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Abstract:

For a certain quartic polynomial, there exists a homeomorphism between the

set of all components of the filled-in Julia set with the Hausdorff metric and some subset of the
corresponding symbol space with the ordinary metric. But these sets are not compact with
respect to each metric. We introduce a new topology with respect to which these sets are

compact.
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1. Introduction and the main results.
Let C = CU{oo} be the Riemann sphere and let
I C — C be a rational function of degree d > 2. In
the theory of complex dynamics, there are two
important sets called the Fatou set F(f) and the
Julia set J(f). The Fatou set F(f) is the set of
normality in the sense of Montel for the family
{f"}oys where f* = fo---o f. The Juliaset J(f) is
the complement C\ F(f). J(f) is either connected
or else has uncountably many connected compo-
nents. In the case that f is a polynomial, we define
the filled-in Julia set K(f) as

K(f)={z€ C:{f"(2)},~, is bounded}.

J(f) is the topological boundary of K(f). We call
A(f) = C\ K(f) the attracting basin of the point
at infinity.

We often consider some model in order to
simplify the dynamics of f. The model is the symbol
space and the shift map which defines a dynamical
system on the symbol space. Let X“ be the
countable product of a set X

Definition 1.1. The symbol space on q sym-
bols is the countable product X, ={1,2,...,¢}".
For s = (s,) and t = (t,) € &, the metric p on 3, is
defined as
p(s,t) = Z(S(L;t"), where 6(k,1) = {

n=0 2

1 ifk#1,
0 if k=1
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Then (X, p) is a compact metric space. The shift
map o : Xy — 3, is defined as

)) = (81782, .. )

The shift map o is continuous with respect to the
metric p.

The connectivity of the Julia set J(f) is
affected by the behavior of finite critical points.

Theorem 1.2 [4,pp.11-12]. Let f be a poly-
nomial of degree d > 2. If all finite critical points of
f are in A(f), then J(f) is totally disconnected.
Furthermore f|J(f) is topologically conjugate to the
shift map o : Xq — Xy4. On the other hand, J(f) is
connected if and only if all finite critical points of f
are in K(f).

If some critical orbits of a polynomial converge
to the point at infinity but not all critical orbits
converge to it, then the Julia set is disconnected and
not generally totally disconnected. We can simplify
the dynamics of some quartic polynomial on the
Julia set when the Julia set is disconnected and not
totally disconnected, see [1].

Definition 1.3. Let f be a polynomial of
degree d > 2. The Green’s function associated
with K(f) is defined as

a((so0, 51, 82, - -

1
— 1 + | fn
G(z) = lim —log™ [ f"(2)],
where log" z = max{logz,0}. G(z) is zero for
z € K(f) and positive for z € C\ K(f). Note that
G satisfies the identity G(f(z)) = d-G(2).
Definition 1.4. The triple (f,U,V) consist-
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ing of bounded simply connected domains U and V'
such that U C V and a holomorphic proper map
f:U—=V of degree d, is called polynomial-like
map of degree d. The filled-in Julia set K(f) of
a polynomial-like map (f,U,V) is defined as

K(f) ={z€U:{f"(2)},= Cc U}

Let f be a quartic polynomial and let ¢y, ¢o and
c3 be finite critical points of f. Let G be the Green’s
function associated with the filled-in Julia set K(f).
Suppose that G(c1) = G(c2) = 0 and G(c3) > 0, that
is, ¢1, co € K(f) and ¢3 € A(f).

Let U be the bounded component of C\
G~ (G(f(c3)). Suppose that U, and Up are the
different bounded components of C\ G7'(G(c3))
such that ¢; € Uy and ¢y € Ug. Then U4 and Up are
proper subsets of U. Furthermore (f|;;,,Ua,U) and
(flyr,, U, U) are polynomial-like maps of degree 2.
Suppose that filled-in Julia sets Ka = K(f|y,) and
Kp = K(fly,) are connected.

Let K(f)" be the set of all components of
K(f). Since ¢3 is in A(f), the Julia set J(f) and the
filled-in Julia set K(f) are disconnected and have
uncountably many components respectively. There-
fore K(f)" is an uncountable set. K(f)" becomes
a metric space with the Hausdorff metric dpy.
We define a map F: (K(f)",dy) — (K(f)",dy) as
F(K) = f(K) for K € K(f)". Then F is continuous.

