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Abstract: Two new concepts of zeta functions for schemes over the field of one element

are proposed. A localization formula and an explicit formula in the affine case are given. This

allows for a computation for every scheme.
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Introduction. In [2], the first named author

has introduced a zeta function for F1-schemes

generalizing an idea of Soulé’s in [10]. Basically,

this zeta function only detects free ranks of the

involved groups, so it is insensitive to torsion. In the

present paper we will introduce two new kinds of

zeta functions for F1-schemes which are sensitive

to torsion, yet still preserve the information on the

ranks. The first new zeta function is of Weil type,

where the finite fields are replaced by the basic

finite monoids. The second is of Igusa type, as

inspired by [7].

1. Soulé zeta function. Soulé [10], inspired

by Manin [9], gave a definition of zeta functions

over the field of one element F1. See also [8]. We

describe the definition as follows: Let X be a scheme

of finite type over Z. For a prime number p one sets

after Weil,

ZXðp; T Þ ¼def exp
X1
n¼1

Tn

n
#XðFpnÞ

 !
;

where Fpn denotes the field of pn elements. This is

the local zeta function over p, and the global zeta

function of X is given as

�XjZðsÞ ¼def
Y
p

ZXðp; p�sÞ�1:

Soulé considered in [10] the following condition:

Suppose there exists a polynomialNðxÞ with integer

coefficients such that #XðFpnÞ ¼ NðpnÞ for every

prime p and every n 2 N. Then ZXðp; p�sÞ�1 is a

rational function in p and p�s. The vanishing order

at p ¼ 1 is Nð1Þ. One may thus define

�XjF1
ðsÞ ¼ lim

p!1

ZXðp; p�sÞ�1

ðp� 1ÞNð1Þ :

One computes that if NðxÞ ¼ a0 þ a1xþ � � � þ anx
n,

then

�XjF1
ðsÞ ¼ sa0ðs� 1Þa1 � � � ðs� nÞan :

Based on ideas of [6], in the paper [1] there is

given a definition of a scheme over F1 as well as an

ascent functor � � Z from F1-schemes to Z-schemes.

For the convenience of the reader, we will briefly

recall the definition. Recall a monoid is a set A

with an associative composition and a unit element

1 2 A, i.e., one has 1a ¼ a1 ¼ a for every a 2 A. In

this paper, all monoids will be commutative.

An ideal in the monoid A is a subset a � A with

aA � A. An ideal p is a prime ideal if Sp ¼ Ar p is a

submonoid. Let SpecA denote the set of all prime

ideals with the Krull topology [1]. For p 2 SpecA,

let Ap ¼ S�1
p A be the localization at p and let A�

p be

its unit group. Then A�
p is the quotient group of

Sp ¼ Ar p.

On the topological space SpecA one has a

canonical sheaf OA of monoids with stalks being

the localizations of A, so OA;p ¼ Ap for every p 2
Spec A. A scheme over F1 is a topological space X

together with a sheaf OX of monoids such that

ðX;OXÞ is locally isomorphic to ðSpecA;OAÞ for

monoids A.

Let X be an F1-scheme of finite type. Note that

this implies that X has finitely many points and

that O�
X;p is a finitely generated group for every

p 2 X.

An affine F1-scheme is given by a commutative

monoid and its lift to Z is given by the correspond-

ing monoidal ring. This procedure extends to

general schemes as it respects gluing. We say that

a Z-scheme is defined over F1, if it comes by ascent
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from a scheme over F1. The natural question arising

is whether schemes defined over F1 satisfy Soulé’s

condition.

Simple examples show that this is not the case.

However, schemes defined over F1 satisfy a slightly

weaker condition which serves the purpose of

defining F1-zeta functions as well, and which we

give in the following theorem, proven in [2].

Theorem 1.1 (See [2]). Let X be a Z-

scheme of finite type defined over F1. Then there

exists a natural number e and a polynomial NðxÞ
with integer coefficients such that for every prime

power q one has

ðq � 1; eÞ ¼ 1 ) #XðFqÞ ¼ NðqÞ:

This condition determines the polynomial N

uniquely (independent of the choice of e). We call

it the zeta-polynomial of X.

