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Abstract: In this paper, we investigate some aspects of representation theory of reductive

groups over non-algebraically closed fields. Namely, we state and prove relative versions of well-

known theorems of Bogomolov and of Sukhanov, which are related to observable and quasi-

parabolic subgroups of linear algebraic groups over non-algebraically closed perfect fields.
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Introduction. The well-known notion of

observability for closed subgroups of linear alge-

braic groups plays an important role in algebraic

and geometric invariant theory (see, e.g.

[10,12,13]). It characterizes a property of closed

subgroups of a given algebraic group G as stabilizer

subgroups via representations of G. Recently, due

to some need for arithmetical applications (see, e.g.,

[19]), relative versions of some basic theorems in

general, and in particular, related to this notion,

have been proved in [1,3,15,17,19]. In this note

we establish another results, which are relative

versions of important theorems due to Bogomolov

and Sukhanov, which have close relation with

instability theory of Kempf [11] and its refinements

due to Ramanan and Ramanathan [14], (which have

been further refined by Coiai and Holla [9]).

Throughout this paper, we will work only with

linear algebraic groups and we use freely standard

notation, notions and results from [4,5]. For a

linear algebraic group G, we always denote G� the

connected component of G, RuðGÞ the unipotent

radical of G, DG :¼ ½G;G� the derived subgroup of

G, GLðV Þ the general linear group (of automor-

phisms of the vector space V ). We denote by hHi
the subgroup generated by the subset H, Gm the

multiplicative group of the affine line A1, GLn the

general linear group, PGLn the corresponding

projective linear group, Pn the projective space of

dimension n, all of which are defined over the prime

field contained in k. We will work mostly over an

infinite perfect field k, with a fixed algebraic closure
�kk, though many results hold for arbitrary fields.

By a representation of a linear algebraic group G

we always understand a linear one, i.e., a morphism

of algebraic groups � : G ! GLðV Þ for some finite

dimensional vector space V and V is called then a

G-module. If, moreover, V is a finite dimensional

k-vector space of dimension n, and G; � are defined

over k, then we also write � : G ! GLn.

1. Preliminaries and statements of main

results. In this section, we recall some basic

notions and facts about observable subgroups, and

some related notions. For more details we refer the

readers to [4,5,10,11,14,17].

1.1. Let G be a linear algebraic group and let

V be an irreducible G0-module. Then RuðGÞ acts

trivially on V and V is actually an irreducible

G0=RuðGÞ-module. Since G0=RuðGÞ is reductive, if

V is an irreducible G0-module, then a vector v 2 V

is called following [10, p. 42], a highest weight vector

if v is highest weight vector by considering V as a

G0=RuðGÞ-module.

1.2. a) A closed subgroup Q of G0 is said to

be quasi-parabolic if Q ¼ Gv for a highest weight

vector for some irreducible G0-module V (cf.

[10, p. 42]).

b) A closed subgroup H of G is called subparabolic if

there is a quasi-parabolic subgroupQ ofG0 such that

H0 � Q and RuðHÞ � RuðQÞ (cf. [10, p. 42]). (We

say H is subparabolic with respect to Q for short.)

a0) For a k-group G, a subgroup Q of G0 is said to

be quasi-parabolic over k (or quasi-parabolic

k-subgroup) if Q is defined over k and Q is quasi-

parabolic.

b0) For a k-group G, a subgroup H of G is called
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subparabolic over k if it is defined over k and there is

a quasi-parabolic k-subgroupQ ofG0 such thatH0 �
Q and RuðHÞ � RuðQÞ.
c0) For a k-group G, a subgroup Q of G0 is said to

be k-quasi-parabolic if Q ¼ Gv for a highest

weight vector v 2 V ðkÞ for some irreducible k�G0-

module V .

d0) For a k-group G, a subgroup H of G is called

k-subparabolic if it is defined over k and there is a

k-quasi-parabolic subgroup Q of G0 such that H0 �
Q and RuðHÞ � RuðQÞ.

1.3. We recall now the notion of observable

subgroups. A closed subgroup H of linear algebraic

group G is called an observable subgroup if the

homogeneous space G=H is a quasi-affine variety.

There are some ways to characterize observable

ðk�Þsubgroups (see e.g. [10] and also [17]), and here

we give only one. Namely,

1.3.1. Theorem (Cf. [10, p. 21]). The follow-

ing statements are equivalent.