Let 36 = {1,2,3,4,A,B}* be the symbol space
which we treat mainly in this paper. We define a
subset ¥ of ¥¢ as follows: s = (s,) € ¥ if and only if
(S1) if s, = A, then s, = A,

(S2) if s, = B, then s, =B,

(S3) if s, = A and s,,_1 # A, then s,_1 =3 or 4,
(S4) if s, =B and s,—1 # B, then 5,1 =1 or 2,
(S5) if s € ¥y ={1,2,3,4}”, then there exist sub-

sequences (s, and (s )5, such that
Sp(ry = 1 or 2 for all k> 1 and 5;1(1) =3 or 4
forall { > 1.

The author proved the following theorems
in [1].

Theorem 1.5. Assume that filled-in Julia
sets K4 and Kp are connected. Then there exists a
homeomorphism A : (K(f)",dy) — (X, p) such that
AoF=00A.

Theorem 1.6. Under the assumption of
Theorem 1.5, there exist polynomials g1 and g of
degree 2 and a homeomorphism h on K(f) such that

h(J(f) = I ({91, 92)),
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where (g1, g2) is the polynomial semigroup generated
by g1 and g2 and J({g1, g2)) is the Julia set of (g1, g2).

Theorem 1.5 means that componentwise dy-
namics of f on K(f) (of course, also on J(f)) can be
simplified as dynamics of the shift map on . The
space (X, p) is not compact as the following example
shows. The sequence

0
s =(1,1,...,1,B,B,B,...)
——
n times n=0

in X converges to s = (1,1,1,...) but s is not in 3.
Since (X, p) is not compact, although the dynamical
system (K(f)*,f) is conjugated by (X,0) by
Theorem 1.5, many good properties of the symbolic
dynamical system are not available. So we impose a
question: Is it possible to introduce a new topology
on Y which makes ¥ compact and reflects the
dynamical system (K(f)", f) in a natural way? In
this paper, we answer this question.

Theorem 1.7. Let ¥ be as above. Then
there exists a topology O of ¥ such that (X,0)
is compact, metrizable, perfect and totally discon-
nected. Moreover the shift map o : (X,0) — (£,0)
18 continuous.

Regarding A in Theorem 1.5 just as a bijection
between the sets K(f)" and ¥, we define G to be
the quotient topology of K(f)" relative to A~! and
the topology O of ¥ as in Theorem 1.7. Then A :
(K(f)",6) — (%,0) is a homeomorphism such that
AoF =00A.

Corollary 1.8. (K(f)",G) is compact, met-
rizable, perfect and totally disconnected. Moreover
F:(K(f)",6) — (K(f)",9) is continuous.

2. Known results in general topology.
For the following definitions and theorems we refer
to [2,5].

Definition 2.1. Let X be a topological
space. X is sequentially compact if every sequence
of points of X contains a convergent subsequence.
X is countably compact if every countable open
covering of X has a finite subcovering. X is a
Lindelof space if every open covering of X has a
countable subcovering.

Theorem 2.2. If a topological space X is
sequentially compact, then X is countably compact.

Theorem 2.3. If a topological space X sat-
isfies the second axiom of countability, then X is a
Lindeldf space.

Theorem 2.4. A topological space X s
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compact if and only if X is a countably compact
Lindeldf space.

Definition 2.5. Let X be a topological
space. X is a Ti-space if for any distinct points z
and y € X, there exists an open neighborhood U of z
such that y € U. X is a Ty-space or a Hausdorff
space if for any distinct points x and y € X, there
exist open neighborhoods U of x and V of y such
that UNV = 0.

Definition 2.6. A Tj-space X is a regular
space if for any x € X and any closed set L with
x ¢ L, there exists open neighborhoods U of x and V
of L such that UNV = (.

Definition 2.7. A Tj-space X is a normal
space if for any closed sets A and B of X with
AN B =10, there exists open neighborhoods U of A
and V of B such that UNV = (.

Theorem 2.8. FEach compact Hausdorff
space is normal.
Theorem 2.9. A topological space X satis-

fies the second axiom of countability is metrizable if
and only if X is a regular space.

Definition 2.10. A topological space X is a
0-dimensional space if there exists an open basis B
of X such that every B € B is open and closed.

Theorem 2.11. Let X be a compact Haus-
dorff space. X is a 0-dimensional space if and only if
X 1s totally disconnected.