Using this polynomial NðxÞ, one defines the

Soulé zeta function as above.

Proposition 1.2. The Soulé zeta function

satisfies the localization formula

�Sðs;XÞ ¼
Y
p2X

�Sðs;O�
X;pÞ:

Proof. Let XZ be the Z-lift of X. For a prime

power q let Fq�1 be the monoid ðFq;�Þ. Then

jXZðFqÞj ¼ jXðFq�1Þj by [1], Theorem 1.1.

Generalizing the previous notation, for a nat-

ural number m let Fm be the monoid �m [ f0g,
where �m denotes the cyclic group of m elements.

The monoid operation on Fm is given by 0x ¼ 0 for

every x 2 Fm. The proposition follows from the next

Lemma.

Lemma 1.3. Let X be an F1-scheme. There

is a canonical disjoint decomposition

HomðSpecFm;XÞ ¼
a
p2X

HomðO�
X;p; �mÞ:

Here on the right HomðO�
X;p; �mÞ corresponds to the

set of all homomor-phisms � : SpecFm ! X with

�ðcÞ ¼ p, where c is the closed point of SpecFm.

Proof. The set SpecFm consists of two points,

the generic point � and the closed point c. Let

� : SpecFm ! X be a homomorphism and let

U � X be an open affine subset containing �ðcÞ.
Then � is contained in the open set ��1ðUÞ, so that

indeed, � is a homomorphism from SpecFm to

U ¼ SpecA. In other words, � is affine. It therefore

suffices to prove the lemma in case of affine X. In

this case � is given by a monoid morphism

’ : A ! Fm. The set p ¼ ’�1ð0Þ is a prime ideal

and ’ induces a homomorphism Ar p ! �m. Thus

one gets a disjoint decomposition

HomðA;FmÞ ¼
a

p2SpecA
HomðAr p; �mÞ:

The lemma and the proposition follow. �

The factors of Soulé’s zeta function can be

calculated as

�SðT;O�
X;pÞ ¼ sa0ðs� 1Þa1 � � � ðs� rÞar ;

where r ¼ rankðO�
X;pÞ ¼ dimQðO�

X;p �QÞ is the rank
of the finitely generated group O�

X;p, and

aj ¼ ð�1Þr�j r

j

� �
:

So �SðT;AÞ only depends on the ranks of the local

groups O�
X;p and ignores the finite parts. We will

now introduce a zeta function of Weil type, which

carries more information.

2. The absolute Weil zeta function. In

the theory of schemes over F1, the monoids Fm, m 2
N play the role of finite fields. Analogous to

the above definition of the local Weil zeta function

we define the Weil zeta function of a scheme X of

finite type over F1 as formal power series in T by

�W ðT;XÞ ¼def exp
X1
m¼1

jHomðSpecFm;XÞj
m

Tm

 !
:

In the case when m is equal to q � 1 for a prime

power q, the monoid Fm can be identified with the

multiplicative monoid of the finite field Fq. In that

case there is a natural bijection

HomðSpecF1
Fq�1; XÞ �!¼

�
HomðSpecFq; XZÞ;

where XZ denotes the Z-ascent of X.

In the case when X is affine, i.e., X ¼ SpecA

for some monoid A, we will also write �W ðT ;AÞ
instead of �W ðT ; SpecAÞ.

By Lemma 1.3, the zeta function �W satisfies

the same decomposition formula as the Soulé zeta

function,

�W ðT ;XÞ ¼
Y
p2X

�W ðT;O�
X;pÞ:

We will now compute �W ðT ;AÞ for a finitely

generated abelian group A. Any such group is

isomorphic to Zr � Cn1
� � � � � Cnk

for some r � 0

and n1; . . . ; nk 2 N. Here Cn denotes the cyclic
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group of n elements. Since for coprime numbers

n; n0 one has Cnn0 ¼� Cn � Cn0 , one can arrange the

cyclic groups in a way that nj divides njþ1 for every

j ¼ 1; . . . ; k� 1. Assuming this, we can prove

Proposition 2.1. For A ¼ Zr � Cn1
� � � � �

Cnk
one has

�W ðT ;AÞ ¼

Y
djn

ð1� T jdjÞ�’ðdÞdk�2
1 ���d�1

k for r ¼ 0,

Y
djn

exp
grðT jdjÞ’ðdÞdrþk�1

1
���dr�1

k

ð1�T jdjÞr
� �

for r � 1,

8>>><
>>>:

where we have used the following notation. The

products run over all tuples d ¼ ðd1; . . . ; dkÞ 2 Nk

such that d1jn1, d2j n2

d1
, and so on until dkj nk

d1���dk�1
.

