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Abstract: For a certain quartic polynomial, there exists a homeomorphism between the

set of all components of the filled-in Julia set with the Hausdorff metric and some subset of the

corresponding symbol space with the ordinary metric. But these sets are not compact with

respect to each metric. We introduce a new topology with respect to which these sets are

compact.
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1. Introduction and the main results.

Let ĈC ¼ C [ f1g be the Riemann sphere and let

f : ĈC ! ĈC be a rational function of degree d � 2. In

the theory of complex dynamics, there are two

important sets called the Fatou set F ðfÞ and the

Julia set JðfÞ. The Fatou set F ðfÞ is the set of

normality in the sense of Montel for the family

ffng1n¼0, where f
n ¼ f � � � � � f. The Julia set JðfÞ is

the complement ĈC n F ðfÞ. JðfÞ is either connected

or else has uncountably many connected compo-

nents. In the case that f is a polynomial, we define

the filled-in Julia set KðfÞ as

KðfÞ ¼ fz 2 C : ffnðzÞg1n¼0 is boundedg:

JðfÞ is the topological boundary of KðfÞ. We call

AðfÞ ¼ ĈC nKðfÞ the attracting basin of the point

at infinity.

We often consider some model in order to

simplify the dynamics of f . The model is the symbol

space and the shift map which defines a dynamical

system on the symbol space. Let X! be the

countable product of a set X

Definition 1.1. The symbol space on q sym-

bols is the countable product �q ¼ f1; 2; . . . ; qg!.
For s ¼ ðsnÞ and t ¼ ðtnÞ 2 �q, the metric � on �q is

defined as

�ðs; tÞ ¼
X1
n¼0

�ðsn; tnÞ
2n

; where �ðk; lÞ ¼ 1 if k 6¼ l,

0 if k ¼ l.

�

Then ð�q; �Þ is a compact metric space. The shift

map � : �q ! �q is defined as

�ððs0; s1; s2; . . .ÞÞ ¼ ðs1; s2; . . .Þ:

The shift map � is continuous with respect to the

metric �.

The connectivity of the Julia set JðfÞ is

affected by the behavior of finite critical points.

Theorem 1.2 [4, pp.11–12]. Let f be a poly-

nomial of degree d � 2. If all finite critical points of

f are in AðfÞ, then JðfÞ is totally disconnected.

Furthermore f jJðfÞ is topologically conjugate to the

shift map � : �d ! �d. On the other hand, JðfÞ is

connected if and only if all finite critical points of f

are in KðfÞ.
If some critical orbits of a polynomial converge

to the point at infinity but not all critical orbits

converge to it, then the Julia set is disconnected and

not generally totally disconnected. We can simplify

the dynamics of some quartic polynomial on the

Julia set when the Julia set is disconnected and not

totally disconnected, see [1].

Definition 1.3. Let f be a polynomial of

degree d � 2. The Green’s function associated

with KðfÞ is defined as

GðzÞ ¼ lim
n!1

1

dn
logþ jfnðzÞj;

where logþ x ¼ maxflog x; 0g. GðzÞ is zero for

z 2 KðfÞ and positive for z 2 C nKðfÞ. Note that

G satisfies the identity GðfðzÞÞ ¼ d�GðzÞ.
Definition 1.4. The triple ðf; U; V Þ consist-
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ing of bounded simply connected domains U and V

such that U � V and a holomorphic proper map

f : U ! V of degree d, is called polynomial-like

map of degree d. The filled-in Julia set KðfÞ of

a polynomial-like map ðf; U; V Þ is defined as

KðfÞ ¼ fz 2 U : ffnðzÞg1n¼0 � Ug:

Let f be a quartic polynomial and let c1, c2 and

c3 be finite critical points of f . Let G be the Green’s

function associated with the filled-in Julia set KðfÞ.
Suppose that Gðc1Þ ¼ Gðc2Þ ¼ 0 and Gðc3Þ > 0, that
is, c1, c2 2 KðfÞ and c3 2 AðfÞ.