3. Definition of a new topology of ¥. Our
goal in this section is to prove Theorem 1.7. We
define a topology of 3. If s = (AAA,...) € X, we
define subsets Ngk) of ¥ as

Ns(k) ={stu{t=(t,) €X:t,=1or2forn <k}.
Similarly, if s = (B,B,B,...) € X,
NW = {syU{t=(t,) €X:t, =3 or 4 forn < k}.

If s = (s0,.--,8,AAA,...) € X with s; #£ A, Ns(k> is
the union of {s} and

Sn
t,) €EX i t, =
{( ) {101"2

Similarly, if s=(sg,...,$,B,B,B,...)€X with
s1 # B, N is the union of {s} and

{(t)eZ't—{Sn if n <1,
" "\ 3or4

ifl+1<n
Finally, if s = (s,) € ¥ N Xy,
Ngk) ={t=(t,) € X:t, =s, for n < k}.

if n <l

forn<k}.
ifl+1<n

for n < k’}
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Note that N,SkH) C N,gk) for all s € ¥ and k > 0. Let
N(s)={NP}2 and N = {N(s) : s € B}.

Lemma 3.1. N is a neighborhood system
of .

Proof. Let s € X. (i) If N € N(s), then s € N.
(ii) For Ny and Ny, € N (s), there exist ky and ks > 0
such that Ny = N and N, = N, Fix k>
max{ky, ko} and let N3 = N, Then N, e N(s)
and N3 C Ny N Ny. (iii) For N € N(s), there exists
k> 0 such that N = N For t € N, let N' = N®
Then N’ € N(t) and N’ C N. O

Therefore (X, 0) is a topological space, where
O is the topology generated by N. We obtain
immediately the following lemmas.

Lemma 3.2. (X,0) satisfies the first aziom
of countability.

Proof. We choose a neighborhood basis of
s € X as N(s). O

Lemma 3.3. (X,0) is a Hausdorff space.

Proof. For distinct points s=(s,) and ¢ =
(t,) € X, there exist k>0 such that s # .
Let M =N e N(s) and N = Nt(k') € N(t). Then
MNN =9. O

Lemma 3.4. (X,0) is perfect.

Proof. For s € ¥ and any neighborhood O € O
of s, there exists N € N(s) such that N C O. It is
clear that (O\ {s})NE D (N \{s})NnZ #0. O

We show that (3, 0) is compact from now on.
By Theorem 2.2, 2.3 and 2.4, we need only to show
that (X,0) is sequentially compact and satisfies
the second axiom of countability.

Lemma 3.5. (3,0) is sequentially compact.

Proof. Let {s = (SSP)};; C X. We choose a
subsequence {s(®}>° = as follows: [Step 0] There
exists a subsequence {s*)}7°, such that sf)kl) = s for
[ > 1, where sy = 1, 2, 3 or 4. Let s be one of s,
Then s = (s, s§0>, sé(]), ...). We rewrite s) as s(*).
[Step 1] There exists a subsequence {s*")}7°, such
that sgk” = sy for I > 1, where s; =1, 2, 3 or 4. Let
s be one of s*). Then s = (so,sl,sg),sgm,...).
We rewrite s as s, [Step a] Inductively, we
can choose 5 = (s, ..., 54, sgﬁl, 5&227 ...). Let s =
(s0,81,82...). If s€ X, for a neighborhood O € O
of s, there exists N =N e N(s) such that
NcO. If a>ay, then s e N c O. Therefore
5% converges to s with respect to O. If s¢ ¥,
there exists a unique 8 > 0 such that (i) sg_; = 3 or
4 and s, =1 or 2 for B<n or (i) sg_1 =1 or 2
and s, = 3 or 4 for 8 < n. If (i) is the case, let
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t{(A,A,A,...) if =0,
(s05---,88-1,A,AA,..) if B> 1.
If (ii) is the case, let
t:{(B,B,B,...) if 6 =0,
(so,...,83-1,B,B,B,...) if 3> 1.

Then s converges to ¢t with respect to O by the
same argument. Therefore (X,0) is sequentially
compact. O

Lemma 3.6. (X,0) satisfies the second axi-
om of countability.

Proof. Let
B= U N (s).
SEX\Xy
First we show that B is an open basis of (X, 0). It is
clear that BC O. Let O € O and s=(s,) € O. If
s € X\ Xy, then there exists M € N(s) C B such
that s € M C O by the definition of O. If s € X N Xy,
there exists N = N € N (s) such that s € N C O
by the definition of O. However we do not know
yet whether N € B at this stage. Let t=
(50,. ooy Sky Tkt 1, thr2, - - ) eNN (Z \ 24) and M =
Nt(k). Then M € B and, in fact, M = N. Therefore
s € M = N C O. Consequently B is an open basis of
(3,0). The countability of B follows from that of
¥\ X4 and N (s). O

We obtain the following lemma by Lemma 3.5
and 3.6.

