Generic Torelli theorem for quintic-mirror family

By Sampei Usui
Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
(Communicated by Masaki Kashiwara, M.J.A., Sept. 12, 2008)

Abstract

This article is a geometric application of polarized logarithmic Hodge theory of Kazuya Kato and Sampei Usui. We prove generic Torelli theorem for the well-known quinticmirror family in two ways by using different logarithmic points at the boundary of the fine moduli of polarized logarithmic Hodge structures.

Key words: Quintic-mirror family; logarithmic Hodge theory; moduli; Torelli theorem.

1. Review of quntic-mirror family. We review the construction of the mirror family of the pencil joining the quintic hypersurface of Fermat type and the union of the coordinate hyperplanes in a 4-dimensional complex projective space after [M1].

Let $\psi \in \mathbf{P}^{1}$, and let

$$
\begin{equation*}
Q_{\psi}=\left\{\sum_{j=1}^{5} x_{j}^{5}-5 \psi \prod_{j=1}^{5} x_{j}=0\right\} \subset \mathbf{P}^{4} \tag{1}
\end{equation*}
$$

Let $\mu_{5}=\left\{\alpha \in \mathbf{C} \mid \alpha^{5}=1\right\}$.
The singular members of the pencil (1) are listed as follows:
(2) Over each point $\psi \in \mu_{5} \subset \mathbf{C} \subset \mathbf{P}^{1}, Q_{\psi}$ contains $5^{3}=125$ ordinary double points $\left(\alpha_{1}, \ldots, \alpha_{5}\right) \in$ $\left(\mu_{5}\right)^{5} / \mu_{5} \subset \mathbf{P}^{4}$ with $\psi \alpha_{1} \cdots \alpha_{5}=1$.
(3) Over $\infty \in \mathbf{P}^{1}, Q_{\infty}=\bigcup_{j}\left\{x_{j}=0\right\}$. The union of coordinate hyperplanes.

Let $G=\left\{\alpha \in\left(\mu_{5}\right)^{5} \mid \alpha_{1} \cdots \alpha_{5}=1\right\} / \mu_{5}$. By multiplication, this becomes a group which acts on \mathbf{P}^{4} coordinate-wise. This action of G preserves Q_{ψ}. Taking the quotient Q_{ψ} / G, the following canonical singularities appear:
(4) For each pair of distinct indices j, k, a compound du Val singularity $c A_{4}$ appears as the quotient of the curve $Q_{\psi} \cap\left\{x_{j}=x_{k}=0\right\} \backslash$ $\left(\bigcup_{m \neq j, k}\left\{x_{m}=0\right\}\right)$.
(5) For each triple of distinct indices j, k, l, the point which is the quotient of the five points $Q_{\psi} \cap$ $\left\{x_{j}=x_{k}=x_{l}=0\right\}$ belongs to the closure of three curves in (4).

Moreover, we see that holomorphic 3 -forms on Q_{ψ} are G-invariant for every $\psi \in \mathbf{C}$ by adjunc-

[^0]tion formula.
For $\psi \in \mathbf{C}$, it is known that there is a simultaneous minimal desingularization W_{ψ} of these quotient singularities, and that holomorphic 3-forms extend to nowhere vanishing forms on W_{ψ}.

We thus have a pencil $\left(W_{\psi}\right)_{\psi \in \mathbf{P}^{1}}$ whose singular fibers are listed as follows:
(6) Over each point $\psi \in \mu_{5} \subset \mathbf{C} \subset \mathbf{P}^{1}$, W_{ψ} has one ordinary double point.
(7) Over $\psi=\infty \in \mathbf{P}^{1}, W_{\psi}$ is a normal crossing divisor in the total space, whose components are all rational.

The other members W_{ψ} are smooth with Hodge numbers $h^{p, q}=1$ for $p+q=3$.