Let U be the bounded component of Cn
G�1ðGðfðc3ÞÞ. Suppose that UA and UB are the

different bounded components of C nG�1ðGðc3ÞÞ
such that c1 2 UA and c2 2 UB. Then UA and UB are

proper subsets of U. Furthermore ðf jUA
; UA; UÞ and

ðfjUB
; UB; UÞ are polynomial-like maps of degree 2.

Suppose that filled-in Julia sets KA ¼ Kðf jUA
Þ and

KB ¼ Kðf jUB
Þ are connected.

Let KðfÞ� be the set of all components of

KðfÞ. Since c3 is in AðfÞ, the Julia set JðfÞ and the

filled-in Julia set KðfÞ are disconnected and have

uncountably many components respectively. There-

fore KðfÞ� is an uncountable set. KðfÞ� becomes

a metric space with the Hausdorff metric dH .

We define a map F : ðKðfÞ�; dHÞ ! ðKðfÞ�; dHÞ as

F ðKÞ ¼ fðKÞ for K 2 KðfÞ�. Then F is continuous.

Let �6 ¼ f1; 2; 3; 4;A;Bg! be the symbol space

which we treat mainly in this paper. We define a

subset � of �6 as follows: s ¼ ðsnÞ 2 � if and only if

(S1) if sn ¼ A, then snþ1 ¼ A,

(S2) if sn ¼ B, then snþ1 ¼ B,

(S3) if sn ¼ A and sn�1 6¼ A, then sn�1 ¼ 3 or 4,

(S4) if sn ¼ B and sn�1 6¼ B, then sn�1 ¼ 1 or 2,

(S5) if s 2 �4 ¼ f1; 2; 3; 4g!, then there exist sub-

sequences ðsnðkÞÞ1k¼1 and ðs0nðlÞÞ
1
l¼1 such that

snðkÞ ¼ 1 or 2 for all k � 1 and s0nðlÞ ¼ 3 or 4

for all l � 1.

The author proved the following theorems

in [1].

Theorem 1.5. Assume that filled-in Julia

sets KA and KB are connected. Then there exists a

homeomorphism � : ðKðfÞ�; dHÞ ! ð�; �Þ such that

� � F ¼ � � �.
Theorem 1.6. Under the assumption of

Theorem 1.5, there exist polynomials g1 and g2 of

degree 2 and a homeomorphism h on KðfÞ such that

hðJðfÞÞ ¼ Jðhg1; g2iÞ;

where hg1; g2i is the polynomial semigroup generated

by g1 and g2 and Jðhg1; g2iÞ is the Julia set of hg1; g2i.
Theorem 1.5 means that componentwise dy-

namics of f on KðfÞ (of course, also on JðfÞ) can be

simplified as dynamics of the shift map on �. The
space ð�; �Þ is not compact as the following example

shows. The sequence

sðnÞ ¼ ð1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n times

;B;B;B; . . .Þ

8<
:

9=
;

1

n¼0

in � converges to s ¼ ð1; 1; 1; . . .Þ but s is not in �.

Since ð�; �Þ is not compact, although the dynamical

system ðKðfÞ�; fÞ is conjugated by ð�; �Þ by

Theorem 1.5, many good properties of the symbolic

dynamical system are not available. So we impose a

question: Is it possible to introduce a new topology

on � which makes � compact and reflects the

dynamical system ðKðfÞ�; fÞ in a natural way? In

this paper, we answer this question.

Theorem 1.7. Let � be as above. Then

there exists a topology O of � such that ð�;OÞ
is compact, metrizable, perfect and totally discon-

nected. Moreover the shift map � : ð�;OÞ ! ð�;OÞ
is continuous.

Regarding � in Theorem 1.5 just as a bijection

between the sets KðfÞ� and �, we define G to be

the quotient topology of KðfÞ� relative to ��1 and

the topology O of � as in Theorem 1.7. Then � :
ðKðfÞ�;GÞ ! ð�;OÞ is a homeomorphism such that

� � F ¼ � � �.
Corollary 1.8. ðKðfÞ�;GÞ is compact, met-

rizable, perfect and totally disconnected. Moreover

F : ðKðfÞ�;GÞ ! ðKðfÞ�;GÞ is continuous.