Lemma 3.7. (%,0) is compact.

By Theorem 2.8, (X,0) is normal, especially
(3, 0) is regular. Therefore we obtain the following
lemma by Theorem 2.9.

Lemma 3.8. (X,0) is metrizable.

Next, we show that (X,0) is totally discon-
nected. By Theorem 2.11, we need only to show that
(3, 0) is a 0-dimensional space.

Lemma 3.9. Letse X\ X,

(i) If s=(A,AA,...) or s=(B,B,B,...), then
Nﬁk) is open and closed for k > 0.

(ii) If s=(S0,-.-,8,AA A ...) with ss£A or
s=(s0,..-,8,B,B,B,...) with s;#B, then
Ngk) is open and closed for k > 1+ 1.

Proof. (i) Let s=(AAA,...) (resp. s=
(B,B,B,...)). We show that NP s closed. Let
M=%\ N For t = (tn) € M, there exists a <k
such that ¢, # 1 or 2 (resp. t, #3 or 4). Then
NYANY =¢ and N c M. Therefore M is
open and N is closed. (ii) The proof is similar
to that of (i). O
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For s=(A,A,A...) or s=(B,B,B...), let
N'(s) = N'(s). And for s = (sq,...,s,AA,...) with
si#A or s=(sg,...,5,B,B,...) with s, #B, let
N'(s) ={N" . k> 141} Let

B = U N'(s).
SEX\Xy
Lemma 3.10. B is an open basis of (¥,0).
Proof. The proof 1is smiler to that of
Lemma 3.6. (]

From Lemma 3.9 and Lemma 3.10, (3,0) is a
0-dimensional space. Therefore we obtain the fol-
lowing lemma by Theorem 2.11.

Lemma 3.11. (X,0) is totally disconnected.

Finally, we show the following lemma.

Lemma 3.12. The shift map o:(%,0) —
(3, 0) is continuous.

Proof. Let s=(sg,$1,82,...) €X. For a
neighborhood O € O of o(s) = (s1,2,...), there

exists N = thl(ci) € N(o(s)) such that N CO.
We take a neighborhood M = N§k+1) of s. Then
o(M)= N C O. Therefore o:(2,0)— (%,0) is
continuous. U

We have completed the proof of Theorem 1.7.

4. Appropriateness of the convergence
with respect to O. We shall formulate
A:K(f)" — X. We refer to [1] for the detailed
proof. Let U, Uy, Up, K4 and Kp be the same as the
section 1. There exist forward invariant rays Ra;
and Rp; under f such that Ra; lands at a point on
0K, and Rp; lands at a point on 0Kp. These
landing points are repelling or parabolic fixed points
of f. Let Ras and Rpy be components of f~1(Ry4)
and f~!(Rp) which satisfy Raa N U4 # () and Rps N
Up # () and differ from R4; and Rp;. We set V4 =
U\ (KA @] RAI) and Vg = U\ (KB @] RBI)~ Let Iy, I,
I3 and I, be branches of f~! such that

11:VA—>U1, IQZVA—>U2,
Ig:VB—>U3, I4ZVB—>U4,
where U; and U, are components of Uy \ K4 U
Ra1 URy9. Similarly, Us and U, are components

of UB\KBUR31 U Rpy. We define A : K(f)* — Y
as follows: for K € K(f)",

i if f(K) C U
B if U(K) = Ko,

where n > 0 and ¢ = 1,2, 3,4. We can also formulate
ALY — K(f)" as follows: if s, = A and s,,_; # A,
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A_l(s) =I,0---0l, (Kju).
If s, =B and s,_1 # B,
A_l(s) =I,0---0l, (Kp).

If s € ¥4, there exists a subsequence (s,()),2; such
that s,;) =1 or 2 and s,;-1 =3 or 4. We set
KV =1Iy0---0l,, (U4). Then K" c K\ and

Al (s) =K.
=1

Note that (1,2, Kgl) is a one-point set, which is the
consequence of that I, decreases the Poincaré
distance on Vy or Vg, see [1].