1) H is observable subgroup of G;

2) There exists a representation � : G ! GLðV Þ,
such that for some v 2 V , H ¼ Gv, the stabilizer

group of v in G.

One may define a relative notion of the observ-

ability, namely for a linear algebraic group G

defined over a field k, and we have the following

relative version of Grosshans Theorem.

1.3.2. Theorem (Cf. [17, p. 438]). The follow-

ing statements are equivalent.

10) H is observable in G and H is defined over k;

20) There exists a k-representation � : G ! GLðV Þ,
such that for some v 2 V ðkÞ, H ¼ Gv, the stabilizer

group of v in G.

If H satisfies one of these conditions, it is also

k-observable (see [17] for more details). Besides

some important characterizations of observable

subgroups as recalled above, we have the following

theorems, which are main results of this note. The

first one is a relative version of an important result

due to A. Sukhanov (proved for algebraically closed

fields).

Theorem A (Compare [16], Theorem 1,

[10], Theorem 7.3). Let k be a perfect field and let

G be a linear algebraic group defined over k.

A closed k-subgroup H of G is a k-observable

subgroup of G if and only if H is a k-subparabolic

subgroup of G.

In Section 4 we will sketch a proof of this

theorem. In fact, this result is contained in stronger

Theorem C (Section 4.6). The proof (as in the

absolute case) makes an essential use of the follow-

ing relative version of an important theorem from

geometric invariant theory (due to F. Bogomolov in

the case of algebraically closed fields), in the form

given by [10].

Theorem B (Compare [7], Theorem 1, [10],

Theorem 7.6). Let k be a perfect field, G a connected

reductive k-group and let V be a finite dimensional

k-G-module. Let v 2 V ðkÞ n f0g. If v is unstable for

the action of G on V (i.e., 0 2 G:vÞ, then Gv is

contained in a proper k-quasi-parabolic subgroup Q

of G.

The details of the proofs will be published

somewhere else.

2. Some results from representation

theory. Let T be a maximal torus of a linear

algebraic group G. We set X�ðT Þ :¼ HomðT;GmÞ,
the character group of T and X�ðT Þ :¼
HomðGm; T Þ, the set of 1-parameter subgroups

(1-PS for short) of T and denotes h:; :i the usual

dual pairing between X�ðT Þ and X�ðT Þ. Let

�ðGÞ denote the set of all 1-parameter subgroups

of G.

2.1. Any inner product ð:; :Þ (i.e., symmetric

non-degenerate pairing) on X�ðT Þ (resp. on X�ðT Þ)
via the duality, defines another one ð:; :Þ on X�ðT Þ
(resp. X�ðT Þ). For � 2 X�ðT Þ (resp. � 2 X�ðT Þ) we
denote by �� 2 X�ðT Þ (resp. �� 2 X�ðT Þ) the dual

of � (resp. �), for a given inner product, namely

h��; �
0i :¼ ð�; �0Þ for all �0 2 X�ðT Þ, and h�0; ��i ¼

ð�0; �Þ, for all �0 2 X�ðT Þ.
2.2. We need the following well-known (see

[4,5,10,11,14])

2.2.1. Proposition. Assume that k is an

perfect field, G a connected reductive k-group, and

T is a maximal torus of G defined over k. Then there

exists an inner product ð:; :Þ on X�ðT Þ �Z R such

that the following conditions are satisfied:

a) For all �; � 2 X�ðT Þ then ð�; �Þ 2 Z;

b) For all w 2 W ðT ;GÞ (Weyl group), we have

ðw�; w�Þ ¼ ð�; �Þ;
c) The inner product is defined over k, i.e.,

ð��; ��Þ ¼ ð�; �Þ; 8� 2 � :¼ Galðks=kÞ.
In the sequel, we fix once for all such an inner

product.

2.3. Let T be a maximal torus of a connected

reductive group G, S the connected center of G.