2. Known results in general topology.

For the following definitions and theorems we refer

to [2,5].

Definition 2.1. Let X be a topological

space. X is sequentially compact if every sequence

of points of X contains a convergent subsequence.

X is countably compact if every countable open

covering of X has a finite subcovering. X is a

Lindelöf space if every open covering of X has a

countable subcovering.

Theorem 2.2. If a topological space X is

sequentially compact, then X is countably compact.

Theorem 2.3. If a topological space X sat-

isfies the second axiom of countability, then X is a

Lindelöf space.

Theorem 2.4. A topological space X is
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compact if and only if X is a countably compact

Lindelöf space.

Definition 2.5. Let X be a topological

space. X is a T1-space if for any distinct points x

and y 2 X, there exists an open neighborhood U of x

such that y 62 U . X is a T2-space or a Hausdorff

space if for any distinct points x and y 2 X, there

exist open neighborhoods U of x and V of y such

that U \ V ¼ ;.
Definition 2.6. A T1-space X is a regular

space if for any x 2 X and any closed set L with

x =2 L, there exists open neighborhoods U of x and V

of L such that U \ V ¼ ;.
Definition 2.7. A T1-space X is a normal

space if for any closed sets A and B of X with

A \B ¼ ;, there exists open neighborhoods U of A

and V of B such that U \ V ¼ ;.
Theorem 2.8. Each compact Hausdorff

space is normal.

Theorem 2.9. A topological space X satis-

fies the second axiom of countability is metrizable if

and only if X is a regular space.

Definition 2.10. A topological space X is a

0-dimensional space if there exists an open basis B
of X such that every B 2 B is open and closed.

Theorem 2.11. Let X be a compact Haus-

dorff space. X is a 0-dimensional space if and only if

X is totally disconnected.

3. Definition of a new topology of �. Our

goal in this section is to prove Theorem 1.7. We

define a topology of �. If s ¼ ðA;A;A; . . .Þ 2 �, we
define subsets N

ðkÞ
s of � as

NðkÞ
s ¼ fsg [ ft ¼ ðtnÞ 2 � : tn ¼ 1 or 2 for n � kg:

Similarly, if s ¼ ðB;B;B; . . .Þ 2 �,

NðkÞ
s ¼ fsg [ ft ¼ ðtnÞ 2 � : tn ¼ 3 or 4 for n � kg:

If s ¼ ðs0; . . . ; sl;A;A;A; . . .Þ 2 � with sl 6¼ A, N
ðkÞ
s is

the union of fsg and

ðtnÞ 2 � : tn ¼ sn if n � l,

1 or 2 if lþ 1 � n

�
for n � k

� �
:

Similarly, if s ¼ ðs0; . . . ; sl;B;B;B; . . .Þ 2 � with

sl 6¼ B, N
ðkÞ
s is the union of fsg and

ðtnÞ 2 � : tn ¼
sn if n � l,

3 or 4 if lþ 1 � n

�
for n � k

� �
:

Finally, if s ¼ ðsnÞ 2 � \ �4,

NðkÞ
s ¼ ft ¼ ðtnÞ 2 � : tn ¼ sn for n � kg:

Note that N
ðkþ1Þ
s � N

ðkÞ
s for all s 2 � and k � 0. Let

N ðsÞ ¼ fN ðkÞ
s g1k¼0 and N ¼ fN ðsÞ : s 2 �g.

Lemma 3.1. N is a neighborhood system

of �.

Proof. Let s 2 �. (i) If N 2 N ðsÞ, then s 2 N.

(ii) For N1 and N2 2 N ðsÞ, there exist k1 and k2 � 0

such that N1 ¼ N
ðk1Þ
s and N2 ¼ N

ðk2Þ
s . Fix k �

maxfk1; k2g and let N3 ¼ N
ðkÞ
s . Then N3 2 N ðsÞ

and N3 � N1 \N2. (iii) For N 2 N ðsÞ, there exists

k � 0 such that N ¼ N
ðkÞ
s . For t 2 N , let N 0 ¼ N

ðkÞ
t .