We reconsider the sequence

s™=(1,1,...,1,B,B,B,...)
———
n times n=0
in ¥. It converges to s=(1,1,1,...)¢ ¥ with

respect to p. However it converges to s=
(AJAJA,..) € ¥ with respect to O. We check that
the convergence with respect to O is “appropriate”.
By the definition of A~

A—l(s(n)) — _[1 O - OIl(KB)-
n times

Let K™ = A~!(s(). Since I, decreases the Poin-
caré distance on Vj, the sequence {K™}>
K(f)" converges to not K4 € K(f)" but a one-point
set K = {(} with respect to the Hausdorff metric
dg. The point (¢ is actually in 0Ky, and therefore
K ¢ K(f)*. We expect that {K(}>  converges to
K4 with respect to G. In fact,

lim K™ = lim A7'(s™) = A7} ( lim 5("))

n—oo n—oo n—oo

= A_1<S) =Ky

since A7':(3,0)— (K(f)",G) is continuous.
Therefore we express that the convergence of
{s(M}> | with respect to O is “appropriate” in the
sense that {K(}>  converges to K4 with respect
to G.

5. Applications.
rems are fundamental.

Theorem 5.1 [3]. Let g be a rational func-
tion of degree at least two. If z € J(g), then

J(g) = [_]gk<z>.

The following two theo-
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Theorem 5.2 [3]. Let g be a rational func-
tion of degree at least two. Then

J(g) = {repelling periodic point of g}.

We obtain analogies of Theorem 5.1 and 5.2.
Theorem 5.3. Let (X,0) be as in Theorem
1.7 and let s € . Then

where the closure is taken in (£, 0).

Proof. Let s = (sg, 81,82,...) € ¥ and let
lor2 if sg#A,
u =
3ord if sy #B.

Then (u, sg, 51, 82,...) € 0~ 1(s). Fort = (A,A A, ...),
we consider the sequence

00
s(a) _ (17”.’1,u750781,.. )
N——
« times a=1
00
clJo )
k=1

Then s converges to t = (A, A, A, ...) with respect
to O. Next, for t= (to,t1,...,t,AAA ... )ED
with t; # A, we consider the sequence

o0
S(a> = (to,...,tl,l,...,l,u,SmSl,...)
——
a times a=1
o0
C Uaik(s).
k=1
Then s(® converges to t = (to, t1,...,t;,A,AA,...)

with respect to O. In the case of “B”, we
choose “3” instead of “1”. Finally, for t=
(to,t1,t2,...) € XN Xy, we consider the sequence

o0

{S((y) = (to,t1y- - s ta, U, S0, S1, 82, - - )}

a=1
o0

clJo ")
k=1

Then s converges to t= (tg,t1,ts,...) with
respect to O. (]

Remark 5.4. The closure of the backward
orbit of s € ¥ under ¢ does not necessarily coincide
with ¥ in (¥, p). For example,

(AJAA .. ) ¢ G o~%((B,B,B,...)),
k=1

where the closure is taken in (3, p).
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Corollary 5.5. Let (K(f)",G) be as in
Corollary 1.8 and let K € K(f)*. Then

K(f) = FHm),
k=1
where the closure is taken in (K(f)",G).

Theorem 5.6. Let (X,0) be as in Theorem
1.7. Then

¥ = {periodic point of ¢ in X},

where the closure is taken in (£, 0).

Proof. We show that each non-periodic point
t €Y is a limit point of a sequence of periodic
points of X. For t= (ty,t1,...,t,AA/A,...) EX
with ¢; # A, we consider the sequence

{s@ = (to,t1,....t;,1,1,...,1,
————
« times 00
totr, ..t 11,001,
a=1

o times

of period a+141. Then s converges to t=
(to,t1,- -5t A AJA, . ..) with respect to O. In the
case of “B”, we choose “3” instead of “1”. For a
non-periodic point ¢ = (ty,t1,t2,...) € LNy, we
consider the sequence

{s(“) = (tg,tl,...,ta,tg,tl,...,ta,...)}

o0

a=p

of period a4+ 1, where B is a natural number
which satisfies s} € 3. Then s(® converges to t =
(to, t1,t9,...) with respect to O. O
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Remark 5.7. The closure of the set of all
periodic points of ¥ does not coincide with X in
(X%, p) since t = (to, t1,...,t, A A A, ..) with ¢ # A
is an isolated point in (X, p).

Corollary 5.8. Let
Corollary 1.8. Then

K(f)" = {periodic point of F in K(f)*},

where the closure is taken in (K(f)",G).
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