By the action of $\alpha \in \mu_{5},\left(x_{1}, \ldots, x_{5}\right) \mapsto\left(\alpha^{-1} x_{1}\right.$, x_{2}, \ldots, x_{5}), we have $W_{\alpha \psi} \simeq W_{\psi}$. Let $\lambda=\psi^{5}$, and let

This pencil $\left(W_{\lambda}\right)_{\lambda \in \mathbf{P}^{1}}$ is the mirror of the original pencil (1). (For more details of the above construction, see e.g. [M1].)
2. Review of fine moduli space $\boldsymbol{\Gamma} \backslash \boldsymbol{D}_{\Xi}$. We review some facts in $[\mathrm{KU}]$ that are necessary in the present article.

Let $w=3$, and $h^{p, q}=1(p+q=3, p, q \geq 0)$. Let $H_{0}=\bigoplus_{j=1}^{4} \mathbf{Z} e_{j}$, and $\left\langle e_{3}, e_{1}\right\rangle_{0}=\left\langle e_{4}, e_{2}\right\rangle_{0}=1$. Let D be the corresponding classifying space of polarized Hodge structures, and \check{D} the compact dual.

Let $S=$ (square free positive integers), and let $m \in S$. Define $N_{\alpha}, N_{\beta}, N_{m} \in \operatorname{End}\left(H_{0},\langle,\rangle_{0}\right)$ as follows:

$$
N_{\alpha}\left(e_{3}\right)=e_{1}, \quad N_{\alpha}\left(e_{j}\right)=0 \quad(j \neq 3)
$$

$$
\begin{gathered}
N_{\beta}\left(e_{4}\right)=e_{3}, \quad N_{\beta}\left(e_{3}\right)=-e_{1}, \\
N_{\beta}\left(e_{1}\right)=-e_{2}, \quad N_{\beta}\left(e_{2}\right)=0 \\
N_{m}\left(e_{1}\right)=e_{3}, \quad N_{m}\left(e_{4}\right)=-m e_{2}, \\
N_{m}\left(e_{2}\right)=N_{m}\left(e_{3}\right)=0
\end{gathered}
$$

Then the respective Hodge diamonds are

$0:$	\bullet	\bullet	\bullet	\bullet
	$(3,0)$	$(2,1)$	$(1,2)$	$(0,3)$

$N_{\alpha}:$
$(3,0)$
$(0,3)$
$(1,1)$
$N_{\beta}:$

$(0,0)$

Let $\quad \sigma_{\alpha}=\mathbf{R}_{\geq 0} N_{\alpha}, \quad \sigma_{\beta}=\mathbf{R}_{\geq 0} N_{\beta}, \quad$ and $\quad \sigma_{m}=$ $\mathbf{R}_{\geq 0} N_{m}(m \in S)$.

Proposition [KU, §12.3]. Let $\Xi=$ (rational nilpotent cones in $\mathfrak{g}_{\mathrm{R}}$ of rank ≤ 1). Then $\Xi=$ $\left\{\operatorname{Ad}(g) \sigma \mid \sigma=\{0\}, \sigma_{\alpha}, \sigma_{\beta}, \sigma_{m}(m \in S), g \in G_{\mathbf{Q}}\right\}$. This is a complete fan, i.e., if there exists $Z \subset \check{D}$ such that (σ, Z) is a nilpotent orbit, then $\sigma \in \Xi$.

Here a pair (σ, Z) is a nilpotent orbit if $Z=$ $\exp (\mathbf{C} N) F, N F^{p} \subset F^{p-1}(\forall p)$ and $\exp (i y N) F \in D$ $(y \gg 0)$ hold for $\mathbf{R}_{\geq 0} N=\sigma$ and $F \in Z$.

In $[\mathrm{KU}]$, the fine moduli space $\Gamma \backslash D_{\Xi}$ of polarized logarithmic Hodge structures is constructed. We briefly explain this according to the present case. Let Γ be a neat subgroup of $G_{\mathbf{Z}}:=$ $\operatorname{Aut}\left(H_{0},\langle,\rangle_{0}\right)$ of finite index. As a set, $D_{\Xi}=$ $\{(\sigma, Z)$: nilpotent orbit $\mid \sigma \in \Xi, Z \subset \check{D}\}$. Let $\sigma \in \Xi$,
and let $\Gamma(\sigma)=\Gamma \cap \exp (\sigma)$. If $\sigma=\{0\}$, then $D \simeq$ $\{(\{0\}, F) \mid F \in D\} \subset D_{\Xi}$. If $\sigma \neq\{0\}$, then $\Gamma(\sigma) \simeq$ \mathbf{N}. Let γ be its generator and let $N=\log \gamma$. Define