Then N 0 2 N ðtÞ and N 0 � N . �

Therefore ð�;OÞ is a topological space, where

O is the topology generated by N . We obtain

immediately the following lemmas.

Lemma 3.2. ð�;OÞ satisfies the first axiom

of countability.

Proof. We choose a neighborhood basis of

s 2 � as N ðsÞ. �

Lemma 3.3. ð�;OÞ is a Hausdorff space.

Proof. For distinct points s ¼ ðsnÞ and t ¼
ðtnÞ 2 �, there exist k � 0 such that sk 6¼ tk.

Let M ¼ N
ðkÞ
s 2 N ðsÞ and N ¼ N

ðkÞ
t 2 N ðtÞ. Then

M \N ¼ ;. �

Lemma 3.4. ð�;OÞ is perfect.

Proof. For s 2 � and any neighborhood O 2 O
of s, there exists N 2 N ðsÞ such that N � O. It is

clear that ðO n fsgÞ \ � � ðN n fsgÞ \ � 6¼ ;. �

We show that ð�;OÞ is compact from now on.

By Theorem 2.2, 2.3 and 2.4, we need only to show

that ð�;OÞ is sequentially compact and satisfies

the second axiom of countability.

Lemma 3.5. ð�;OÞ is sequentially compact.

Proof. Let fsðkÞ ¼ ðsðkÞn Þg1k¼1 � �. We choose a

subsequence fsh�ig1�¼0 as follows: [Step 0] There

exists a subsequence fsðklÞg1l¼1 such that s
ðklÞ
0 ¼ s0 for

l � 1, where s0 ¼ 1, 2, 3 or 4. Let sh0i be one of sðklÞ.
Then sh0i ¼ ðs0; sh0i1 ; s

h0i
2 ; . . .Þ. We rewrite sðklÞ as sðkÞ.

[Step 1] There exists a subsequence fsðklÞg1l¼1 such

that s
ðklÞ
1 ¼ s1 for l � 1, where s1 ¼ 1, 2, 3 or 4. Let

sh1i be one of sðklÞ. Then sh1i ¼ ðs0; s1; sh1i2 ; s
h1i
3 ; . . .Þ.

We rewrite sðklÞ as sðkÞ. [Step �] Inductively, we

can choose sh�i ¼ ðs0; . . . ; s�; sh�i�þ1; s
h�i
�þ2; . . .Þ. Let s ¼

ðs0; s1; s2 . . .Þ. If s 2 �, for a neighborhood O 2 O
of s, there exists N ¼ N

ð�0Þ
s 2 N ðsÞ such that

N � O. If � � �0, then sh�i 2 N � O. Therefore

sh�i converges to s with respect to O. If s =2 �,
there exists a unique � � 0 such that (i) s��1 ¼ 3 or

4 and sn ¼ 1 or 2 for � � n or (ii) s��1 ¼ 1 or 2

and sn ¼ 3 or 4 for � � n. If (i) is the case, let
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t ¼
ðA;A;A; . . .Þ if � ¼ 0,

ðs0; . . . ; s��1;A;A;A; . . .Þ if � � 1.

�
If (ii) is the case, let

t ¼
ðB;B;B; . . .Þ if � ¼ 0,

ðs0; . . . ; s��1;B;B;B; . . .Þ if � � 1.

�
Then sh�i converges to t with respect to O by the

same argument. Therefore ð�;OÞ is sequentially

compact. �

Lemma 3.6. ð�;OÞ satisfies the second axi-

om of countability.

