A criterion for topological equivalence of two variable complex analytic function germs

By Adam Parusiński
Laboratoire Angevin de Recherche en Mathématiques, UMR 6093 du CNRS, Université d'Angers, 2, bd Lavoisier, 49045 Angers cedex, France

(Communicated by Masaki Kashiwara, M.J.A., Sept. 12, 2008)

Abstract

We show that two analytic function germs $\left(\mathbf{C}^{2}, 0\right) \rightarrow(\mathbf{C}, 0)$ are topologically right equivalent if and only if there is a one-to-one correspondence between the irreducible components of their zero sets that preserves the multiplicites of these components, their Puiseux pairs, and the intersection numbers of any pair of distinct components.

Key words: Topological equivalence of functions; Puiseux pairs; Thom w_{f} condition; Whitney conditions.

By Zariski [12] and Burau [2], the topological type of an embedded plane curve singularity $(X, 0) \subset\left(\mathbf{C}^{2}, 0\right)$ is determined by the Puiseux pairs of each irreducible component (branch) of this curve and the intersection numbers of any pair of distinct branches. In this note we show the following

Theorem 0.1. Let $f, g:\left(\mathbf{C}^{2}, 0\right) \rightarrow(\mathbf{C}, 0)$ be (not necessarily reduced) analytic function germs. Then f and g are topologically right equivalent if and only if there is a one-to-one correspondence between the irreducible components of their zero sets that preserves the multiplicites of these components, their Puiseux pairs, and the intersection numbers of any pair of distinct components.

Sketch of the proof. The "only if" follows from the above cited result of Zariski and Burau.

To show "if" we proceed as follows: We connect the embedded zero sets $\left(f^{-1}(0), 0\right) \subset\left(\mathbf{C}^{2}, 0\right)$ and $\left(g^{-1}(0), 0\right) \subset\left(\mathbf{C}^{2}, 0\right)$ by an equisingular (topologically trivial) deformation of plane curve germs

$$
\left(F^{-1}(0), 0 \times P\right) \subset\left(\mathbf{C}^{2}, 0\right) \times P
$$

where P is a parameter space and $F:\left(\mathbf{C}^{2}, 0\right) \times P \rightarrow$ $(\mathbf{C}, 0)$ is analytic. Then, by [14] section 8 , the pair $\left(F^{-1}(0) \backslash 0 \times P, 0 \times P\right)$ satisfies Whitney conditions. Consequently, by $[1,8]$, the strata $\left(\mathbf{C}^{2}, 0\right) \times$ $P \backslash F^{-1}(0), F^{-1}(0) \backslash 0 \times P$, and $0 \times P$, stratify F as a function with the strong Thom condition w_{f}. This shows, by Thom-Mather theorem, that F is

[^0]topologically trivial along P.
Remark 0.2. The following result was proven in [3] and [9] by different arguments. Let f, $g:\left(\mathbf{C}^{n}, 0\right) \rightarrow(\mathbf{C}, 0), \quad n \geq 2$, be isolated analytic singularities such that the germs $\left(\mathbf{C}^{n}, f^{-1}(0), 0\right)$ and $\left(\mathbf{C}^{n}, g^{-1}(0), 0\right)$ are homeomorphic. Then either f or \bar{f} is topologically right equivalent to g.

Remark 0.3. In the isolated singularity case we may proceed as follows: By [15] and [7], the embedded topological type of a plane curve singularity at a singular point is determined by the embedded topological type of each analytically irreductible component and the intersection of any pair of distinct branches. Using this result it was shown in [6] that the multiplicity is a topological invariant of plane curve singularity and that a μ constant deformation of two variable isolated singularity germ is topologically trivial.

Note also that by Zariski [13] an equisingular family of plane curves is μ constant and multipliciy constant, i.e. μ^{*} constant in the sense of Teissier [10]. It is known, c.f. $[1,8]$, and the bibliography quoted therein, that a μ^{*} constant family of isolated singularities satisfies the strong Thom condition w_{f}.