$$
\begin{aligned}
E_{\sigma}= & \{(q, F) \in \mathbf{C} \times \check{D} \mid \\
& \quad \exp \left((2 \pi i)^{-1} \log (q) N\right) F \in D \text { if } q \neq 0, \text { and } \\
& \exp (\mathbf{C} N) F \text { is a } \sigma \text {-nilpotent orbit if } q=0
\end{aligned}
$$

and the map

$$
\text { (1) } \begin{array}{ll}
E_{\sigma} \rightarrow \Gamma(\sigma)^{\mathrm{gP}} \backslash D_{\sigma}, \quad(q, F) \mapsto \\
\begin{cases}\exp \left((2 \pi i)^{-1} \log (q) N\right) F \bmod \Gamma(\sigma)^{\mathrm{gp}} & \text { if } q \neq 0, \\
(\sigma, \exp (\mathbf{C} N) F) \bmod \Gamma(\sigma)^{\mathrm{gp}} & \text { if } q=0 .\end{cases}
\end{array}
$$

Here $\Gamma(\sigma)^{g \mathrm{gP}}$ is the subgroup of Γ generated by $\Gamma(\sigma)$. $\mathbf{C} \times \check{D}$ is obviously an analytic manifold. We endow this with the logarithmic structure M associated to the divisor $\{0\} \times \check{D}$. The strong topology of E_{σ} in $\mathbf{C} \times \check{D}$ is defined as follows: A subset U of E_{σ} is open if, for any analytic space Y and any analytic morphsm $f: Y \rightarrow \mathbf{C} \times \check{D}$ such that $f(Y) \subset E_{\sigma}$, $f^{-1}(U)$ is open in Y. By (1), the quotient topology, the sheaf \mathcal{O} of local rings over \mathbf{C}, and the logarithmic structure M are introduced on $\Gamma(\sigma)^{\mathrm{gp}} \backslash D_{\sigma}$. Introduce the corresponding structures \mathcal{O}, M on $\Gamma \backslash D_{\Xi}$ so that $\Gamma(\sigma)^{\mathrm{gp}} \backslash D_{\sigma} \rightarrow \Gamma \backslash D_{\Xi}(\sigma \in \Xi)$ are local isomorphisms and form an open covering. Then, the resulting $\Gamma \backslash D_{\Xi}$ is a "logarithmic manifold", which is nearly a logarithmic analytic space but has "slits" at the boundaries. In fact, in the present case, we have in $[\mathrm{KU}, \S 12.3]$ that $\operatorname{dim}_{\mathbf{C}} D=4$, but $\operatorname{dim}_{\mathbf{C}} \Gamma\left(\sigma_{\alpha}\right)^{\text {gP }} \backslash\left(D_{\sigma_{\alpha}}-D\right)=2$, $\operatorname{dim}_{\mathbf{C}} \Gamma\left(\sigma_{\beta}\right)^{\mathrm{gp}} \backslash\left(D_{\sigma_{\beta}}-D\right)=1 \quad$ and $\quad \operatorname{dim}_{\mathbf{C}} \Gamma\left(\sigma_{m}\right)^{\mathrm{gp}} \backslash$ $\left(D_{\sigma_{m}}-D\right)=1$.
3. Period map. Let Δ be a unit disc, $\Delta^{*}=\Delta-\{0\}$, and $\mathfrak{h} \rightarrow \Delta^{*}, z \mapsto q=e^{2 \pi i z}$, the universal covering. Let $\varphi: \Delta^{*} \rightarrow\langle\gamma\rangle \backslash D$ be a period map, where $\langle\gamma\rangle$ is the monodromy group generated by a unipotent element γ, and $\tilde{\varphi}: \mathfrak{h} \rightarrow D$ a lifting. Let $N=\log \gamma$. The map $\exp (-z N) \tilde{\varphi}(z)$ from \mathfrak{h} to D drops down to the map $\psi: \Delta^{*} \rightarrow D$.