Proof. Let
B ¼

[
s2�n�4

N ðsÞ:

First we show that B is an open basis of ð�;OÞ. It is
clear that B � O. Let O 2 O and s ¼ ðsnÞ 2 O. If

s 2 � n �4, then there exists M 2 N ðsÞ � B such

that s 2 M � O by the definition of O. If s 2 � \ �4,

there exists N ¼ N
ðkÞ
s 2 N ðsÞ such that s 2 N � O

by the definition of O. However we do not know

yet whether N 2 B at this stage. Let t ¼
ðs0; . . . ; sk; tkþ1; tkþ2; . . .Þ 2 N \ ð� n �4Þ and M ¼
N

ðkÞ
t . Then M 2 B and, in fact, M ¼ N . Therefore

s 2 M ¼ N � O. Consequently B is an open basis of

ð�;OÞ. The countability of B follows from that of

� n �4 and N ðsÞ. �

We obtain the following lemma by Lemma 3.5

and 3.6.

Lemma 3.7. ð�;OÞ is compact.

By Theorem 2.8, ð�;OÞ is normal, especially

ð�;OÞ is regular. Therefore we obtain the following

lemma by Theorem 2.9.

Lemma 3.8. ð�;OÞ is metrizable.

Next, we show that ð�;OÞ is totally discon-

nected. By Theorem 2.11, we need only to show that

ð�;OÞ is a 0-dimensional space.

Lemma 3.9. Let s 2 � n �4.

(i) If s ¼ ðA;A;A; . . .Þ or s ¼ ðB;B;B; . . .Þ, then

N
ðkÞ
s is open and closed for k � 0.

(ii) If s ¼ ðs0; . . . ; sl;A;A;A; . . .Þ with sl 6¼ A or

s ¼ ðs0; . . . ; sl;B;B;B; . . .Þ with sl 6¼ B, then

N
ðkÞ
s is open and closed for k � lþ 1.

Proof. (i) Let s ¼ ðA;A;A; . . .Þ (resp. s ¼
ðB;B;B; . . .Þ). We show that N

ðkÞ
s is closed. Let

M ¼ � nNðkÞ
s For t ¼ ðtnÞ 2 M, there exists � � k

such that t� 6¼ 1 or 2 (resp. t� 6¼ 3 or 4). Then

N
ðkÞ
s \N

ð�Þ
t ¼ ; and N

ð�Þ
t � M. Therefore M is

open and N
ðkÞ
s is closed. (ii) The proof is similar

to that of (i). �

For s ¼ ðA;A;A . . .Þ or s ¼ ðB;B;B . . .Þ, let

N 0ðsÞ ¼ N ðsÞ. And for s ¼ ðs0; . . . ; sl;A;A; . . .Þ with
sl 6¼ A or s ¼ ðs0; . . . ; sl;B;B; . . .Þ with sl 6¼ B, let

N 0ðsÞ ¼ fNðkÞ
s : k � lþ 1g. Let

B0 ¼
[

s2�n�4

N 0ðsÞ:

Lemma 3.10. B0 is an open basis of ð�;OÞ.
Proof. The proof is smiler to that of

Lemma 3.6. �

From Lemma 3.9 and Lemma 3.10, ð�;OÞ is a

0-dimensional space. Therefore we obtain the fol-

lowing lemma by Theorem 2.11.

Lemma 3.11. ð�;OÞ is totally disconnected.

Finally, we show the following lemma.

Lemma 3.12. The shift map � : ð�;OÞ !
ð�;OÞ is continuous.

Proof. Let s ¼ ðs0; s1; s2; . . .Þ 2 �. For a

neighborhood O 2 O of �ðsÞ ¼ ðs1; s2; . . .Þ, there

exists N ¼ N
ðkÞ
�ðsÞ 2 N ð�ðsÞÞ such that N � O.

We take a neighborhood M ¼ N
ðkþ1Þ
s of s. Then

�ðMÞ ¼ N � O. Therefore � : ð�;OÞ ! ð�;OÞ is

continuous. �

We have completed the proof of Theorem 1.7.