Remark 0.4. In [5] Kuo and Lu introduced a tree model $T(f)$ of an isolated singularity $f:\left(\mathbf{C}^{2}, 0\right) \rightarrow(\mathbf{C}, 0)$. This model allows one to visualise the Puiseux pairs of irreducible components of $f^{-1}(0)$ and the contact orders between them. Kuo and Lu's model can be easily addapted to the nonisolated case by adding the multiplicities of components. Then theorem 0.1 says that f and g are
topologically right equivalent if and only if their tree models coincide.

We give now details. First we connect f by an equisingular deformation to a normal family that depends only on the embedded topological type of $\left(f^{-1}(0), 0\right) \subset\left(\mathbf{C}^{2}, 0\right)$ and the multiplicities of its branches. A similar construction gives an equisingular deformation connecting f and g. For these deformations we give elementary proofs of Whitney and strong Thom conditions and explicit formulae for vector fields trivializing them.

0.1. Deformation of f to a normal family.

 Fix $f:\left(\mathbf{C}^{2}, 0\right) \rightarrow(\mathbf{C}, 0)$. Choose a system of coordinates so that $y=0$ is transverse to the tangent cone to $f=0$ at the origin. Write$$
\begin{align*}
f(x, y) & =\prod_{k=1}^{N}\left(f_{k}(x, y)\right)^{d_{k}} \tag{0.1}\\
& =u(x, y) \prod_{k=1}^{N} \prod_{j=1}^{m_{k}}\left(x-\lambda_{k, j}(y)\right)^{d_{k}}
\end{align*}
$$

where f_{1}, \ldots, f_{N} are irreducible germs, $u(x, y)$ is a unit, $u(0,0) \neq 0$, and $x=\lambda_{k, i}(y)$ are NewtonPuiseux roots of f_{k}. Then

$$
\lambda_{k, i}(y)=\sum a_{\alpha}(k, i) y^{\alpha}
$$

are fractional power series: $\alpha \in \frac{1}{m_{k}} \mathbf{N}$. The coefficients $a_{\alpha}(k, i)$ are well-defined if we restrict λ to a real half-line through the origin. In what follows we choose $y \in \mathbf{R}, y \geq 0$. This allows us to define the contact order between two such roots as

$$
O\left(\lambda_{k_{1}, i}, \lambda_{k_{2}, j}\right):=\operatorname{ord}_{0}\left(\lambda_{k_{1}, i}-\lambda_{k_{2}, j}\right)(y)
$$

$y \in \mathbf{R}, y \geq 0$. All roots of f_{k} can be obtained from $\lambda_{k, 1}$ by

$$
\lambda_{k, j}(y)=\sum a_{\alpha}(k, 1) \theta^{(j-1) \alpha m_{k}} y^{\alpha}
$$

where $\theta=e^{2 \pi i / m_{k}}$.
Denote by $\Lambda_{\text {all, }, k}=\left\{\alpha_{j}\right\}$ the set of all contact orders between $\lambda_{k, 1}(y)$ and the other NewtonPuiseux roots of f. The Puiseux exponents of $\lambda_{k, j}(y)$ form a subset $\Lambda_{P, k} \subset \Lambda_{\text {all,k}}$. Clearly $a_{\alpha}(k, j) \neq$ 0 if $\alpha \in \Lambda_{P, k}$. The other exponents of $\Lambda_{\text {all, } k}$ can be divided into two groups. If the denominator of α does not divide the greatest common multiple of the denominators of $\alpha^{\prime} \in \Lambda_{P, k}, \alpha^{\prime}<\alpha$, then $a_{\alpha}(k, j)=0$, since otherwise $\alpha \in \Lambda_{P, k}$. For the remaining exponents there is no condition on the coefficient $a_{\alpha}(k, j)$, so we denote their set by $\Lambda_{\text {free }, k}$. Finally we set

