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Abstract: In this paper, we treat with an arbitrary given connection D which is not
necessarily metric or torsion-free in the tangent bundle TM over an n-dimensional closed
(compact and connected) Riemannian manifold (M, g). We find the fact that if any connection D
with Weyl structure (D, g,w) relative to a 1-form w in the tangent bundle is a Yang-Mills
connection, then dw = 0. Moreover under the assumption Y 1, [a(e;), RP(e;, X)] = 0 (X € X(M)),
a necessary and sufficient condition for any connection D with Weyl structure (D, g,w) to be a

n .

Yang-Mills connection is 6y R” = 0, where {¢;},_, is an (locally defined) orthonormal frame on

(2

(M,g) and D—V =a € I'(ATM* @ End(TM)), and V is the Levi-Civita connection for g of

129

(M,g).
Key words:

1. Introduction. In the theory of Yang-
Mills connections, only the metric connections in a
vector bundle have been treated so far. However,
recently, Dragomir, Ichiyama and Urakawa (cf. [2])
developed a new Yang-Mills theory for arbitrary
connections D in a vector bundle E with bundle
metric A over a Riemannian manifold, not necessa-
rily satisfying a metric connection, by using the
concept of conjugate connection (cf. [6]). Precisely,
if D is a connection in a vector bundle £ — M,
then the connection D* given by

(L1) h(D%s,t) = X(h(s,t)) — h(s, Dxt),
’ X € X(M) and s,t € T(E),

is referred to as conjugate to D. Let (M,g) be a
closed (compact and connected) Riemannian mani-
fold. A Yang-Mills connection is a critical point of
the Yang-Mills functional
1 2
a2 M= [ IR,
M

on the space € of all connections in E, where R” is
the curvature tensor field for D € €. Equivalently,

D is a Yang-Mills connection if it satisfies the
Yang-Mills equation (cf. [7,8,16])

(1.3) SpRP =0
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(the Euler-Lagrange equations of the variational
principle associated with (1.2)). Note that, even if
a connection D is torsion-free, then the conjugate
connection D* is not torsion-free in general. In
fact, if (D, g) is a Weyl structure (cf. [4,5,10-15])
relative to a 1-form w on (M, g) which is torsion-
free, then D* is not torsion-free in general (other-
wise w=0, hence D= D* is the Levi-Civita
connection of (M, g)). From this point of view, D
and D* have different properties.

Recently, the present author obtained the
following

Theorem A [9]. A connection D in a vector
bundle E over a closed Riemannian manifold (M, g)
is a Yang-Mills connection if and only if the
conjugate connection D* is a Yang-Mills connec-
tion.

In this paper, we treat with an arbitrary given
connection D which is not necessarily metric
or torsion-free in the tangent bundle T'M over an
n-dimensional closed Riemannian manifold (M, g).
In §2, using properties of a connection D in the
tangent bundle £ = TM over a closed Riemannian
manifold (M,g) which has a Weyl structure
(D, g,w), i.e., Dg=w® g, where w is a 1-form on
M, we get the following

Theorem 1. Let (M,g) be a closed Rieman-
nian manifold, and (D,g,w) a Weyl structure in
the tangent bundle TM over (M,g). Then,
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(6p-RP" — 6pRP)(X)Y = (8dw)(X)Y
(X € X(M), Y e€T(E)).

By virtue of Theorem 1 and Theorem A, we
obtain

Corollary 2. If D is a Yang-Mills connec-
tion with Weyl structure (D, g,w) in the tangent
bundle TM over a closed Riemannian manifold
(M,g), then dw = 0.

In §3, we get the following

Theorem 3. Let D be a connection with
Weyl structure (D,g,w) in the tangent bundle
over a closed Riemannian manifold (M,g), and V
the Levi-Civita connection of (M,g). Assume
S [ale), RP(e;, X)) =0, where X € X(M) and
D—-V=a and {e};_; is an (locally defined)
orthonormal frame on (M,g). Then, the following
statements are equivalent:

(i) D is a Yang-Mills connection.
(i) 6y RP = 0.

2. The proof of Theorem 1 and Corol-
lary 2. This section consists of two subsections. In
the first subsection, we treat the Yang-Mills equation
in vector bundles over a closed Riemannian manifold
(M, g), using the concept of conjugate connection.
And then, in the second subsection we prove
Theorem 1 and Corollary 2.

2.1. Let E be a vector bundle, with bundle
metric h, over an n-dimensional closed Riemannian
manifold (M, g). Let D € € and V the Levi-Civita
connection of (M,g). The pair (D,V) induces a
connection in product bundles AP TM* @ E, also
denoted by D. Set AP(E):=T(N'TM*® E). We
consider the differential operator

dp : AP(E) — APTY(E),

(dpp)(X1, Xo, -+, Xpt1)
p+l -
_Z Z+1 DXSD (Xb 7X'7"'7Xp+1)7
gaEA”( ), X; € X(M) (i=1,2,---,p+ 1),
which are defined by
dp(w @) : = dw® €+ (~1)w A DE,

Dx(w®§):=(Vxw) &+ w® Dy,

for w e D(AN"TM*), £ € T(E) and X € X(M).
Let 6p be the formal adjoint of dp with respect
to the L?-inner product
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(0.0) = / e

for ¢, 1 € AP(E). Here (, ) is the bundle metric in
N TM* ® E induced by the pair (g, k) and v, is the
canonical volume form on (M,g). The following
identity is elementary, yet crucial (cf. [2])
Spp = (1) (+7-dp - #)(p)