4. Appropriateness of the convergence

with respect to O. We shall formulate

� : KðfÞ� ! �. We refer to [1] for the detailed

proof. Let U, UA, UB, KA and KB be the same as the

section 1. There exist forward invariant rays RA1

and RB1 under f such that RA1 lands at a point on

@KA and RB1 lands at a point on @KB. These

landing points are repelling or parabolic fixed points

of f . Let RA2 and RB2 be components of f�1ðRA1Þ
and f�1ðRB1Þ which satisfy RA2 \ UA 6¼ ; and RB2 \
UB 6¼ ; and differ from RA1 and RB1. We set VA ¼
U n ðKA [ RA1Þ and VB ¼ U n ðKB [ RB1Þ. Let I1, I2,
I3 and I4 be branches of f�1 such that

I1 : VA ! U1; I2 : VA ! U2;

I3 : VB ! U3; I4 : VB ! U4;

where U1 and U2 are components of UA nKA [
RA1 [RA2. Similarly, U3 and U4 are components

of UB nKB [ RB1 [RB2. We define � : KðfÞ� ! �
as follows: for K 2 KðfÞ�,

½�ðKÞ	n ¼
i if fnðKÞ � Ui,

A if fnðKÞ ¼ KA,

B if fnðKÞ ¼ KB,

8><
>:

where n � 0 and i ¼ 1; 2; 3; 4. We can also formulate

��1 : � ! KðfÞ� as follows: if sn ¼ A and sn�1 6¼ A,
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��1ðsÞ ¼ Is0 � � � � � Isn�1
ðKAÞ:

If sn ¼ B and sn�1 6¼ B,

��1ðsÞ ¼ Is0 � � � � � Isn�1
ðKBÞ:

If s 2 �4, there exists a subsequence ðsnðlÞÞ1l¼1 such

that snðlÞ ¼ 1 or 2 and snðlÞ�1 ¼ 3 or 4. We set

K
ðlÞ
s ¼ Is0 � � � � � IsnðlÞ�1

ðUAÞ. Then K
ðlþ1Þ
s � K

ðlÞ
s and

��1ðsÞ ¼
\1
l¼1

KðlÞ
s :

Note that
T1

l¼1 K
ðlÞ
s is a one-point set, which is the

consequence of that Ik decreases the Poincaré

distance on VA or VB, see [1].

We reconsider the sequence

sðnÞ ¼ ð1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n times

;B;B;B; . . .Þ

8<
:

9=
;

1

n¼0

in �. It converges to s ¼ ð1; 1; 1; . . .Þ =2 � with

respect to �. However it converges to s ¼
ðA;A;A; . . .Þ 2 � with respect to O. We check that

the convergence with respect to O is ‘‘appropriate’’.

By the definition of ��1,

��1ðsðnÞÞ ¼ I1 � � � � � I1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n times

ðKBÞ:

Let KðnÞ ¼ ��1ðsðnÞÞ. Since I1 decreases the Poin-

caré distance on VA, the sequence fKðnÞg1n¼0 �
KðfÞ� converges to not KA 2 KðfÞ� but a one-point

set K ¼ f�g with respect to the Hausdorff metric

dH . The point � is actually in @KA, and therefore

K =2 KðfÞ�. We expect that fKðnÞg1n¼0 converges to

KA with respect to G. In fact,

lim
n!1

KðnÞ ¼ lim
n!1

��1ðsðnÞÞ ¼ ��1 lim
n!1

sðnÞ
� �

¼ ��1ðsÞ ¼ KA

since ��1 : ð�;OÞ ! ðKðfÞ�;GÞ is continuous.

Therefore we express that the convergence of

fsðnÞg1n¼0 with respect to O is ‘‘appropriate’’ in the

sense that fKðnÞg1n¼0 converges to KA with respect

to G.
5. Applications. The following two theo-

rems are fundamental.

Theorem 5.1 [3]. Let g be a rational func-

tion of degree at least two. If z 2 JðgÞ, then

JðgÞ ¼
[1
k¼1

g�kðzÞ:

Theorem 5.2 [3]. Let g be a rational func-

tion of degree at least two. Then

JðgÞ ¼ frepelling periodic point of gg:

We obtain analogies of Theorem 5.1 and 5.2.

Theorem 5.3. Let ð�;OÞ be as in Theorem

1.7 and let s 2 �. Then

� ¼
[1
k¼1

��kðsÞ;

where the closure is taken in ð�;OÞ.
Proof. Let s ¼ ðs0; s1; s2; . . .Þ 2 � and let

u ¼
1 or 2 if s0 6¼ A,

3 or 4 if s0 6¼ B.