$$
\Lambda_{k}:=\Lambda_{P, k} \cup \Lambda_{\text {free }, k}
$$

For fixed k we order the roots $\lambda_{k, j}, j=1, \ldots$, m_{k}, by the lexicographic order on the sequences $\left(\arg \left(a_{\alpha}(k, j)\right), \alpha \in \Lambda_{P, k}\right)$. Here $\arg \in[0,2 \pi)$. We obtain exactly the same ordering if we use the lexicographic order on $\left(\arg \left(a_{\alpha}(k, j)\right), \alpha \in \Lambda_{k}\right.$, $\left.a_{\alpha}(k, j) \neq 0\right)$, since for two conjugate roots $O\left(\lambda_{k, i}\right.$, $\left.\lambda_{k, j}\right)$ is a Puiseux exponent. At the beginning the choice of $\lambda_{k, 1}$ was arbitrary. From now on we assume that $\lambda_{k, 1}$ is the smallest among all $\lambda_{k, i}$ with respect to the above lexicographic order.

Lemma 0.5. Let $k_{1} \neq k_{2}$. Then

$$
\max _{i, j} O\left(\lambda_{k_{1}, i}, \lambda_{k_{2}, j}\right)=O\left(\lambda_{k_{1}, 1}, \lambda_{k_{2}, 1}\right) .
$$

Proof. Suppose, contrary to our claim, that

$$
O\left(\lambda_{k_{1}, 1}, \lambda_{k_{2}, 1}\right)<O\left(\lambda_{k_{1}, i}, \lambda_{k_{2}, j}\right)
$$

Then there exist j^{\prime} and i^{\prime} such that

$$
O\left(\lambda_{k_{1}, i}, \lambda_{k_{2}, j}\right)=O\left(\lambda_{k_{1}, 1}, \lambda_{k_{2}, j^{\prime}}\right)=O\left(\lambda_{k_{1}, i^{\prime}}, \lambda_{k_{2}, 1}\right)
$$

This shows that for $\alpha=O\left(\lambda_{k_{1}, 1}, \lambda_{k_{2}, 1}\right), a_{\alpha}\left(k_{1}, 1\right)=$ $a_{\alpha}\left(k_{2}, j^{\prime}\right) \neq 0$ and hence

$$
\arg \left(a_{\alpha}\left(k_{1}, 1\right)\right)=\arg \left(a_{\alpha}\left(k_{2}, j^{\prime}\right)\right)>\arg \left(a_{\alpha}\left(k_{2}, 1\right)\right)
$$

Similarly

$$
\arg \left(a_{\alpha}\left(k_{2}, 1\right)\right)=\arg \left(a_{\alpha}\left(k_{1}, i^{\prime}\right)\right)>\arg \left(a_{\alpha}\left(k_{1}, 1\right)\right)
$$

that is impossible.
Definition 0.6. We define the deformation space $D(f) \subset \prod_{k} \mathbf{C}^{\left|\Lambda_{k}\right|}$ as follows: Write an element of $\mathbf{C}^{\left|\Lambda_{k}\right|}$ as $a(k)=\left(a_{\alpha}(k) ; \alpha \in \Lambda_{k}\right) \in \mathbf{C}^{\left|\Lambda_{k}\right|}$. Then, $\underline{a}=$ $(a(k) ; k=1, \ldots, N) \in D(f)$ if :
(1) if $\alpha \in \Lambda_{P, k}$ the $a_{\alpha}(k) \neq 0$,
(2) if $\alpha<O\left(\lambda_{k_{1}, 1}, \lambda_{k_{2}, 1}\right)$ and $\alpha \in \Lambda_{k_{1}} \cap \Lambda_{k_{2}}$ then $a_{\alpha}\left(k_{1}\right)=a_{\alpha}\left(k_{2}\right)$.
(3) if $\alpha=O\left(\lambda_{k_{1}, 1}, \lambda_{k_{2}, 1}\right)$ and $\alpha \in \Lambda_{k_{1}} \cap \Lambda_{k_{2}}$ then $a_{\alpha}\left(k_{1}\right) \neq a_{\alpha}\left(k_{2}\right)$.
We write each Newton-Puiseux root of f as