These conditions are summarized in the notation

djn. Further, jdj ¼ d1 � � � dk, and ’ðdÞ ¼ ’ðd1Þ � � �
’ðdkÞ, where ’ is the Euler ’-function. We denote

by grðT Þ 2 Z½T 	 the Euler polynomials which are

defined recursively by

g1ðT Þ ¼ T

and

grþ1ðT Þ ¼
Xr
k¼1

r

k� 1

� �
ðT � 1Þr�kgkðT Þ:ð1Þ

Proof. Let A ¼ Zr � Cn1
� � � � � Cnk

as above,

then

jHomðA; �mÞj ¼ mrðm;n1Þ � � � ðm;nkÞ;

where ðm;nÞ denotes the greatest common divisor

of m and n. Using the property of the ’-function,P
djn ’ðdÞ ¼ n, we infer that the logarithm of

�W ðT;AÞ equals
X1
m¼1

mrþk�1 ðm;n1Þ
m

� � � ðm;nsÞ
m

Tm

¼
X1
m¼1

mrþk�1
X

d1jðm;n1Þ

’ðd1Þ
m

�
ðm;n2Þ

m
� � �

ðm;nkÞ
m

Tm

¼m¼d1�
X
d1jn1

’ðd1Þ
X1
�¼1

ðd1�Þrþk�2

�
ð�; n2

d1
Þ

�
� � �

ð�; nk

d1
Þ

�
Td1�:

The sum over � is now of the same form as

the first sum. So we can iterate the argument to

reach

X
d1jn1

’ðd1Þdrþk�2
1

X
d2jn2d1

’ðd2Þdrþk�3
2

� � �
X

dkj
nk

d1 ���dk�1

’ðdkÞdrþk�k�1
k

X1
�¼1

�r�1Td1���dk�:

The argument is finished with the following lemma

which yields

exp
X1
�¼1

�r�1T�

 !
¼ exp

grðT Þ
ð1� T Þr

� �
:

�

Lemma 2.2. For r ¼ 1; 2; 3; . . ., we haveX1
�¼1

�r�1T� ¼
grðT Þ

ð1� T Þr ;

where grðT Þ 2 Z½T 	 is defined by (1).

Proof. Put

Sr ¼
X1
�¼1

�r�1T�:

Since

TSrþ1 ¼
X1
�¼1

�rT�þ1 ¼
X1
�¼1

ð� � 1ÞrT �;

we compute

ð1� T ÞSrþ1

¼
X1
�¼1

ð�r � ð� � 1ÞrÞT�

¼
X1
�¼1

Xr
k¼1

r

k

� �
ð�1Þkþ1�r�kT �

¼
Xr
k¼1

r

k

� �
ð�1Þkþ1Sr�kþ1

¼
Xr�1

k¼0

r

k

� �
ð�1Þr�k�1Skþ1

¼
Xr
k¼1

r

k� 1

� �
ð�1Þr�kSk:ð2Þ

If we put

Sr ¼
frðT Þ

ð1� T Þr

and substitute it to (2), we find that frðT Þ is a

polynomial in T with frðT Þ ¼ grðT Þ, because frðT Þ
also satisfies (1). �
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Example 2.3 (Euler polynomials).

g1ðT Þ ¼ T ;

g2ðT Þ ¼ T ;

g3ðT Þ ¼ T 2 þ T;

g4ðT Þ ¼ T 3 þ 4T 2 þ T:

3. The absolute Igusa zeta function. We

also introduce another type of zeta function which

has an additive localization formula,

�Iðs;XÞ ¼
X
p2X

�Iðs;O�
X;pÞ:

It is defined for s 2 C with ReðsÞ 
 0 as

�Iðs;XÞ ¼def
X1
m¼1

jHomðSpecFm;XÞj
ms

:

This is analogous to the global Igusa zeta function

of a Z-scheme X, which is defined by

ZIðs;XÞ ¼
X1
m¼1

jHomðSpecðZ=mZÞ; XÞj
ms

:

It has an Euler product expression

ZIðs;XÞ ¼
Y

p: prime

ZI
pðs;XÞ

with the local Igusa zeta function

ZI
pðs;XÞ ¼

X1
k¼0

jHomðSpecðZ=pkZÞ; XÞj
pks

:

We refer to [3–5] for details on ZI
pðs;XÞ containing

the rationality in p�s. The analytic nature of the

global Igusa zeta function ZIðs;XÞ is not so well-

known, and it has a natural boundary even for a

rather simple X as is shown in [7].

Proposition 3.1. Let A ¼ Zr � Cn1
� � � � �

Cnk
be a finitely generated abelian group. Then its

Igusa zeta function �Iðs; AÞ equals

�ðs� rÞ
Y
pjn

 
pvpðnÞð1þr�sÞ þ ð1� pr�sÞ

�
Xk�1

j¼0

pvpðn1���njÞ
Xvpðnjþ1Þ�1

l¼vpðnjÞ
pðkþr�j�sÞl

!
;

where �ðsÞ denotes the Riemann zeta function, n ¼
n1 � � �nk, and vp is the p-adic valuation. We also put

n0 ¼ 1.

Proof. We compute

�Iðs; AÞ

¼
X1
m¼1

ðm;n1Þ � � � ðm;nkÞmr�s

¼
Y
p

X1
l¼0

ðpl; n1Þ � � � ðpl; nkÞpr�s

¼
Y
p

 X1
l¼vpðnkÞ

pvpðn1���nkÞplðr�sÞ

þ
Xk�1

j¼0

Xvpðnjþ1Þ�1

l¼vpðnjÞ
pvpðn1���njÞplðk�jÞplðr�sÞ

!

¼
Y
p

 
pvpðnÞpvpðnkÞðr�sÞ 1

1� pr�s

þ
Xk�1

j¼0

pvpðn1���njÞ
Xvpðnjþ1Þ�1

l¼vpðnjÞ
pðkþr�j�sÞl

!
:

This implies the claim. �

Recall the Hurwitz zeta function, which for � 2
C with Reð�Þ > 0 is defined by

�Hurðs; �Þ ¼
X1
n¼0

1

ðnþ �Þs :

It extends to a meromorphic function with a simple

pole at s ¼ 1 of residue 1.

Proposition 3.2. The Igusa zeta function of

a finitely generated group A as above can also be

expressed as

�Iðs;AÞ ¼ nr�s
k

Xnk

l¼1

ðl; n1Þ � � � ðl; nkÞ�Hurðs� r; l
nk
Þ:

As an application one gets the identity

1

nk

Xnk

l¼1

ðl; n1Þ � � � ðl; nkÞ

¼
Y
pjn

 
1þ 1�

1

p

� �Xk�1

j¼0

pvpðn1���njÞ
Xvpðnjþ1Þ�1

l¼vpðnjÞ
pðk�j�1Þl

!
:

Proof. We compute

�Iðs;AÞ

¼
X1
m¼1

ðm;n1Þ � � � ðm;nkÞmr�s

¼
Xnk

l¼1

X1
�¼0

ðl; n1Þ � � � ðl; nkÞðlþ �nkÞr�s

¼ nr�s
k

Xnk

l¼1

ðl; n1Þ � � � ðl; nkÞ

� �Hurðs� r; l
nk
Þ;

as claimed. The application comes about by com-

paring the residues of the two expressions at

s ¼ rþ 1. �
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Proposition 3.3. The Igusa zeta functions

of the affine line, the projective line, and GLn are

. �Iðs;A1Þ ¼ �ðsÞ þ �ðs� 1Þ,

. �Iðs;P1Þ ¼ 2�ðsÞ þ �ðs� 1Þ,

. �Iðs;GLnÞ ¼ n!�ðs� nÞ.
Proof. This follows from the localization for-

mula and the known structure of A1;P1;GLn. �
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