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Abstract:

Any convex cone has an accumulation point in the base by the action of its

automorphism group. In this paper, we prove the converse of this statement, more precisely, a
convex domain Q with a face F of codimension 1 is a cone over F if there is an Aut(Q)-orbit

accumulating at a point of F.
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1. Introduction. A convex domain in an
affine space is sometimes called a cone even if it is
not an affine cone. For example, a triangle and a
convex domain Q= {(z,y,2) € R* |y > 2% 2> 0}
can be considered as cones. It’s because that a
triangle is projectively equivalent to a quadrant and
Q2 is projectively equivalent to both an elliptic cone
{(z,y,2) € R* | 2 +4y? < 2%, 2> 0} and an affine
cone {(z,9,2) € R? | y/z> (£/2)%,> 0}. So when
a convex domain {2 of an affine space is projectively
equivalent to an affine cone, € is called a projective
convex cone, or we say ) is a convex cone in
projective sense. In this paper, convex cones will
mean projective convex cones instead of affine
cones. Note that for each convex cone 2, we can
always choose an affine chart of the projective space
where () is an affine cone.

Conversely, an affine open cone is projectively
equivalent to a convex domain which is the interior
of a convex hull of a point and a face of codimension
1 by choosing another affine space. When a convex
cone 2 is the interior of the convex hull of a point a
and a face F', we say F is a base of a convex cone 2,
or ) is a cone over F (with a cone point a).

We can imagine many kinds of convex domains
with a face of codimension 1 such as the interior of a
half circle and polyhedra. Then what characteristics
distinguish convex cones from the others? We can
ask if there is any condition about the automor-
phism group for a domain with a face of codimen-
sion 1 to be a cone.

In the mid-twentieth century, the space of
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quasi-homogeneous domains, domains whose auto-
morphism group have compact fundamental sets,
was being researched deeply by several mathema-
ticians such as N. H. Kuiper, J. P. Benzécri, E. B.
Vinberg, and J. Vey [1,3,4,6,etc], and several
results about characterizations of cones were
proved. In 1960, Benzécri [1] proved that a quasi-
homogeneous properly convexr domain with a face of
codimension 1 is a convexr cone, that is, there is no
quasi-homogeneous properly convex domain which
is not a convex cone but has a face of codimension 1.
In 1970, Vey proved that a quasi-homogeneous
properly convex affine domain is an affine cone if it
contains an affine open cone [4]. We can see that
Benzécri’s result is stronger than Vey’s, because a
properly convex affine domain containing an affine
open cone has an infinite boundary face of codi-
mension 1 when considered as a domain in the
projective space.

Every boundary point of a quasi-homogeneous
convex domain () is an accumulation point of an
orbit under the action of its projective automor-
phism group. So if 2 has a face F' of codimension 1,
we have a sequence {g;} of projective transforma-
tions preserving € and a point = € 2 such that g;(z)
converges to a point of F. In this paper, we prove
that actually the existence of such a sequence of
automorphisms is a sufficient condition for a convex
domain having a face of codimension 1 to be a cone,
no matter whether the domain is quasi-homoge-
neous:

Theorem 1. Let ) be a conver domain with
a face F of codimension 1. Then ) is a cone over
F if the automorphism group of € has an orbit
accumulating at a point of F.
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Note that the converse statement of this
theorem is obviously true, because every point of
the base F'is an accumulation point by the action of
the automorphism group in case €2 is a cone over F.

2. Basic definitions and lemmas. As
mentioned in the introduction, we will consider
domains of an affine space in projective category
via the well-known equivariant embedding from
(R", Aff(n,R)) into (RP",PGL(n + 1,R)). By this
correspondence, a domain €2 of RP" will be called
convez if there exists an affine space H C RP" such
that © is a convex subset of H, and Aut(Q), the
automorphism group of €2, will mean the space of all
projective transformations preserving Q. A convex
domain 2 is called properly convex if it does not
contain any complete line.

Definition 2. Let © be a properly convex
domain of RP".

(i) A faceof Qis an equivalence class with respect
to the equivalence relation given as follows:

(a) z~y if z#y and Q has an open line

segment [ containing both z and y.