$$
\begin{equation*}
\lambda_{k, j}(y)=\sum_{\alpha \geq 1} a_{\alpha}(k, j) y^{\alpha}=\sum_{\alpha \in \Lambda_{k}} a_{\alpha}(k, j) y^{\alpha}+R_{k, j}(y), \tag{0.2}
\end{equation*}
$$

and then for $(s, \underline{a}) \in \mathbf{C} \times D(f)$

$$
\lambda_{k, j}(s, \underline{a}, y)=\sum_{\alpha \in \Lambda_{k}} a_{\alpha}(k) \theta_{k}^{(j-1) \alpha m_{k}} y^{\alpha}+s R_{k, j}(y)
$$

where $\theta_{k}=e^{2 \pi i / m_{k}}$. Consider the following deformation of f
(0.3)

$$
\begin{aligned}
& F\left(\tau, s, u_{0}, \underline{a}, x, y\right)= \\
& \left(\tau(u(x, y)-u(0,0))+u_{0}\right) \prod_{k=1}^{N} \prod_{i=1}^{m_{k}}\left(x-\lambda_{k, i}(s, \underline{a}, y)\right)^{d_{k}}
\end{aligned}
$$

where $\left(\tau, s, u_{0}, \underline{a}\right) \in P:=\mathbf{C} \times \mathbf{C} \times \mathbf{C}^{*} \times D(f) . \quad(P$ stands for the parameter space). Then F is analytic in all variables and $f(x, y)=F(1,1$, $u(0,0), \underline{a}(f), x, y)$, where $\underline{a}(f)$ is given by the coefficients $a_{\alpha}(k, 1)$ of the Newton-Puiseux roots of f.

We call $F(0,0,1, \underline{a}, x, y): D(f) \times\left(\mathbf{C}^{2}, 0\right) \rightarrow$ $(\mathbf{C}, 0)$ the normal family of germs associated to f. It depends only on the topological type of $\left(f^{-1}(0), 0\right) \subset\left(\mathbf{C}^{2}, 0\right)$ and the multiplicities d_{k} of irreducible components of f.

We may as well embedd f and g in one equisingular family by taking
(0.4) $F\left(\tau, s, u_{0}, \underline{a}, x, y\right)=$

$$
\left(\tau_{1} u_{1}+\tau_{2} u_{2}+u_{0}\right) \prod_{k=1}^{N} \prod_{i=1}^{m_{k}}\left(x-\lambda_{k, i}(s, \underline{a}, y)\right)^{d_{k}}
$$

where $u_{1}(x, y)=u_{f}(x, y)-u_{f}(0,0)$ and $u_{2}(x, y)=$ $u_{g}(x, y)-u_{g}(0,0)$ and u_{f}, resp. u_{g}, denote the unit of (0.1) for f and g respectively, $s=\left(s_{f}, s_{g}\right) \in \mathbf{C}^{2}$ and

$$
\begin{aligned}
& \lambda_{k, j}(s, \underline{a}, y) \\
& \quad=\sum_{\alpha \in \Lambda_{k}} a_{\alpha}(k) \theta_{k}^{(j-1) \alpha m_{k}} y^{\alpha}+s_{f} R_{f, k, j}+s_{g} R_{g, k, j}
\end{aligned}
$$

0.2. Whitney Conditions and Thom Condition. Let $X=F^{-1}(0) \subset U \subset P \times \mathbf{C}^{2}$, where U is a small open neighbourhood of $P \times\{0,0\}$ in $P \times \mathbf{C}^{2}$. We show by elementary computations that $(U \backslash X, X \backslash P, P)$ as a stratification, satisfies Whitney conditions and the strong Thom condtion w_{f}.