Then the nilpotent orbit theorem of Schmid asserts that there exists the limit $\psi(0)$, denoted by F, and that $\tilde{\varphi}(z)$ and $\exp (z N) F$ are closing as $\operatorname{Im} z \rightarrow \infty$.

Let $\sigma=\mathbf{R}_{\geq 0} N$. In our space $\langle\gamma\rangle \backslash D_{\sigma}$ we have, moreover, $\exp (z N) F \rightarrow\left(\left(\sigma, \exp \left(\sigma_{\mathbf{C}}\right) F\right) \bmod \langle\gamma\rangle\right)$ as $\operatorname{Im} z \rightarrow \infty$. Hence $\varphi(q) \rightarrow\left(\left(\sigma, \exp \left(\sigma_{\mathrm{C}}\right) F\right) \bmod \langle\gamma\rangle\right)$ as $q \rightarrow 0$ in $\langle\gamma\rangle \backslash D_{\sigma}$. (For details, see $[\mathrm{KU}]$.)

Fix a point $b \in \mathbf{P}^{1}-\{0,1, \infty\}$ on the λ-plane, identify $H^{3}\left(W_{b}, \mathbf{Z}\right)=H_{0}$, and let

$$
\begin{equation*}
\Gamma=\operatorname{Image}\left(\pi_{1}\left(\mathbf{P}^{1}-\{0,1, \infty\}\right) \rightarrow G_{\mathbf{Z}}\right) \tag{1}
\end{equation*}
$$

This Γ is not neat. In fact, the local monodromy around 0 is of order 5 . Let

$$
\begin{equation*}
\mathbf{P}^{1}-\{0,1, \infty\} \rightarrow \Gamma \backslash D \tag{2}
\end{equation*}
$$

be the period map. Since $K_{W_{\lambda}}$ is trivial, the differential of (2) is injective everywhere. Endow \mathbf{P}^{1} with the logarithmic structure associated to the divisor $\{1, \infty\}$. Then, by $\S 1, \S 2$ and $[\mathrm{KU}],(2)$ extends to a morphism

$$
\begin{align*}
& \varphi: \mathbf{P}^{1} \rightarrow \Gamma \backslash D_{\Xi}, \tag{3}\\
& 0 \mapsto(\operatorname{point}) \bmod \Gamma \in \Gamma \backslash D \\
& 1 \mapsto\left(\operatorname{Ad}(g)\left(\sigma_{\alpha}\right)\right. \text {-nilpotent orbit } \\
&\left.\quad \text { for some } g \in G_{\mathbf{Q}}\right) \bmod \Gamma, \\
& \mapsto\left(\operatorname{Ad}(g)\left(\sigma_{\beta}\right)\right. \text {-nilpotent orbit } \\
&\left.\quad \quad \text { for some } g \in G_{\mathbf{Q}}\right) \bmod \Gamma .
\end{align*}
$$

of logarithmic ringed spaces (cf. [KU, 4.3.1 (i)]). The image of the extended period $\operatorname{map} \varphi$ is an analytic curve, which is not affected by the slits of the space $\Gamma \backslash D_{\Xi}$.

Let $X=\Gamma \backslash D_{\Xi}$. Let $P_{1}=1, P_{\infty}=\infty \in \mathbf{P}^{1}$, and let $Q_{1}=\varphi\left(P_{1}\right), Q_{\infty}=\varphi\left(P_{\infty}\right) \in X$. Then, by the observation of local monodromy and holomorphic 3 -form basing on the descriptions in $\S 1$ and $\S 2$, we have

$$
\begin{equation*}
\varphi^{-1}\left(Q_{\lambda}\right)=\left\{P_{\lambda}\right\} \quad \text { for } \lambda=1, \infty \tag{4}
\end{equation*}
$$

4. Generic Torelli theorem. We use the notation in the previous sections.

Theorem. The period map φ in $\S 3$ (3) is the normalization of analytic spaces over its image.