Denote by �ðT;GÞ, or just �, the root system of G

with respect to T . For a 1-PS � of G contained
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in X�ðT Þ we denote P ð�Þ :¼ hT; U� j � 2 �ðT ;GÞ;
h�; �i � 0i, which is a parabolic subgroup of G

(cf. e.g. [10,13]) called the parabolic subgroup

associated to �. We also define, for a character

� 2 X�ðT Þ, P� :¼ hKer�; U� j � 2 �ðT;GÞ; ð�; �Þ �
0i and P ð�Þ :¼ TP� ¼ hT ; U� j � 2 �ðT;GÞ; ð�; �Þ �
0i. P ð�Þ is also a parabolic subgroup of G, called

the parabolic subgroup associated to �. It follows

from the very definition, that we have P ð�Þ ¼
P ð��Þ ¼ P ðr��Þ; P� � Pr� and RuðP�Þ ¼ RuðP�Þ ¼
RuðPr�Þ for any � and positive integer r. Also, it is

well-known and easy to prove (see e.g. [7], Sec. 2.9),

that � :¼ �� is a character on P ð�Þ.
2.4. We need some fundamental theorems

on representation theory of reductive groups over

non-algebraically closed fields (cf. [5,18] for more

details). We use the same notation as in [18].

2.5. Let G be a reductive group defined over a

field k, and let T be a maximal k-torus of G. Denote

by �ðT;GÞ, or just �, the root system of G with

respect to T , by � a basis of � corresponding to

a Borel subgroup B of G containing T . Let �þ be

the set of positive roots of � with respect to �.

Let Ts :¼ T \DG, � :¼ X�ðT Þ, �r be the subgroup

generated by roots � 2 �ðT;GÞ, �0 :¼ h�r; � :
�jTs

¼ 1i, the subgroup generated by �r and those

�, which have trivial restriction to Ts. Let B be a

Borel subgroup of G containing T , �þ the subset of

dominant weights (with respect to B) of �. For

� :¼ Galðks=kÞ, � 2 �, � 2 �, denotes the usual

Galois action by ��, and one defines (after [5],

Section 6 or [18], Section 3) the action of � on � as

follows: �ð�Þ :¼ wð��Þ, where w is the unique

element from the Weyl group W ðT;GÞ such that

wð��þÞ ¼ �þ. We denote by ð�þÞ� the set of

�-invariant elements of �þ with respect to the

just defined action. Especially, if P is a parabolic

k-subgroup of G, containing B, then for any

� 2 X�ðP Þ, we have (see [5], Section 6, p. 105)

�ð�Þ ¼ ��.

2.6. Let k be a field, D a finite dimensional k-

algebra, and let X be a D-module. We denote by

kGLX;D the group functor which associates to each

k-algebra A the group of D�k A-automorphisms of

X �k A. In particular, if X is free D-module Dm,

instead of kGLX;D we just write kGLm;D (or just

GLm;D, if k is clearly indicated from the text), and if

D ¼ k, we just write kGLm (or just GLm). A D-G-

representation (or just D-representation) of a k-

group G is just a k-homomorphism G ! kGLX;D

for some X as above. There are obvious notions of

D-equivalent representations of G.

2.7. We need the following important results

of Tits, which extend some known results for

semisimple groups to reductive ones.

2.7.1. Theorem (Cf. [18], Lemme 3.2,

Théorème 3.3). Let G be a reductive group defined

over a field k. Keep the notation as above.

1) Let D be a central simple algebra over k. The

restriction to DG of any absolutely irreducible

D-representation with dominant weight � gives rise

to an absolutely irreducible D-representation

with dominant weight �jTs
of DG. Conversely, any

absolutely irreducible D-representation of DG with

dominant weight �jTs
extends in a unique way to an

absolutely irreducible D-representation of G with

dominant weight �.

2) Let � 2 ð�þÞ�, the set of �-invariant elements.

Then there exist a central division algebra D� over k,

an absolutely irreducible D-representation �� : G !
GLm;D�

with simple dominant weight �. The algebra

D� is unique up to isomorphism, and for a given D�,

the representation �� is determined uniquely up to

D�-equivalence. If � 2 �0, or if G is quasi-split, then

we have D� ¼ k.

In above notation, let k� be the fixed field of the

stabilizer of � in �, which is a finite separable

extension of k. Using the restriction operation rest

as in [18], we set

k�� :¼ restk�=kðrestD�=k � ��Þ:

2.7.2. Theorem (Cf. [18], Théorème 7.2, iii).

Let � and �0 be dominant weights. The representa-

tions k�� and k��0 are equivalent if and only if there

exists � 2 � such that �ð�Þ ¼ �0.
We need in the sequel the following important

characterization of stabilizers of highest weight

vectors.