Let G be a reduced equation of X :

$$
G(\tau, s, \underline{a}, x, y)=u(\tau, x, y) \prod_{k=1}^{N} \prod_{i=1}^{m_{k}}\left(x-\lambda_{k, i}(s, \underline{a}, y)\right)
$$

The pair $(X \backslash P, P)$ satisfies Verdier condition w, [11], equivalent to Whitney conditions in the complex analytic case, if for any $\left(x_{0}, y_{0}\right) \in P$ there is a constant C such that on X near $\left(x_{0}, y_{0}\right)$ the following inequality holds

$$
\begin{equation*}
\left|\frac{\partial G}{\partial v}\right| \leq C\|(x, y)\|\left\|\left(\frac{\partial G}{\partial x}, \frac{\partial G}{\partial y}\right)\right\| \tag{0.5}
\end{equation*}
$$

where v denotes any of the coordinates on the parameter space P. A direct computation on $x=$ $\lambda_{k_{0}, i_{0}}(s, \underline{a}, y)$ gives

$$
\begin{aligned}
\frac{\partial G}{\partial v} & =\left(-\frac{\partial \lambda_{k_{0}, i_{0}}}{\partial v}\right) \prod_{(k, i) \neq\left(k_{0}, i_{0}\right)}\left(x-\lambda_{k, i}(s, \underline{a}, y)\right) \\
\frac{\partial G}{\partial x} & =\prod_{(k, i) \neq\left(k_{0}, i_{0}\right)}\left(x-\lambda_{k, i}(s, \underline{a}, y)\right)
\end{aligned}
$$

and (0.5) follows from

$$
\begin{equation*}
\left|\frac{\partial \lambda_{k_{0}, i_{0}}}{\partial v}\right| \leq C|y| \tag{0.6}
\end{equation*}
$$

that is a consequence of the fact that all exponents in $\bigcup_{k} \Lambda_{k}$ are ≥ 1.

Similarly, $(U \backslash X, X \backslash P, P)$ as a stratification of F satisfies the strong Thom condition w_{f} if for any $\left(x_{0}, y_{0}\right) \in P$ there is a constant C such that in a neighborhood of $\left(x_{0}, y_{0}\right)$ the following inequality holds

$$
\begin{equation*}
\left|\frac{\partial F}{\partial v}\right| \leq C\|(x, y)\|\left\|\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right)\right\| \tag{0.7}
\end{equation*}
$$

in the complement of the zero set of F.
Replace y by t^{n} so that the roots $\lambda_{k, i}\left(s, \underline{a}, t^{n}\right)$ become analytic. We denote them using a single index as $\tilde{\lambda}_{m}(s, \underline{a}, t)$. Given a power series $\xi(v, t)=$ $\sum_{\alpha=1}^{\infty} a_{\alpha}(v) t^{\alpha}$, where $v \in P$, we consider a hornneighborhood of ξ

$$
H_{d}(\xi, w)=\left\{(x, v, t) ;|x-\xi(v, t)| \leq w|t|^{d}\right\}
$$

where $d \in \mathbf{N} \cup\{0\}$ and $w>0$, compare [5] §6. In $H_{d}(\xi, w)$ we use the coordinates \tilde{x}, t, v, where

$$
x=\tilde{x} t^{d}+\xi(v, t)
$$

In what follows $\xi(v, t)$ will be one of the roots $\tilde{\lambda}_{m}$.
Denote $e_{m, j}=O\left(\tilde{\lambda}_{m}, \tilde{\lambda}_{j}\right)$ for $j \neq m$. Let $C>0$ stand for a large constant and $\varepsilon>0$ for a small constant.

Lemma 0.7. For any $d \in \mathbf{N} \cup\{0\}$, (0.7) holds on $\hat{H}_{d}\left(\tilde{\lambda}_{m}, \varepsilon, C\right):=H_{d}\left(\tilde{\lambda}_{m}, \varepsilon\right) \backslash \bigcup_{l} H_{e_{m, j}}\left(\tilde{\lambda}_{m}, C\right)$, where the union is taken over all $j \neq m$ such that $e_{m, j}>d$.