= (=) (x-dp- - #)()
for any ¢ € AP"1(E). Here, x: AY(E) — A" (E),
(0 < g < n), is the Hodge operator with respect to g.
Let {e;};_; be a local orthonormal frame on (M, g)
and {#’}_, the dual coframe. Let {d,}]_, be a local
orthonormal frame of (F,h) and {U“}'7 , the dual
coframe, where v is the rank of E. Using the
orthonormal frame and the dual frame on (M, g),
and the orthonormal frame and the dual frame of
(E, h), and properties of a connection in a smooth
vector bundle E over (M, g), we proved Theorem A
(cf. [9]). Note that (2.1) may also be written as
(cf. [2,3])

(2.1)

(6pp) (X1, -

==Y (D e)ei, X1,
i=1

The connections D, D* € € naturally induce con-
nections, denoted by the same symbols, in End(F)
(:= E® E*). Then, a straightforward argument
shows that D, D* € €gyq(p) are conjugate connec-
tions. The following curvature property is immedi-
ate (cf. [1, Proposition 2.1])

(23) h(RD(Xv Y)S,t) = _h(szD*(Xa Y)t)a

for s,t e I'(E) and X,Y € X(M).

Now, we find from (1.3) and (2.2) that the
connection D* is a Yang-Mills connection if and
only if

» Xp)

(2.2) ).

(2'4) - Z(DeLRD*)«ei» ')7 ) = 0.

2.2. Let D be a connection with Weyl struc-
ture which is not necessarily metric or torsion-free
in the tangent bundle T'M over an n-dimensional

closed Riemannian manifold (M, g), that is,
(2.5) Dg=w®yg.

In this case, we have the following properties:
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D*xY = DxY + w(X)Y

(2.6) (X e€X(M), YeT(TM)),
RP”(X,Y)Z = RP(X,Y)Z + dw(X,Y)Z
(2.7) (X,Y € X(M), Z € T(TM)),
D*g = —Dg.

By virtue of (2.2) and (2.7), for X € X(
(T M)

(6p-RP")(X)Y

M) and Y €

== (DeR”) (e, X)Y

i=1

:7Z{De, eu ) )

- RD (€5, Ve, X)Y — R” (es,

— RP (V,e;, X)Y
X)D, Y}
=— i{pe, (RP(e:, X)Y + dw(e;, X)Y)

— RP(V.e;, X)Y — dw(V,ei, X)Y

— RP(e;, V., X)Y — dw(e;, Vo, X)Y
— RP(e;, X)D.Y — dw(e;, X)D,,Y}.

From (2.2) and (2.6
I(TM)

(6pR")(X)Y
= D RPN X)Y

= S D (RP(en X)Y) — RO (V00 X)Y

), we get for X € X(M) and Y €

- RD(eia Ve X)Y - RD(eivX)DZ,Y}

= _Z{De, eh )

— RD(ei, V. X)Y — RP(e;, X)D, Y}
M) and Y e T(TM) we

RP(V..ei, X)Y

Consequently, for X € X(
have

(6p- R )(X)Y —
— zn:{Dﬁl (dw(e;, X)Y)
—dw(e;, Ve, X)Y — dw(e;,

— 3 (D),
i=1

= (b9dw)(X)Y = (8dw)(X)Y

(6pR”)(X)Y
— dw(Vee, X)Y

X)D,, Y}

X)Y == (Vedw)(es, X)Y

i=1
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Thus, the proof of Theorem 1 is completed. Since X
is arbitrary in X(M) and Y is arbitrary in T'(TM),
by virtue of Theorem 1 and Theorem A, Corollary 2
is obtained.

3. The proof of Theorem 3. Let (D,g) be a
Weyl structure with respect to the 1-form w on M.
We put DxY — VxY = o(X)Y, (X € X(M) and
Y eI'(TM)). From (2.6) and the definition of
a e (ATM* @ EndT M), we have

D*xY =VxY + o(X)Y + w(X)Y,

(3:1) (X eX(M) and Y eT(TM)).

Moreover, we get the following

Lemma 3.1. g(a(X)Y,2) =9(Y,—a(X)Z —
wX)Z), (X eX(M);Y,ZeT(TM)).

Proof. By virtue of the fact Dg=w ® g,

9(a(X)Y, 2)
:g(D)(Y— VXY Z)
= X(9(Y, 2)) - (Dxg)(Y, 2)

)
—9(Y,DxZ) - X(g(Y, 2)) +
=g(Y,—a(X)Z - w(X)Z).

Thus, the proof of this Lemma is completed.
From the fact D*g = —Dg = —w ® g, we get for
XeX(M)and Y, Z eT(TM)

9(6pR")(X)Y, 2)

g<Ya VXZ)

= — Zg D* RD)<627X)Y7 Z)

i=1

- Z{e el,

+ w(e)g(R" (e, X)Y, Z)
(D(v«?,eza )Y,Z)—Q(RD(Q-,VEZX)Y,Z)
— g(R"(e;, X)D.Y, Z) — g(R"(e;, X)Y, D}, Z)}.

By virtue of (3.1), the equation above changes as
follows:

X)Y, 2))

9((6pR")(X)Y, 2)

:—Z{gVR )(ei, X)Y, Z)

(RD(eu X) (61)Y Z)
(RD(ew X)Y, a(ei)Z)
(ei) g(RP(ei, X)Y, Z)}.

Consequently, from (2.2), (3.
obtain

(3.2)

2) and Lemma 3.1, we
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9((6pR")(X)Y, Z)

n

9((6vR7)(X)Y — Z[a(ei), RP(e1, X)IY, Z),

where X € X(M) and Y,Z € T(TM). Since Y is
arbitrary in I'(T'M) and X is arbitrary in X(M), the
proof of Theorem 3 is completed.
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