2.7.3. Proposition (Cf. [10], Corollary 3.6).

Let notation be as above, and let � 2 X�ðT Þ. Then
P� is the stabilizer of a highest weight vector w 2 W

for some irreducible G-module W with highest

weight �. Conversely, the stabilizer of any highest

weight vector (with respect to a given Borel subgroup

B of G) is of the form P�, where � 2 X�ðT Þ is a

dominant character (with respect to B).

We need a relative version of the above proposition

in the sequel. We claim that the following relative

version of Proposition 2.7.3 holds.

2.7.4. Proposition. Let G be a reductive
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group defined over a perfect field k, T a maximal k-

torus of G containing a maximal k-split torus of G,

� 2 X�ðT Þk. Then there is a positive integer r and an

absolutely irreducible k-representation G ! GLn ¼
GLðW Þ with highest weight �0 ¼ r�, such that P�0 is

the stabilizer of a highest weight vector w 2 W ðkÞ.
Conversely, for any absolutely irreducible k-repre-

sentation G ! GLn ¼ GLðW Þ, the stabilizer of any

highest weight vector w 2 WðkÞ (with respect to a

given Borel subgroup B of G) is of the form P�,

where � 2 X�ðT Þk is a dominant character (with

respect to B).

2.8. Instability theory of Kempf. Let k be

a perfect field, G a connected reductive k-group,

with a k-representation � : G ! GLðV Þ, T � G a

maximal k-torus. Let ð:; :Þ an inner product on

X�ðT Þ �Z R defined over k as in Proposition 2.2.1,

and let k:k denote the corresponding norm. For � 2
X�ðT Þ let V� :¼ fv 2 V j�ðtÞ:v ¼ �ðtÞv; 8t 2 Tg be

the weight subspace of V corresponding to � then

V ¼ 	�V�, and for any v0 2 V , v0 ¼ 	v�. Define the

state of v0 by ST ðv0Þ :¼ f�jv� 6¼ 0g, and �ðv0; �Þ :¼
Inf fð�; �Þj� 2 ST ðv0Þg, for � 2 X�ðT Þ, and set

Vi :¼ fv 2 V j�ðsÞv ¼ siv; 8s 2 Gmg, i 2 Z. Then

one has Vi ¼ 	h�;�i¼iV�. We need the following basic

result due to G. Kempf.

2.8.1. Theorem (Cf. [11], Theorem 4.2).

With notation as above, let v0 2 V ðkÞ be a non-zero

unstable vector for the action of G.

a) The function �ðv0; :Þ : � 7! �ðv0; �Þ=k�k; � 2 �ðGÞ
attains a maximum value Bv0 on �ðGÞ.
b) The set �v0 of indivisible 1-PS’s � 2 �ðGÞ defined
over k such that �ðv0; �Þ ¼ Bv0 is non-empty, and the

k-parabolic subgroups P ð�Þ of G are the same for

all � 2 �v0 , which is denoted by P ðv0; �Þ.
c) For each maximal k-torus T of P ðv0; �Þ, there

exists a unique instability 1-PS � 2 �v0 such that

Imð�Þ � T , which is called the instability 1-PS for v0
of T.

2.8.2. With notation as above it is easy to see

that if k is a perfect field and � 2 X�ðT Þk then �� 2
X�ðT Þk (hence also �� 2 X�ðP ð�ÞÞk). From [14],

Section 1.8, p.274, we know that for each � 2
X�ðGÞ, the vector space V j ¼ 	i�jVi is stable under

the action of P ð�Þ through representation �, so

we have a natural action of P ð�Þ on V j=V jþ1. Then

we have the following important result.

2.8.3. Theorem ([14], Prop. 1.12, p. 276,

[10], pp. 44–45). Assume � is the instability one-

parameter subgroup for v0 and let j ¼ �ðv0; �Þ. Then

there exists a positive integer d and a non-constant

homogeneous function f on V j=V jþ1 such that

fð	ðv0ÞÞ 6¼ 0 and fðp:	ðvÞÞ ¼ ð��ÞdðpÞfð	ðvÞÞ for all

v 2 V j, p 2 P ð�Þ and 	 : V j ! V j=V jþ1 is the natu-

ral projection.