Proof. Denote $I=\left\{j ; e_{m, j}>d\right\}, m \in I$. Then on $\hat{H}_{d}\left(\tilde{\lambda}_{m}, \varepsilon, C\right)$

$$
F(v, \tilde{x}, t)=u(v, \tilde{x}, t) t^{M} \prod_{j \in I}\left(\tilde{x}-\beta_{j}(v, t)\right)^{d_{j}}
$$

where $M=\sum_{j \neq I} d_{j} e_{m, j}+d \sum_{j \in I} d_{j}, u$ is a unit, and $\beta_{j}=t^{-d}\left(\tilde{\lambda}_{j}-\tilde{\lambda}_{m}\right), \beta_{m} \equiv 0$. Then

$$
\begin{equation*}
\frac{\partial F}{\partial v}=\left(\sum_{j \in I} d_{k} \frac{-\partial \beta_{j} / \partial v}{\tilde{x}-\beta_{j}(t, v)}+\frac{\partial u / \partial v}{u}\right) F \tag{0.8}
\end{equation*}
$$

$$
\begin{align*}
\frac{\partial F}{\partial x} & =t^{-d} \frac{\partial F}{\partial \tilde{x}} \tag{0.9}\\
& =\left(\sum_{j \in I} d_{k} \frac{1}{\tilde{x}-\beta_{j}(t, v)}+\frac{\partial u / \partial \tilde{x}}{u}\right) t^{-d} F .
\end{align*}
$$

If $(\tilde{x}, t, v) \in \hat{H}_{d}\left(\tilde{\lambda}_{m}, \varepsilon, C\right)$ and $j \in I, j \neq m$, then $\left|\beta_{j}\right| \leq \delta|\tilde{x}|$, for δ small provided C is chosen large. Hence $\left|\tilde{x}-\beta_{j}\right| \sim|\tilde{x}|$. Moreover, for ε small, the first summand in the parenthesis of (0.9) is dominant. Consequently for any $j \in I$ and $(\tilde{x}, t, v) \in$ $\hat{H}_{d}\left(\tilde{\lambda}_{m}, \varepsilon, C\right)$

$$
\left|\frac{\partial F}{\partial \tilde{x}}\right| \geq \frac{c}{\left|\tilde{x}-\beta_{j}\right|}|F|
$$

where c stands for a small constant. Then (0.7) follows from (0.8) and (0.6) since $\left|\frac{\partial \beta_{j}}{\partial v}\right| \leq C\left|t^{-d} y\right|$.

The case $I=\{m\}$ is left to the reader.
Lemma 0.8. Fix $d=e_{m, j}$. Then (0.7) holds on $\quad \tilde{H}_{d}\left(\tilde{\lambda}_{m}, C, \varepsilon\right)=H_{d}\left(\tilde{\lambda}_{m}, C\right) \backslash \bigcup_{l} H_{d}\left(\tilde{\lambda}_{l}, \varepsilon\right)$, where the union is taken over all l such that $O\left(\tilde{\lambda}_{m}, \tilde{\lambda}_{l}\right) \geq d$ (including $l=m$).

$$
\text { Proof. On } \tilde{H}_{d}\left(\tilde{\lambda}_{m}, C, \varepsilon\right), F(v, \tilde{x}, t)=u(v, \tilde{x}, t) t^{M}
$$ and hence

$$
\left|t \frac{\partial F}{\partial t}\right|=\left|\left(M+\frac{t \partial u / \partial t}{u}\right) F\right| \geq(M-\delta) \cdot|F|
$$

where $\delta \rightarrow 0$ as $t \rightarrow 0$. Then by a direct computation of $\partial F / \partial t$

$$
\left|\frac{\partial F}{\partial v}\right| \leq C_{1}|F| \leq C_{2}\left|t \frac{\partial F}{\partial t}\right| \leq C_{3}|y|\left\|\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right)\right\|
$$

