Normal families and shared values of meromorphic functions

By Chunlin Lei, Mingliang Fang, and Degui Yang
Department of Applied Mathematics, South China Agricultural University, Guangzhou, 510642, P. R. China

(Communicated by Shigefumi Mori, m.J.A., March 12, 2007)

Abstract

Let \mathcal{F} be a family of meromorphic functions in a domain D, let q, k be two positive integers, and let a, b be two non-zero complex numbers. If, for each $f \in \mathcal{F}$, the zeros of f have multiplicity at least $k+1$, and $f=a \Leftrightarrow G(f)=b$, where $G(f)=P\left(f^{(k)}\right)+H(f)$ be a differential polynomial of f satisfying $q \geq \gamma_{H}$, and $\left.\frac{\Gamma}{\gamma}\right|_{H}<k+1$, then \mathcal{F} is normal in D.

Key words: Normal families; meromorphic functions; shared values.

1. Introduction. Let f and g be meromorphic functions on a domain D, and let a and b be two complex numbers. If $g(z)=b$ whenever $f(z)=a$, we write

$$
f(z)=a \Rightarrow g(z)=b
$$

If $f(z)=a \Rightarrow g(z)=b$ and $g(z)=b \Rightarrow f(z)=$ a, we write

$$
f(z)=a \Leftrightarrow g(z)=b
$$

If $f(z)=a \Leftrightarrow g(z)=a$, we say that f and g share a on D.

Let $a_{i}(z),(i=1,2, \ldots, q-1), b_{j}(z),(j=$ $1,2, \ldots, n)$ be analytic in $D, n_{0}, n_{1}, \ldots, n_{k}$ be nonnegative integers. Set

$$
\begin{gathered}
P(\omega)=\omega^{q}+a_{q-1}(z) \omega^{q-1}+\ldots+a_{1}(z) \omega \\
M\left(f, f^{\prime}, \ldots, f^{(k)}\right)=f^{n_{0}}\left(f^{\prime}\right)^{n_{1}} \ldots\left(f^{(k)}\right)^{n_{k}} \\
\gamma_{M}=n_{0}+n_{1}+\ldots+n_{k} \\
\Gamma_{M}=n_{0}+2 n_{1}+\ldots+(k+1) n_{k}
\end{gathered}
$$

$M\left(f, f^{\prime}, \ldots, f^{(k)}\right)$ is called the differential monomial of f, γ_{M} the degree of $M\left(f, f^{\prime}, \ldots, f^{(k)}\right)$ and Γ_{M} the weight of $M\left(f, f^{\prime}, \ldots, f^{(k)}\right)$.

Let $M_{j}\left(f, f^{\prime}, \ldots, f^{(k)}\right),(j=1,2, \ldots, n)$ be differential monomials of f. Set

$$
\begin{aligned}
& H\left(f, f^{\prime}, \ldots, f^{(k)}\right)= b_{1}(z) M_{1}\left(f, f^{\prime}, \ldots, f^{(k)}\right)+\ldots \\
&+b_{n}(z) M_{n}\left(f, f^{\prime}, \ldots, f^{(k)}\right), \\
& \gamma_{H}=\max \left\{\gamma_{M_{1}}, \gamma_{M_{2}}, \ldots, \gamma_{M_{n}}\right\}, \\
& \Gamma_{H}= \max \left\{\Gamma_{M_{1}}, \Gamma_{M_{2}}, \ldots, \Gamma_{M_{n}}\right\}
\end{aligned}
$$

$H\left(f, f^{\prime}, \ldots, f^{(k)}\right)$ is called the differential polynomial of f, γ_{H} the degree of $H\left(f, f^{\prime}, \ldots, f^{(k)}\right)$ and Γ_{H} the weight of $H\left(f, f^{\prime}, \ldots, f^{(k)}\right)$. Set

2000 Mathematics Subject Classiffcation. 30D45.

$$
\begin{aligned}
\left.\frac{\Gamma}{\gamma}\right|_{H} & =\max \left\{\frac{\Gamma_{M_{1}}}{\gamma_{M_{1}}}, \frac{\Gamma_{M_{2}}}{\gamma_{M_{2}}}, \ldots, \frac{\Gamma_{M_{n}}}{\gamma_{M_{n}}}\right\} \\
G(f) & =P\left(f^{(k)}\right)+H\left(f, f^{\prime}, \ldots, f^{(k)}\right)
\end{aligned}
$$

Schwick[1] was the first to draw a connection between values shared by functions in \mathcal{F} and the normality of the family \mathcal{F}. Specifically, he proved the following theorem.

