2]. This implies that � 2 RPn�1
1

because gi preserves R
n for all i.

If � contains an affine full line then it is affinely

equivalent to Rk � �0 for some ðn� kÞ-dimensional
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properly convex affine domain �0 corresponding F

to Rk � F 0. Considering the quotient action of the

group of affine automorphisms of � on �0, we see

that �0 ¼ Rþ � F 0 by the argument in the previous

paragraph and so we conclude that

� ¼ Rk � �0 ¼ Rk �Rþ � F 0 ¼ Rþ � F:

�
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