To complete the proof of (0.7) we note that a finite family of horns $\hat{H}_{d}\left(\tilde{\lambda}_{m}, \varepsilon, C\right), \tilde{H}_{d}\left(\tilde{\lambda}_{m}, C, \varepsilon\right)$, with $d=e_{m, j}$ or $d=0$, covers a neighborhood of the origin in \mathbf{C}^{2} (times a neighborhood in the parameter space).
0.3. Trivialization. By Thom-Mather theory the family F is locally topologically trivial along P. Moreover, it can be show easily that it can be trivialized by Kuo's vector field, cf. [4]. Suppose that the parameter P space is one-dimensional with the parameter v. Define the vector field V on each stratum separately by formulae :

$$
\begin{array}{lr}
\frac{\partial}{\partial v} & \text { on } P \\
\frac{\partial}{\partial v}-\frac{\partial G / \partial v}{\left\|\operatorname{grad}_{x, y} G\right\|^{2}}\left(\frac{\overline{\partial G}}{\partial x} \frac{\partial}{\partial x}+\frac{\overline{\partial G}}{\partial y} \frac{\partial}{\partial y}\right) & \text { on } X \backslash P
\end{array}
$$

$$
\frac{\partial}{\partial v}-\frac{\partial F / \partial v}{\left\|\operatorname{grad}_{x, y} F\right\|^{2}}\left(\frac{\overline{\partial F}}{\partial x} \frac{\partial}{\partial x}+\frac{\overline{\partial F}}{\partial y} \frac{\partial}{\partial y}\right) \quad \text { on } U \backslash X
$$

The flow of V is continuous and preserves the levels of F by the arguments of [4].

References

[1] J. Briançon, P. Maisonobe and M. Merle, Localisation de systèmes différentiels, stratifications de Whitney et condition de Thom, Invent. Math. 117 (1994), no. 3, 531-550.
[2] W. Burau, Kennzeichung der Schlauchknoten, Abh. Math. Sem. Hamburg, 9 (1932), 125-133.
[3] H. C. King, Topological type of isolated critical points, Ann. Math. (2) 107 (1978), no. 2, 385397.
[4] T. C. Kuo, On C^{0}-sufficiency of jets of potential functions, Topology 8 (1969), 167-171.
[5] T. C. Kuo and Y. C. Lu, On analytic function germs of two complex variables, Topology 16 (1977), no. 4, 299-310.
[6] Lê Dũng Tràng and C. P. Ramanujam, The invariance of Milnor's number implies the invariance of the topological type, Amer. J. Math. 98 (1976), no. 1, 67-78.
[7] M. Lejeune-Jalabert, Sur l'équivalence des courbes algébrodes planes. Coefficients de Newton, Centre de Math. de l"Ecole Polytechnique, 1969.
[8] A. Parusiński, Limits of tangent spaces to fibres and the w_{f} condition, Duke Math. J. 72 (1993), no. 1, 99-108.
[9] O. Saeki, Topological types of complex isolated hypersurface singularities, Kodai Math. J. 12 (1989), no. 1, 23-29.
[10] B. Teissier, Cycles évanescents, sections planes et conditions de Whitney, in Singularités à Cargèse (Rencontre Singularités Géom. Anal., Inst. Études Sci., Cargèse, 1972), 285-362. Astérisque, Nos. 7 et 8, Soc. Math. France, Paris, 1973.
[11] J. L. Verdier, Stratifications de Whitney et thorme de Bertini-Sard, Invent. Math. 36 (1976), 295-312.
[12] O. Zariski, On the Topology of Algebroid Singularities, Amer. J. Math. 54 (1932), no. 3, 453465.
[13] O. Zariski, Studies in equisingularity. I. Equivalent singularities of plane algebroid curves, Amer. J. Math. 87 (1965), 507-536.
[14] O. Zariski, Studies in equisingularity.II. Equisingularity in codimension 1 (and characteristic zero), Amer. J. Math. 87 (1965), 952-1006.
[15] O. Zariski, General theory of saturation and of saturated local rings. II. Saturated local rings of dimension 1, Amer. J. Math. 93 (1971), 872-964.

[^0]: 2000 Mathematics Subject Classification. Primary 32S15; Secondary 14B05.