With notation as above we have

2.8.4. Corollary. Let � : G ! GLðV Þ be a

representation, v a non-zero unstable vector in V ,

� an 1-PS of v as in Theorem 2.8.1. Then for some

positive integer d as in Theorem 2.8.3, Gv �
Kerðd:��Þ.

3. A relative version of a theorem of

Bogomolov. The main result of this section is

the following relative version of an important

theorem of Bogomolov. As an application, it will

be used in the proof of a relative version of

Sukhanov’ Theorem, which is very close to it in

describing the nature of stabilizers.

3.1. Theorem. Let G be a reductive group

defined over a perfect field k and let � : G ! GLðV Þ
be a k-rational representation. Assume that v 2
V ðkÞ n f0g is an unstable vector of representation

� (i.e 0 2 G:v). Then there exists an absolutely

irreducible representation 	 : G ! GLðW Þ defined

over k and a highest weight vector w 2 W ðkÞ such

that Gv � Gw, where the latter is a proper subgroup

of G.

We give the ideas of two proofs of Theorem 3.1.

3.2. First proof of this theorem is based on

the proof of the absolute case of Theorem 3.1 as it

was given in [10], Section 7, which makes use of

main results of Kempf theory [11] (as stated above),

with refinements due to Ramanan–Ramanathan

[14]. Also, we make use of results of Chevalley–Tits

theory on representations of reductive groups

over non-algebraically closed fields presented above

(Sections 2.3–2.8), and also the following

3.3. Lemma. For a dominant weight � 2 �þ
with respect to the Borel subgroup B containing T ,

assume that there exists a character ~�� 2 XðP ð�ÞÞ
such that ~��jT ¼ �. Let � : G ! GLðW Þ be the

irreducible representation corresponding to domi-

nant weight � and let w 2 W be a highest weight

vector with weight �. Then Ker ~�� ¼ Gw.

3.4. The following consequence of the proof

shows that if H is a quasi-parabolic k-subgroup,

then it is also and k-subparabolic. A stronger

assertion will be given in Theorem 4.1.

3.5. Proposition. Let G be a reductive group

defined over a perfect field k, T a maximal k-torus
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containing a maximal k-split torus of G. Fix a Borel

subgroup containing T, which in turn, is contained

in a minimal parabolic k-subgroup of G. Let � : G !
GLðV Þ ’k GLn be an irreducible �kk-representation

with dominant weight l� ¼ � 2 X�ðT Þk. If v 2 V ð�Þ
is a highest weight vector, such that its stabilizer

H :¼ Gv is a proper subgroup defined over k, then H

is k-subparabolic in a proper k-quasi-parabolic

subgroup.

3.6. Second proof of Theorem 3.2. This

proof is based on some arguments given in [5],

Section 12. First we need the following

3.6.1. Lemma (Cf. [5], p. 138). Assume that

G is a connected semisimple group, H a connected

reductive group, and K is connected semisimple, 	 :

H ! K is a surjective homomorphism between two

algebraic groups, which induces a central isogeny

from DH onto K, and that �1; �2 : G ! H are two

homomorphisms such that 	 � �1 ¼ 	 � �2. Then we

have �1 ¼ �2.

3.6.2. Corollary. Suppose that G is a con-

nected semi-simple group defined over a perfect field

k, 	 : GLn ! PGLn the projection, � : G ! GLnð�kkÞ
is a �kk-representation such that the induced projec-

tive representation 	 � � : G ! PGLnðkÞ is defined

over k. Then � is defined over k.

We apply this lemma to prove that

3.6.3. Lemma. Assume that G is a connected

reductive group defined over a perfect field k, T is a

maximal k-torus of G, B is a Borel subgroup

containning T, and � 2 X�ðT Þk is a dominant

weight. Let 	 : G �! GLðV Þ ¼
 GLn be an absolutely

irreducible �kk-representation corresponding to �.

Suppose that there exists a vector v0 2 V ðkÞð¼ knÞ
of highest weight � and that the induced projective

representation 	 : G ! PGLnðkÞ is defined over k.

Then 	 is defined over k.