Theorem A. Let \mathcal{F} be a family of meromorphic functions in a domain D, and let a_{1}, a_{2}, a_{3} be three distinct complex numbers. If, for each $f \in \mathcal{F}, f$ and f^{\prime} share a_{1}, a_{2}, a_{3}, then \mathcal{F} is normal in D.

Fang[2] proved the following theorem.
Theorem B. Let \mathcal{F} be a family of meromorphic functions in a domain D, let k be a positive integer, and let a be a non-zero complex number. If, for each $f \in \mathcal{F}, f \neq 0$, and $f=a \Leftrightarrow f^{(k)}=a$, then \mathcal{F} is normal in D.

Fang and Zalcman[3] improved Theorem B as follows:

Theorem C. Let \mathcal{F} be a family of meromorphic functions in a domain D, let k be a positive integer, and let a, b be two non-zero complex numbers. If, for each $f \in \mathcal{F}$, the zeros of f have multiplicity at least $k+1$, and $f=a \Leftrightarrow f^{(k)}=b$, then \mathcal{F} is normal in D.

In this paper, we extended Theorem C as follows:

Theorem 1. Let \mathcal{F} be a family of meromorphic functions in a domain D, let q, k be two positive integers, and let a, b be two non-zero complex numbers. If, for each $f \in \mathcal{F}$, the zeros of f have multiplicity at least $k+1$, and $f=a \Leftrightarrow G(f)=b$, where $G(f)=P\left(f^{(k)}\right)+H(f)$ be a differential polynomial of f satisfying $q \geq \gamma_{H}$, and $\left.\frac{\Gamma}{\gamma}\right|_{H}<k+1$, then \mathcal{F} is
normal in D.
As an application of Theorem 1, we have the following example.

Example 1. Let k be a positive integer, let $f_{n}(z)=n e^{z}$, let $\mathcal{F}=\left\{f_{n}(z): n=1,2, \ldots\right\}$, let $D=$ $\{z:|z|<1\}$, and let $G(f)=f^{(k)}$. Then \mathcal{F} be a family of meromorphic functions in a domain D, for each $f \in \mathcal{F}, f \neq 0$ and $f=1 \Leftrightarrow G(f)=1$. By Theorem 1, we obtain that \mathcal{F} is normal in D.

From Theorem 1, we can get
Corollary 2. Let \mathcal{F} be a family of meromorphic functions in a domain D, let $a_{1}(z), a_{2}(z), \ldots, a_{k}(z)$ be holomorphic functions in D, let k be a positive integer, and let a, b be two non-zero complex numbers. If, for each $f \in \mathcal{F}$, the zeros of f have multiplicity at least $k+1$, and $f=a \Leftrightarrow L(f)=b$, where $L(f)=f^{(k)}+a_{1}(z) f^{(k-1)}+a_{2}(z) f^{(k-2)}+\ldots+a_{k}(z) f$, then \mathcal{F} is normal in D.
2. Some Lemmas. For the proof of Theorem 1 , we need the following lemmas.

Lemma 1[4]. Let k be a positive integer, let \mathcal{F} be a family of functions meromorphic on the unit disc \triangle, all of whose zeros have multiplicity at least k, and suppose that there exists $A \geq 1$ such that $\left|f^{(k)}(z)\right| \leq A$ whenever $f(z)=0$. Then if \mathcal{F} is not normal at z_{0}, there exist, for each $0 \leq \alpha \leq k$,
a) points $z_{n} \in \triangle, z_{n} \rightarrow z_{0}$;
b) functions $f_{n} \in \mathcal{F}$; and
c) positive numbers $\rho_{n} \rightarrow 0$
such that $\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \zeta\right)=g_{n}(\zeta) \rightarrow g(\zeta)$ locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function on C, all of whose zeros have multiplicity at least k, such that $g^{\#}(\zeta) \leq g^{\#}(0)=k A+1$. In particular, g has order at most 2 .