�
Then ðu; s0; s1; s2; . . .Þ 2 ��1ðsÞ. For t ¼ ðA;A;A; . . .Þ,
we consider the sequence

sð�Þ ¼ ð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
� times

; u; s0; s1; . . .Þ

8<
:

9=
;

1

�¼1

�
[1
k¼1

��kðsÞ:

Then sð�Þ converges to t ¼ ðA;A;A; . . .Þ with respect

to O. Next, for t ¼ ðt0; t1; . . . ; tl;A;A;A; . . .Þ 2 �

with tl 6¼ A, we consider the sequence

sð�Þ ¼ ðt0; . . . ; tl; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
� times

; u; s0; s1; . . .Þ

8<
:

9=
;

1

�¼1

�
[1
k¼1

��kðsÞ:

Then sð�Þ converges to t ¼ ðt0; t1; . . . ; tl;A;A;A; . . .Þ
with respect to O. In the case of ‘‘B’’, we

choose ‘‘3’’ instead of ‘‘1’’. Finally, for t ¼
ðt0; t1; t2; . . .Þ 2 � \ �4, we consider the sequence

sð�Þ ¼ ðt0; t1; . . . ; t�; u; s0; s1; s2; . . .Þ
n o1

�¼1

�
[1
k¼1

��kðsÞ:

Then sð�Þ converges to t ¼ ðt0; t1; t2; . . .Þ with

respect to O. �

Remark 5.4. The closure of the backward

orbit of s 2 � under � does not necessarily coincide

with � in ð�; �Þ. For example,

ðA;A;A; . . .Þ =2
[1
k¼1

��k ðB;B;B; . . .Þð Þ;

where the closure is taken in ð�; �Þ.

No. 7] Disconnected Julia sets of quartic polynomials and a new topology of the symbol space 121



Corollary 5.5. Let ðKðfÞ�;GÞ be as in

Corollary 1.8 and let K 2 KðfÞ�. Then

KðfÞ� ¼
[1
k¼1

F�kðKÞ;

where the closure is taken in ðKðfÞ�;GÞ.
Theorem 5.6. Let ð�;OÞ be as in Theorem

1.7. Then

� ¼ fperiodic point of � in �g;

where the closure is taken in ð�;OÞ.
Proof. We show that each non-periodic point

t 2 � is a limit point of a sequence of periodic

points of �. For t ¼ ðt0; t1; . . . ; tl;A;A;A; . . .Þ 2 �
with tl 6¼ A, we consider the sequence(
sð�Þ ¼ ðt0; t1; . . . ; tl; 1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}

� times

;

t0; t1; . . . ; tl; 1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
� times

; . . .Þ
)1

�¼1

of period �þ lþ 1. Then sð�Þ converges to t ¼
ðt0; t1; . . . ; tl;A;A;A; . . .Þ with respect to O. In the

case of ‘‘B’’, we choose ‘‘3’’ instead of ‘‘1’’. For a

non-periodic point t ¼ ðt0; t1; t2; . . .Þ 2 � \ �4, we

consider the sequence

sð�Þ ¼ ðt0; t1; . . . ; t�; t0; t1; . . . ; t�; . . .Þ
n o1

�¼�

of period �þ 1, where � is a natural number

which satisfies sð�Þ 2 �. Then sð�Þ converges to t ¼
ðt0; t1; t2; . . .Þ with respect to O. �

Remark 5.7. The closure of the set of all

periodic points of � does not coincide with � in

ð�; �Þ since t ¼ ðt0; t1; . . . ; tl;A;A;A; . . .Þ with tl 6¼ A

is an isolated point in ð�; �Þ.
Corollary 5.8. Let ðKðfÞ�;GÞ be as in

Corollary 1.8. Then

KðfÞ� ¼ fperiodic point of F in KðfÞ�g;

where the closure is taken in ðKðfÞ�;GÞ.
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