(b) x~yifx=y.

(ii) The support of a face F', which will be denoted
by (F), is the projective subspace generated
by F.

Zero dimensional faces are called extreme
points. Note that p is an extreme point if
and only if there is no open line segment which
lies in 02 entirely and contains p.

Q) is called a convex sum of its faces F} and Fy,
which will be denoted by Q= F+F, if
(F1) N (Fy) = ¢ and Q is the interior of the
convex hull of F; UTF5 when we consider it as
a bounded set in an affine space A" in RP".
When the dimension of F} isn — 1 and F» is a
point p,  is called a cone over F; with a cone
point p.
Given a properly convex subset F' of dimension
n — 1 and a point p which is not contained in the
support of F', there are two convex cones over F
with a cone point p which are projectively equiv-
alent each other.

Lemma 3. If a properly convex domain S
has an (n — 1) dimensional face F' and an extreme
point z which is not contained in F. Then one of two
convezx cones over F with a cone point z is contained
in Q and the other does not intersect €.

Proof. Let Cy and C5 be two convex cones over
F with a cone point z. We can choose a projective

(iii)
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hyperplane H in RP" such that £ is a bounded
convex set in an affine space E = RP"\ H. Then
the interior of the convex hull of F and z in F must
be one of two convex cones, say C. If we consider
as a vector space with the origin z, we can choose a
smallest affine cone C' with the origin as a cone
point which contains C;. When we see C5 in FE, it
consists of two components, an affine cone —C' and
C '\ C1. We know O is a subset of Q. Suppose that
there is a point x of € inside C5. Then x is contained
in either —C or C'\ C). If z € —C, then the convex
hull of = and F contains z in the interior, which
contradicts the fact that z € 9Q. If z € C'\ O, then
the open line segment with end points = and z
intersects F', which contradicts the fact that F' C
of. O

Since PM(n + 1,R), which is the projectiviza-
tion of the group of all (n+ 1) by (n+ 1) matrices,
is a compactification of PGL(n + 1, R), any infinite
sequence of non-singular projective transformations
contains a convergent subsequence. Note that the
limit projective transformation may be singular.
For a singular projective transformation g we will
denote the projectivization of the kernel and range
of g by Ker(g) and Ran(g). Then g maps RP"\
Ker(g) onto Ran(g).

When g; is a sequence of projective trans-
formations in PGL(n + 1, R) which converges to a
singular projective transformation g, for any com-
pact subset C' C RP" which does not meet Ker(g)
the sequence ¢;(C') converges uniformly to g(C) [1].
We will need later the following well-known basic
facts.

Lemma 4. Let Q be a properly convex do-
main in RP" and {¢;} C Aut(Q). Suppose that the
sequence {g;} converges to a singular projective
transformation g and that, for a point x € ), the
sequence {g;(x)} converges to a point in a face F of
Q. Then

(i) Ker(g)NQ =0 and Ker(g) NQ # 0,

(ii) the interior of Ker(g) NQ in Ker(g) is a face

of Q,

Ran(g) is the support of F,

g(Q)=F.
Proof. See [2] for a proof. O
3. The proof of Theorem 1. Any convex
domain in R" is expressed by the product of RF
and an (n — k)-dimensional properly convex do-
main. So to prove Theorem 1, it suffices to show the
following
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Lemma 5. Let Q be a properly convezr do-
main in RP" and F an (n — 1)-dimensional face of
Q. Suppose that there is a point x in Q such that the
orbit Aut(Q)z accumulates at a point in F. Then
there is a point £ € 0N) such that § is a convex cone
over F" with a cone point &, i.e.,

Q= {4F.

Proof. By the hypothesis, there is a point p in
F and a sequence {g;} in Aut(Q?) such that g;(x)
converges to p and the sequence {g;} converges to a
projective transformation g as i goes to co. Ob-
viously g is singular because g;(x) converges to a
boundary point. By Lemma 4, Ran(g) is the support
of F, g(Q)=F, Ker(g)nQ =10, and Ker(g)N
Q#(. Since Ran(g) is (n— 1)-dimensional,
dim Ker(g) = 0. If z is the point in 02 such that
Ker(g) = {z}, then z must be a zero-dimensional
face of 2. There are two cases.