Lemma 2[5]. Let $f(z)$ be a meromorphic fuction of finite order in the plane, let k be a positive integer, and let b be a non-zero complex number. If the zeros of $f(z)$ have multiplicity at least $k+1$, the poles are multiple, and $f^{(k)}(z) \neq b$, then $f(z)$ is a constant.
3. Proofs of Theorems 1. Without lose of generality we assume that $D=\{|z|<1\}$. Suppose that \mathcal{F} is not normal at point 0 . Then by Lemma 1, for $\alpha=k$, there exist $f_{j} \in \mathcal{F}, z_{j} \rightarrow 0$, and $\rho_{j} \rightarrow 0^{+}$such that $g_{j}(\zeta)=\rho_{j}^{-k} f_{j}\left(z_{j}+\rho_{j} \zeta\right)$ converges locally uniformly to a non-constant function $g(\zeta)$. Moreover, $g(\zeta)$ is of order at most 2 and only zeros of multiplicity at least $k+1$. Set $Q(\omega)=\omega^{q}+a_{q-1}(0) \omega^{q-1}+\ldots+a_{1}(0) \omega$,

We claim that:
(i) $Q\left(g^{(k)}\right) \neq b$;
(ii) the poles of g are multiple.

Suppose now that $Q\left(g^{(k)}\left(\zeta_{0}\right)\right)=b$. we claim that $Q\left(g^{(k)}\right) \not \equiv b$. Otherwise, g must be a polynomial of exact degree k, which contradicts the fact that each zero of g has multiplicity at least $\mathrm{k}+1$. Since $Q\left(g^{(k)}\right)\left(\zeta_{0}\right)=b$. Obviously, $g\left(\zeta_{0}\right) \neq \infty$. Hence there exists $\delta>0$ such that $g(\zeta)$ is analytic on $G_{2 \delta}=\{\zeta$: $\left.\left|\zeta-\zeta_{0}\right|<2 \delta\right\}$. Thus $g_{j}^{(i)}(\zeta)(i=0,1,2, \ldots, k)$ are analytic on $G_{\delta}=\left\{\zeta:\left|\zeta-\zeta_{0}\right|<\delta\right\}$ for large j and $g_{j}^{(i)}(\zeta)$ converges uniformly to $g^{(i)}(\zeta)(i=0,1,2, \ldots, k)$ on $\bar{G}_{\delta}=\left\{\zeta:\left|\zeta-\zeta_{0}\right| \leq \delta\right\}$.

As

$$
\begin{aligned}
G\left(f_{j}\right)\left(z_{j}+\rho_{j} \zeta\right)-b= & P\left(f_{j}^{(k)}\left(z_{j}+\rho_{j} \zeta\right)\right) \\
& +H\left(f_{j}, f_{j}^{\prime}, \ldots, f_{j}^{(k)}\right)\left(z_{j}+\rho_{j} \zeta\right) \\
& -b,
\end{aligned}
$$

and

$$
\begin{aligned}
& H\left(f_{j}, f_{j}^{\prime}, \ldots, f_{j}^{(k)}\right)\left(z_{j}+\rho_{j} \zeta\right) \\
& =\sum_{i=1}^{n} b_{i}\left(z_{j}+\rho_{j} \zeta\right) \rho_{j}^{(k+1) \gamma_{M_{i}}-\Gamma_{M_{i}}} \\
& \quad \times M_{i}\left(g_{j}, g_{j}^{\prime}, \ldots, g_{j}^{(k)}\right)(\zeta) .
\end{aligned}
$$

Considering $b_{i}(z)$ are analytic on $\mathrm{D}(i=$ $1,2, \ldots, n$), we have

$$
\begin{aligned}
& \left|b_{i}\left(z_{j}+\rho_{j} \zeta\right)\right| \leq M\left(\frac{1+r}{2}, b_{i}(z)\right)<\infty, \\
& \quad \quad(i=1,2, \ldots, n)
\end{aligned}
$$

for sufficiently large j .
Hence we deduce from $\left.\frac{\Gamma}{\gamma}\right|_{H}<k+1$ that

$$
\sum_{i=1}^{n} b_{i}\left(z_{j}+\rho_{j} \zeta\right) \rho_{j}^{(k+1) \gamma_{M_{i}}-\Gamma_{M_{i}}} M_{i}\left(g_{j}, g_{j}^{\prime}, \ldots, g_{j}^{(k)}\right)(\zeta)
$$

converges uniformly to 0 on $D_{\frac{\delta}{2}}=\left\{\zeta:\left|\zeta-\zeta_{0}\right|<\frac{\delta}{2}\right\}$.
Thus we know that $G\left(f_{j}\right)\left(z_{j}+\rho_{j} \zeta\right)-b$ converges uniformly to $Q\left(g^{(k)}\right)-b$ on $D_{\frac{\delta}{2}}=\left\{\zeta:\left|\zeta-\zeta_{0}\right|<\frac{\delta}{2}\right\}$.