Proof. We use the fs logarithmic point P_{1} and its image Q_{1} at the boundaries ($\left.\S 3\right)$. Since $\varphi^{-1}\left(Q_{1}\right)=\left\{P_{1}\right\}(\S 3(4))$, it is enough to show that the local ramification index at Q_{1} is one, i.e.,

Claim. $\quad\left(M_{X} / \mathcal{O}_{X}^{\times}\right)_{Q_{1}} \rightarrow\left(M_{\mathbf{P}^{1}} / \mathcal{O}_{\mathbf{P}^{1}}^{\times}\right)_{P_{1}}$ is surjective.

Let $N:=N_{\alpha}$ be the nilpotent endomorphism introduced in $\S 2$.

Let \tilde{q} be a local coordinate on a neighborhood U of $P_{1}=1$ in \mathbf{P}^{1}, and let $z=(2 \pi i)^{-1} \log \tilde{q}$ be a branch over $U-\left\{P_{1}\right\}$. Then $\exp (-z N) e_{3}=e_{3}-z e_{1}$ is sin-gle-valued. Let $\omega(\tilde{q})$ be a local frame of the locally free $\mathcal{O}_{\mathbf{P}^{1-}}$ module F^{3}. Write $\omega(\tilde{q})=\sum_{j=1}^{4} a_{j}(\tilde{q}) e_{j}$, and define $t=-a_{1}(\tilde{q}) / a_{3}(\tilde{q})$. Then

$$
t=\frac{\left\langle e_{3}, \omega(\tilde{q})\right\rangle_{0}}{\left\langle e_{1}, \omega(\tilde{q})\right\rangle_{0}}=\frac{\left\langle\exp (-z N) e_{3}, \omega(\tilde{q})\right\rangle_{0}+z\left\langle e_{1}, \omega(\tilde{q})\right\rangle_{0}}{\left\langle e_{1}, \omega(\tilde{q})\right\rangle_{0}}
$$

$$
=z+(\text { single-valued holomorphic function in } \tilde{q})
$$

Let $q=e^{2 \pi i t}$. Then $q=u \tilde{q}$ for some $u \in \mathcal{O}_{\mathbf{P}^{1}, P_{1}}^{\times}$. Let V be a neighborhood of Q_{1} in $X=\Gamma \backslash D_{\Xi}$. We have a composite morphism of fs logarithmic local ringed spaces

$$
U \rightarrow V \rightarrow \mathbf{C}, \quad \tilde{q} \mapsto q=e^{2 \pi i\left(-a_{1} / a_{3}\right)}(=u \tilde{q}) .
$$

Hence the composite morphism $\left(M_{\mathbf{P}^{1}} / \mathcal{O}_{\mathbf{P}^{1}}^{\times}\right)_{P_{1}} \leftarrow$ $\left(M_{X} / \mathcal{O}_{X}^{\times}\right)_{Q_{1}} \leftarrow\left(M_{\mathbf{C}} / \mathcal{O}_{\mathbf{C}}^{\times}\right)_{0}$ of reduced logarithmic structures is an isomorphism. The claim follows. In fact, that is an isomorphism since the rank of $\left(M_{X} / \mathcal{O}_{X}^{\times}\right)_{Q_{1}}$ is one in the present case.
5. The second proof, and logarithmic generic Torelli theorem. In this section, we give another proof of the generic Torelli theorem in $\S 4$ by using the fs logarithmic points P_{∞} and Q_{∞} at the boundaries.

Since $\varphi^{-1}\left(Q_{\infty}\right)=\left\{P_{\infty}\right\}(\S 3(4))$, it is enough to show the following

Claim. $\quad\left(M_{X} / \mathcal{O}_{X}^{\times}\right)_{Q_{\infty}} \rightarrow\left(M_{\mathbf{P}^{1}} / \mathcal{O}_{\mathbf{P}^{1}}^{\times}\right)_{P_{\infty}}$ is surjective.

