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Abstract: In this paper, we treat with an arbitrary given connection D which is not

necessarily metric or torsion-free in the tangent bundle TM over an n-dimensional closed

(compact and connected) Riemannian manifold ðM; gÞ. We find the fact that if any connection D

with Weyl structure ðD; g; !Þ relative to a 1-form ! in the tangent bundle is a Yang-Mills

connection, then d! ¼ 0. Moreover under the assumption
Pn

i¼1½�ðeiÞ; RDðei;XÞ� ¼ 0 ðX 2 XðMÞÞ,
a necessary and sufficient condition for any connection D with Weyl structure ðD; g; !Þ to be a

Yang-Mills connection is �rR
D ¼ 0, where feigni¼1 is an (locally defined) orthonormal frame on

ðM; gÞ and D�r ¼ � 2 �ð
V
TM� � EndðTMÞÞ, and r is the Levi-Civita connection for g of

ðM; gÞ.
Key words: Yang-Mills connection; conjugate connection; Weyl structure.

1. Introduction. In the theory of Yang-

Mills connections, only the metric connections in a

vector bundle have been treated so far. However,

recently, Dragomir, Ichiyama and Urakawa (cf. [2])

developed a new Yang-Mills theory for arbitrary

connections D in a vector bundle E with bundle

metric h over a Riemannian manifold, not necessa-

rily satisfying a metric connection, by using the

concept of conjugate connection (cf. [6]). Precisely,

if D is a connection in a vector bundle E �!M,

then the connection D� given by

hðD�
Xs; tÞ ¼ Xðhðs; tÞÞ � hðs;DXtÞ;

X 2 XðMÞ and s; t 2 �ðEÞ;
ð1:1Þ

is referred to as conjugate to D. Let ðM; gÞ be a

closed (compact and connected) Riemannian mani-

fold. A Yang-Mills connection is a critical point of

the Yang-Mills functional

YMðDÞ ¼
1

2

Z
M

kRDk2 vgð1:2Þ

on the space CE of all connections in E, where RD is

the curvature tensor field for D 2 CE. Equivalently,

D is a Yang-Mills connection if it satisfies the

Yang-Mills equation (cf. [7,8,16])

�DR
D ¼ 0ð1:3Þ

(the Euler-Lagrange equations of the variational

principle associated with (1.2)). Note that, even if

a connection D is torsion-free, then the conjugate

connection D� is not torsion-free in general. In

fact, if ðD; gÞ is a Weyl structure (cf. [4,5,10–15])

relative to a 1-form ! on ðM; gÞ which is torsion-

free, then D� is not torsion-free in general (other-

wise ! ¼ 0, hence D ¼ D� is the Levi-Civita

connection of ðM; gÞ). From this point of view, D

and D� have different properties.

Recently, the present author obtained the

following

Theorem A [9]. A connection D in a vector

bundle E over a closed Riemannian manifold ðM; gÞ
is a Yang-Mills connection if and only if the

conjugate connection D� is a Yang-Mills connec-

tion.

In this paper, we treat with an arbitrary given

connection D which is not necessarily metric

or torsion-free in the tangent bundle TM over an

n-dimensional closed Riemannian manifold ðM; gÞ.
In §2, using properties of a connection D in the

tangent bundle E ¼ TM over a closed Riemannian

manifold (M; g) which has a Weyl structure

ðD; g; !Þ, i.e., Dg ¼ !� g, where ! is a 1-form on

M, we get the following

Theorem 1. Let ðM; gÞ be a closed Rieman-

nian manifold, and ðD; g; !Þ a Weyl structure in

the tangent bundle TM over ðM; gÞ. Then,
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ð�D�RD� � �DR
DÞðXÞY ¼ ð�d!ÞðXÞY ;

ðX 2 XðMÞ; Y 2 �ðEÞÞ:
By virtue of Theorem 1 and Theorem A, we

obtain

Corollary 2. If D is a Yang-Mills connec-

tion with Weyl structure ðD; g; !Þ in the tangent

bundle TM over a closed Riemannian manifold

ðM; gÞ, then d! ¼ 0.
In §3, we get the following

Theorem 3. Let D be a connection with

Weyl structure ðD; g; !Þ in the tangent bundle

over a closed Riemannian manifold ðM; gÞ, and r
the Levi-Civita connection of ðM; gÞ. AssumePn

i¼1½�ðeiÞ; RDðei;XÞ� ¼ 0, where X 2 XðMÞ and

D�r ¼ � and feigni¼1 is an (locally defined)

orthonormal frame on ðM; gÞ. Then, the following

statements are equivalent:

(i) D is a Yang-Mills connection.

(ii) �rR
D ¼ 0.