Hence, by Hurwitz's theorem we deduce that there exist $\zeta_{j}, \zeta_{j} \rightarrow \zeta_{0}$ such that, for large j,

$$
\begin{aligned}
& P\left(g_{j}^{(k)}\left(\zeta_{j}\right)\right)+\sum_{i=1}^{n} b_{i}\left(z_{j}+\rho_{j} \zeta_{j}\right) \rho_{j}^{(k+1) \gamma_{M_{i}}-\Gamma_{M_{i}}} \\
& \quad \times M_{i}\left(g_{j}, g_{j}^{\prime}, \ldots, g_{j}^{(k)}\right)\left(\zeta_{j}\right)=b .
\end{aligned}
$$

Thus
$P\left(f_{j}^{(k)}\left(z_{j}+\rho_{j} \zeta_{j}\right)\right)+H\left(f_{j}, f_{j}^{\prime}, \ldots, f_{j}^{(k)}\right)\left(z_{j}+\rho_{j} \zeta_{j}\right)=b$.
It follows from $f=a \Leftrightarrow G(f)=b$ that

$$
f_{j}\left(z_{j}+\rho_{j} \zeta_{j}\right)=a
$$

Thus

$$
g_{j}\left(\zeta_{j}\right)=\frac{f_{j}\left(z_{j}+\rho_{j} \zeta_{j}\right)}{\rho_{j}^{k}}=\frac{a}{\rho_{j}^{k}}
$$

we have $g\left(\zeta_{0}\right)=\lim _{n \rightarrow \infty} g_{j}\left(\zeta_{j}\right)=\infty$, which contra$\operatorname{dicts} Q\left(g^{(k)}\left(\zeta_{0}\right)\right)=b$. This proves (i).

Now we prove (ii). Suppose $g\left(\zeta_{0}\right)=\infty$. Since $g \not \equiv \infty$, there exists a closed disc $K=\{\zeta: \mid \zeta-$ $\left.\zeta_{0} \mid \leq \delta\right\}$ on which $1 / g$ and $1 / g_{j}$ are holomorphic (for j sufficiently large) and $1 / g_{j} \rightarrow 1 / g$ uniformly. Hence, $1 / g_{j}(\zeta)-\rho_{j}^{k} / a \rightarrow 1 / g(\zeta)$ on K, and since $1 / g$ is nonconstant, there exist $\zeta_{j}, \zeta_{j} \rightarrow \zeta_{0}$, such that (for j large enough)

$$
\frac{1}{g_{j}\left(\zeta_{j}\right)}-\frac{\rho_{j}^{k}}{a}=0
$$

Hence $f_{j}\left(z_{j}+\rho_{j} \zeta_{j}\right)=a$. Thus we have
$P\left(f_{j}^{(k)}\left(z_{j}+\rho_{j} \zeta_{j}\right)\right)+H\left(f_{j}, f_{j}^{\prime}, \ldots, f_{j}^{(k)}\right)\left(z_{j}+\rho_{j} \zeta_{j}\right)=b$.
Thus

$$
\begin{align*}
& P\left(g_{j}^{(k)}\left(\zeta_{j}\right)\right) \tag{1}\\
& \quad+\sum_{i=1}^{n} b_{i}\left(z_{j}+\rho_{j} \zeta_{j}\right) \rho_{j}^{(k+1) \gamma_{M_{i}}-\Gamma_{M_{i}}} \\
& \quad \times M_{i}\left(g_{j}, g_{j}^{\prime}, \ldots, g_{j}^{(k)}\right)\left(\zeta_{j}\right)=b
\end{align*}
$$