Case 1: z¢ (F).

In this case, g;(F) converges uniformly to a
subset g(F) of F because Ker(g) N F = (). Since we
can find an open subset U of (2 such that every point
xz of U is an interior point of the line segment
connecting a point of F and z, the interior of g(F) is
not empty in (F) and thus g(F) = F. Each of the
two convex sums of {z} and F' is mapped onto F by
g and the two cones over (F) \ F with a cone point z
(the complement of the closure of the union of two
convex sums of {z} and F) is mapped onto (F) \ F.
So € should be one of the two convex sums of {z}
and F because g(Q2) = F and Q is connected and
convex.

Case 2: z € (F).

In this case, z € OF because {z} is a zero-
dimensional face of Q. If b is a boundary point of 2
such that the line segment bz contains a point t of €,
then g(b) = g(t) and g;(b) converges to g(b). Since
g(t) is a point of F', g;(b) € F for sufficiently large i.
This observation implies that the face containing b
must be (n — 1)-dimensional if b is a boundary point
of € such that bzNQ # (.

Now we consider the set E which consists of
such b’s, i.e.,

{bedQ|bznQ £ 0}

Obviously z is not contained in E. Here we claim
that E is an (n — 1)-dimensional face of 2: For each
b € FE, there is a hyperplane H;, such that Fj, =
ENH, is an (n — 1)-dimensional face of 2 which
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contains b. So F is the disjoint union of all E’s, i.e.,
E = UpcgEy. Suppose there are two points b; and b
in E such that H;, # H;,. Then the open line
segment byby is contained in € by convexity. So for
each ¢ = 1,2, there is a point a; in the boundary of
E,, such that @;zNbiby # () which means a; € E.
This contradiction completes the proof of our
claim.

From Lemma 3, we can choose a convex cone
over E with a cone point z inside 2. So we may
denote it by {z}+FE. Suppose there exists a point
y € QNI{z}+E). Since {z}UE CdQ, we can
choose a point n € F such that y is a point of an
open line segment 27 and this implies that the
boundary point 7 is an element of FE, which is
a contradiction. So we can conclude that QN
0({z}+E)=0 and thus Q= {z}+E. Since EN
Ker(g) =0, g;(E) converges uniformly to a subset
g(E) of F which has a non-empty interior and this
implies that g;(E) = F for sufficiently large i. From
this we see

Q=g:(Q) = g:({z}+E)
={9:(2)}+9i(E) = {g:(2)}+F

for sufficiently large ¢, which completes the proof by
choosing g;(z) as &. O

If we consider all things in affine category, then
we can say more:

Corollary 6. Let Q be a conver domain in
R" and F an (n — 1)-dimensional face of Q. Suppose
that there is a sequence {g;} of affine transforma-
tions which preserve Q) and a point x in the interior

of Q0 such that the sequence {g;(x)} accumulates at a
point of F. Then

O=R"x F.

Proof. Let g be a limit singular projective
transformation of the sequence {g;}. First, we
assume ) is properly convex. By Lemma 5, there
is a point ¢ € 9 such that Q = {¢}+F when Q is
considered as a subset of RP". So it suffices to show
that ¢ lies in the infinite boundary of €2, that is,
EG@QHRP’;’I. As we can see in the proof of
Lemma 5, {£} is either the kernel Ker(g) or the g;-
image of Ker(g) for some 4. Since Ran(g) NR"
contains F, Ker(g) is a subset of RP™ ' by
Lemma 3.5 of [2]. This implies that ¢ € RP"!
because g; preserves R" for all 7.

If 2 contains an affine full line then it is affinely
equivalent to R* x €' for some (n — k)-dimensional



178 K. Jo

properly convex affine domain ' corresponding F
to R¥ x F'. Considering the quotient action of the
group of affine automorphisms of Q on ', we see
that ' = R* x F’ by the argument in the previous
paragraph and so we conclude that

O=R'x O =RfxR"xF =R"xF.
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