Proof. Let N be the logarithm of the local monodromy at $\lambda=\infty$. Let $\beta^{1}, \beta^{2}, \alpha_{1}, \alpha_{2}$ be the integral symplectic basis of H_{0} given in [M1, Appendix C], and let
$g_{0}=\alpha_{2}, \quad g_{1}=2 \alpha_{1}+\beta^{1}, \quad g_{2}=\beta^{2}, \quad g_{3}=\alpha_{1}+\beta^{1}$.
Then $g_{3}, g_{2}, g_{1}, g_{0}$ is another integral symplectic basis such that g_{0}, g_{1} is a good integral basis of Image (N^{2}) in the sense of [M1,2, Appendix C]. Using the result there, we have

$$
\begin{aligned}
& \left(N\left(g_{3}\right), N\left(g_{2}\right), N\left(g_{1}\right), N\left(g_{0}\right)\right) \\
& \quad=\left(g_{3}, g_{2}, g_{1}, g_{0}\right)\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-5 & -9 / 2 & 0 & 0 \\
-9 / 2 & 25 / 6 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

Let \tilde{q} be a local coordinate on a neighborhood U of $P_{\infty}=\infty$ in \mathbf{P}^{1}, and let $z=(2 \pi i)^{-1} \log \tilde{q}$ be a branch over $U-\left\{P_{\infty}\right\}$. Then $\exp (-z N) g_{1}=g_{1}-$ $z g_{0}$ is single-valued. Let $\omega(\tilde{q})$ be a local frame of the locally free $\mathcal{O}_{\mathbf{P}^{1}}$-module F^{3}. Write $\omega(\tilde{q})=$ $\sum_{j=0}^{3} b_{j}(\tilde{q}) g_{j}$, and define $t=b_{3}(\tilde{q}) / b_{2}(\tilde{q})$ and $q=$ $e^{2 \pi i t}$. Then, as in $\S 4$, we see $q=u \tilde{q}$ for some $u \in$ $\mathcal{O}_{\mathbf{P}^{1}, P_{\infty}}^{\times}$, and the claim follows.

Combining the results in $\S 4$ and $\S 5$, we have the following refinement.

Theorem. The period map φ in $\S 3$ (3) is the normalization of fs logarithmic analytic spaces over its image. Here the normalization of the image of φ is endowed with the pull-back logarithmic structure.

Note. Canonical coordinates in [M1,M2], like q in the proofs of Claims in $\S 4$ and $\S 5$, can be understood more naturally in the context of PLH.

Problem 1. Eliminate the possibility that the image $\varphi\left(\mathbf{P}^{1}\right)$ would have singularities in Theorems in $\S 4$ and $\S 5$.

Problem 2. Describe the global monodromy group Γ explicitly. Generators of Γ are computed [COGP], [M1, Appendix C], and Γ is known to be Zariski dense in $G_{\mathbf{Z}}=\operatorname{Sp}(4, \mathbf{Z})$ [COGP], [D, 13].

Acknowledgements. The author is grateful to Kazuya Kato and Chikara Nakayama. The author is also grateful to the referee for the useful comments together with the references $[\mathrm{S}]$, [V].

Partly supported by the Grant-in-Aid for Scientific Research (B) No. 19340008, Japan Society for the Promotion of Science.

References

[COGP] P. Candelas, C. de la Ossa, P. S. Green and L. Parks, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), no. 1, 21-74.
[D] P. Deligne, Local behavior of Hodge structures at infinity, in Mirror symmetry, II, 683-699, Amer. Math. Soc., Providence, RI, 1997.
[KU] K. Kato and S. Usui, Classifying spaces of degenerating polarized Hodge structures, Ann. Math. Studies, Princeton Univ. Press, 2009.
[M1] D. R. Morrison, Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Amer. Math. Soc. 6 (1993), no. 1, 223-247.
[M2] D. R. Morrison, Compactifications of moduli spaces inspired by mirror symmetry, Astérisque No. 218 (1993), 243-271.
[S$]$ B. Szendröi, Calabi-Yau threefolds with a curve of singularities and counterexamples to the Torelli problem, Internat. J. Math. 11 (2000), no. 3, 449-459.
[V] C. Voisin, A generic Torelli theorem for the quintic threefold, in New trends in algebraic geometry (Warwick, 1996), 425-463, Cambridge Univ. Press, Cambridge.

[^0]: 2000 Mathematics Subject Classification. Primary 14C30; Secondary 14D07, 32G20.

 Dedicated to Professor Phillip A. Griffiths on his seventieth birthday.