We can get

$$
\begin{gather*}
\left(\frac{1}{g_{j}}\right)^{\prime}=-\frac{g_{j}^{\prime}}{g_{j}^{2}} \tag{2}\\
\left(\frac{1}{g_{j}}\right)^{\prime \prime}=-\frac{g_{j}^{\prime \prime}}{g_{j}^{2}}+2 \frac{\left(g_{j}^{\prime}\right)^{2}}{g_{j}^{3}}
\end{gather*}
$$

for $k \geq 3$, mathematical induction shows that

$$
\left(\frac{1}{g_{j}}\right)^{(k)}=-\frac{g_{j}^{(k)}}{g_{j}^{2}}+k!\frac{\left(g_{j}^{\prime}\right)^{k}}{g_{j}^{k+1}}+\sum_{i=0}^{k-2} A_{i} g_{j}^{i}
$$

Thus
(4) $g_{j}^{(k)}=g_{j}^{2}\left[k!\frac{\left(g_{j}^{\prime}\right)^{k}}{g_{j}^{k+1}}+\sum_{i=0}^{k-2} A_{i} g_{j}^{i}-\left(\frac{1}{g_{j}}\right)^{(k)}\right]$.

Thus by (1), (2), (3), (4) and $q \geq \gamma_{H}$, we have

$$
\begin{align*}
& (k!)^{q}\left(\frac{g_{j}^{\prime}\left(\zeta_{j}\right)}{g_{j}^{2}\left(\zeta_{j}\right)}\right)^{k q} g_{j}^{(k+1) q}\left(\zeta_{j}\right) \tag{5}\\
& \quad+\sum_{i=0}^{(k+1) q-1} B_{i} g_{j}^{i}\left(\zeta_{j}\right)=b
\end{align*}
$$

where B_{i} is a polynomial in $(1 / g)^{\prime},(1 / g)^{\prime \prime}, \cdots$, $(1 / g)^{(k)}$.

Since $\lim _{j \rightarrow \infty} g_{j}\left(\zeta_{j}\right)=\infty$, by (5) we get

$$
\begin{aligned}
\lim _{j \rightarrow \infty}[& (k!)^{q}\left(\frac{g_{j}^{\prime}\left(\zeta_{j}\right)}{g_{j}^{2}\left(\zeta_{j}\right)}\right)^{k q} g_{j}^{(k+1) q-1}\left(\zeta_{j}\right) \\
& \left.+\sum_{i=1}^{(k+1) q-1} B_{i} g_{j}^{i-1}\left(\zeta_{j}\right)\right]=0
\end{aligned}
$$

Similarly, we have

$$
\begin{gathered}
\lim _{j \rightarrow \infty}\left[(k!)^{q}\left(\frac{g_{j}^{\prime}\left(\zeta_{j}\right)}{g_{j}^{2}\left(\zeta_{j}\right)}\right)^{k q} g_{j}^{(k+1) q-2}\left(\zeta_{j}\right)\right. \\
\left.\quad+\sum_{i=1}^{(k+1) q-1} B_{i} g_{j}^{i-2}\left(\zeta_{j}\right)\right]=0
\end{gathered}
$$

Proceeding inductively, we obtain

$$
\lim _{j \rightarrow \infty}\left[-\frac{g_{j}^{\prime}\left(\zeta_{j}\right)}{g_{j}^{2}\left(\zeta_{j}\right)}\right]^{k}=0
$$

It follows that $\left.(1 / g(\zeta))^{\prime}\right|_{\zeta=\zeta_{0}}=0$, so that ζ_{0} is a multiple pole of $g(\zeta)$. Hence no pole of g is simple. This proves (ii).

It follows $Q\left(g^{(k)}\right) \neq b$ and the definition of $Q(\omega)$ that there exist a non-zero constant c satisfying $g^{(k)} \neq c$. Hence by Lemma 2, we can deduce that g is a constant, which is a contradiction. Hence \mathcal{F} is normal on D.

Acknowledgements. Supported by the NNSF of China (Grant No. 10471065), the SRF for ROCS, SEM., and the Presidential Foundation of South China Agricultural University.

References

[1] W. Schwick, Sharing values and normality, Arch. Math. (Basel) 59 (1992), no. 1, 50-54.
[2] M. Fang, A note on sharing values and normality, J. Math. Study 29 (1996), no. 4, 29-32.
[3] M. Fang and L. Zalcman, Normal families and shared values of meromorphic functions. III, Comput. Methods Funct. Theory 2 (2002), no. 2, 385-395.
[4] X. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000), no. 3, 325-331.
[5] Y. Wang and M. Fang, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sinica (N.S.) 14 (1998), no. 1, 17-26.