The rest of the proof follows closely the line

given in [5], by making use of Chatelet theorem on

the isomorphism of Severi-Brauer variety with a

rational point to a projective space Pn (see [8]),

and Tits’ Theorem 2.7.2.

4. A relative version of a theorem of

Sukhanov. In this section, we assume that k is

a perfect field. The purpose of this section is to give

the following application of relative Bogomolov’s

Theorem (Section 3), namely the following relative

version of a theorem of Sukhanov.

4.1. Theorem. Suppose that k is a perfect

field, G a linear algebraic group and H < G is a

subgroup of G, both are defined over k. Then the

following statements are equivalent.

a) H is an observable k-subgroup of G.

b) H is a k-subparabolic subgroup over k of G, i.e. it

is defined over k and there exists a k-quasi-parabolic

k-subgroup Q of G such that H0 < Q and

RuðHÞ < RuðQÞ.
4.2. The proof is based on the original proof

(over algebraically closed fields) (see [16] or [10],

Sections 2–4 (with some refinements)), which will

be suitably adapted, and by making use of some

results of previous sections and also main results of

of [17]. In order to prove this theorem, we need to

use the relative version of Bogomolov’s Theorem 3.1

above, and we need also the following preparation

results.

4.3. Theorem. a) (Cf. [10], Corollary 2.2.,

[17], Proposition 5.) With above notation, H is

ðk�Þobservable in G if and only if H� is

ðk�Þobservable in G�.
b) ([10], Corollary 2.10.) Let H be a closed subgroup

of G, normalized by a maximal torus T of G. Assume

that L is an observable subgroup of G, such that

RuðHÞ < RuðLÞ. Then H and TRuL are observable

in G.

c) ([10], Corollary 2.3.) Let K < L < G, such that K

is observable in L, and L is observable in G. Then K

is observable in G.

d) ([10], Corollary 2.11.) Let H be an observable

subgroup of G. Then H:RuðGÞ is also observable

subgroup in G.

e) ([10], Theorem 7.1, [2]) Let L be a linear algebraic

group and let H be a closed subgroup of L such that

RuðHÞ < RuðLÞ. Then L=H is affine.

Also, we need the following relative version

of [10], Theorem 3.9.

4.4. Theorem (Compare [10], Theorem 3.9.).

Let G be a connected reductive group defined over a

perfect field k, T a maximal k-torus of G, and let H

be a closed k-subgroup of G which is normalized by

T . Then H is observable in G if and only if for some

� 2 X�ðT Þk, H is a k-subparabolic subgroup in the

k-quasi-parabolic subgroup P� of G.

4.5. Next we need the following two lemmas,

which cover some partial cases of Theorem 4.1.

4.5.1. Lemma (Cf. [10], Lemma 7.7.). Let G

be a connected reductive k-group, and let H be a

non-reductive connected observable k-subgroup of

G. Then H is contained in a proper k-quasi-para-

bolic subgroup Q of G.
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4.5.2. Lemma (Cf. [10], Lemma 7.8.). If G is

a connected, reductive k-group and H is a connected

observable k-subgroup of G, then H is k-subparabolic

in G.

The proof of Theorem 4.1 follows from these

results in combination with Theorem 3.1.

4.6. Now we are able to derive the following

stronger result about logical scheme of relations

between quasi-parabolic and subparabolic sub-

groups over perfect fields.

Theorem C. Let G be a linear algebraic

group defined over a perfect field k, H a k-subgroup

of G. We have the following implications.

H is k-quasiparabolic )1 H is quasiparabolic over k

)
2

H is observable over k

,
3

H is k-subparabolic

,4 H is subparabolic over k.

If, moreover, G has positive semisimple rank and H

is quasi-parabolic with respect to a separable char-

acter, then H is also k-quasi-parabolic.

The idea of the proof is as follows. The first and

the second implication follow from the definition;

the third equivalence relation follows from Theorem

4.1. For the last equivalence relation, ) follows

from definition. For the converse ((), if H is

subparabolic over k, then it is also �kk-subparabolic,

i.e, observable over �kk by Theorem 4.1, hence also

observable over k, by [17], Theorem 9. The last

statement follows by applying methods of proof of

Theorem 3.1, in combination with Proposition 2.7.4.

Some other relations between these properties

and related questions will be the subject of a paper

under preparation.
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