2. The proof of Theorem 1 and Corol-

lary 2. This section consists of two subsections. In

the first subsection, we treat theYang-Mills equation

in vector bundles over a closed Riemannian manifold

ðM; gÞ, using the concept of conjugate connection.

And then, in the second subsection we prove

Theorem 1 and Corollary 2.

2.1. Let E be a vector bundle, with bundle

metric h, over an n-dimensional closed Riemannian

manifold ðM; gÞ. Let D 2 CE and r the Levi-Civita

connection of ðM; gÞ. The pair ðD;rÞ induces a

connection in product bundles
Vp TM� � E, also

denoted by D. Set ApðEÞ :¼ �ð
Vp TM� � EÞ. We

consider the differential operator

dD : ApðEÞ �! Apþ1ðEÞ;
ðdD’ÞðX1; X2; � � � ; Xpþ1Þ

¼
Xpþ1

i¼1

ð�1Þiþ1ðDXi
’ÞðX1; � � � ; bXXi; � � � ; Xpþ1Þ;

’ 2 ApðEÞ; Xi 2 XðMÞ ði ¼ 1; 2; � � � ; pþ 1Þ;

which are defined by

dDð!� �Þ : ¼ d!� � þ ð�1Þp! ^D�;
DXð!� �Þ : ¼ ðrX!Þ � � þ !�DX�;

for ! 2 �ð
Vp TM�Þ, � 2 �ðEÞ and X 2 XðMÞ.

Let �D be the formal adjoint of dD with respect

to the L2-inner product

ð’;  Þ ¼
Z
M

h’;  ivg

for ’,  2 ApðEÞ. Here h ; i is the bundle metric inVp TM� � E induced by the pair ðg; hÞ and vg is the
canonical volume form on ðM; gÞ. The following

identity is elementary, yet crucial (cf. [2])

�D’ ¼ ð�1Þpþ1ð��1 � dD� � �Þð’Þ
¼ ð�1Þnpþ1ð� � dD� � �Þð’Þ

ð2:1Þ

for any ’ 2 Apþ1ðEÞ. Here, � : AqðEÞ �! An�qðEÞ,
ð0 � q � nÞ, is the Hodge operator with respect to g.

Let feigni¼1 be a local orthonormal frame on ðM; gÞ
and f�jgnj¼1 the dual coframe. Let fd�g��¼1 be a local

orthonormal frame of ðE; hÞ and f��g��¼1 the dual

coframe, where � is the rank of E. Using the

orthonormal frame and the dual frame on ðM; gÞ,
and the orthonormal frame and the dual frame of

ðE; hÞ, and properties of a connection in a smooth

vector bundle E over ðM;gÞ, we proved Theorem A

(cf. [9]). Note that (2.1) may also be written as

(cf. [2,3])

ð�D’ÞðX1; � � � ; XpÞ

¼ �
Xn
i¼1

ðD�
ei
’Þðei;X1; � � � ; XpÞ:

ð2:2Þ

The connections D, D� 2 CE naturally induce con-

nections, denoted by the same symbols, in EndðEÞ
ð:¼ E � E�Þ. Then, a straightforward argument

shows that D, D� 2 CEndðEÞ are conjugate connec-

tions. The following curvature property is immedi-

ate (cf. [1, Proposition 2.1])

hðRDðX; Y Þs; tÞ ¼ �hðs;RD� ðX; Y ÞtÞ;ð2:3Þ

for s; t 2 �ðEÞ and X; Y 2 XðMÞ.
Now, we find from (1.3) and (2.2) that the

connection D� is a Yang-Mills connection if and

only if

�
X
i

ðDeiR
D� Þððei; �Þ; �Þ ¼ 0:ð2:4Þ

2.2. Let D be a connection with Weyl struc-

ture which is not necessarily metric or torsion-free

in the tangent bundle TM over an n-dimensional

closed Riemannian manifold (M; g), that is,

Dg ¼ !� g:ð2:5Þ

In this case, we have the following properties:
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D�
XY ¼ DXY þ !ðXÞY

ðX 2 XðMÞ; Y 2 �ðTMÞÞ;ð2:6Þ
RD� ðX; Y ÞZ ¼ RDðX; Y ÞZ þ d!ðX; Y ÞZ

ðX; Y 2 XðMÞ; Z 2 �ðTMÞÞ;
D�g ¼ �Dg:

8><
>:ð2:7Þ

By virtue of (2.2) and (2.7), for X 2 XðMÞ and Y 2
�ðTMÞ

ð�D�RD� ÞðXÞY

¼ �
Xn
i¼1

ðDeiR
D� Þðei;XÞY

¼ �
Xn
i¼1

fDeiðRD� ðei;XÞY Þ � RD� ðreiei; XÞY

� RD� ðei;reiXÞY � RD� ðei;XÞDeiY g

¼ �
Xn
i¼1

fDeiðRDðei;XÞY þ d!ðei;XÞY Þ

� RDðreiei; XÞY � d!ðreiei; XÞY
� RDðei;reiXÞY � d!ðei;reiXÞY
� RDðei;XÞDeiY � d!ðei;XÞDeiY g:

From (2.2) and (2.6), we get for X 2 XðMÞ and Y 2
�ðTMÞ

ð�DRDÞðXÞY

¼ �
Xn
i¼1

ðD�
ei
RDÞðei;XÞY

¼ �
Xn
i¼1

fD�
ei
ðRDðei;XÞY Þ � RDðreiei; XÞY

�RDðei;reiXÞY � RDðei;XÞD�
ei
Y g

¼ �
Xn
i¼1

fDeiðRDðei;XÞY Þ � RDðreiei; XÞY

�RDðei;reiXÞY � RDðei;XÞDeiY g:

Consequently, for X 2 XðMÞ and Y 2 �ðTMÞ we

have

ð�D�RD� ÞðXÞY � ð�DRDÞðXÞY

¼ �
Xn
i¼1

fDeiðd!ðei;XÞY Þ � d!ðreiei; XÞY

� d!ðei;reiXÞY � d!ðei;XÞDeiY g

¼ �
Xn
i¼1

ðDeid!Þðei;XÞY ¼ �
Xn
i¼1

ðreid!Þðei;XÞY

¼ ð�rd!ÞðXÞY ¼ ð�d!ÞðXÞY :

Thus, the proof of Theorem 1 is completed. Since X

is arbitrary in XðMÞ and Y is arbitrary in �ðTMÞ,
by virtue of Theorem 1 and Theorem A, Corollary 2

is obtained.

3. The proof of Theorem 3. Let ðD; gÞ be a
Weyl structure with respect to the 1-form ! on M.

We put DXY �rXY ¼: �ðXÞY , ðX 2 XðMÞ and

Y 2 �ðTMÞÞ. From (2.6) and the definition of

� 2 �ð
V
TM� � EndTMÞ, we have

D�
XY ¼ rXY þ �ðXÞY þ !ðXÞY ;

ðX 2 XðMÞ and Y 2 �ðTMÞÞ:
ð3:1Þ

Moreover, we get the following

Lemma 3.1. gð�ðXÞY ; ZÞ ¼ gðY ;��ðXÞZ �
!ðXÞZÞ, ðX 2 XðMÞ;Y ; Z 2 �ðTMÞÞ.

Proof. By virtue of the fact Dg ¼ !� g,

gð�ðXÞY ; ZÞ
¼ gðDXY �rXY ; ZÞ
¼ XðgðY ; ZÞÞ � ðDXgÞðY ; ZÞ
� gðY ;DXZÞ �XðgðY ; ZÞÞ þ gðY ;rXZÞ

¼ gðY ;��ðXÞZ � !ðXÞZÞ:

Thus, the proof of this Lemma is completed.

From the fact D�g ¼ �Dg ¼ �!� g, we get for

X 2 XðMÞ and Y ; Z 2 �ðTMÞ

gðð�DRDÞðXÞY ; ZÞ

¼ �
Xn
i¼1

gððD�
ei
RDÞðei;XÞY ; ZÞ

¼ �
Xn
i¼1

feiðgðRDðei;XÞY ; ZÞÞ

þ !ðeiÞgðRDðei;XÞY ; ZÞ
� gðRDðreiei;XÞY ; ZÞ � gðRDðei;reiXÞY ; ZÞ
� gðRDðei;XÞD�

ei
Y ; ZÞ � gðRDðei;XÞY ;D�

ei
ZÞg:

By virtue of (3.1), the equation above changes as

follows:

gðð�DRDÞðXÞY ; ZÞ

¼ �
Xn
i¼1

fgððreiR
DÞðei;XÞY ; ZÞ

� gðRDðei;XÞ �ðeiÞY ; ZÞ
� gðRDðei;XÞY ; �ðeiÞZÞ
� !ðeiÞ gðRDðei;XÞY ; ZÞg:

ð3:2Þ

Consequently, from (2.2), (3.2) and Lemma 3.1, we

obtain
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gðð�DRDÞðXÞY ; ZÞ

¼ gðð�rRDÞðXÞY �
Xn
i¼1

½�ðeiÞ; RDðei;XÞ�Y ;ZÞ;

where X 2 XðMÞ and Y ; Z 2 �ðTMÞ. Since Y is

arbitrary in �ðTMÞ and X is arbitrary in XðMÞ, the
proof of Theorem 3 is completed.
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