Average of two extreme points in *JBW**-triples

By Akhlaq Ahmad SIDDIQUI

Department of Mathematics, The Prince Sultan University, P.O.Box 66833, Riyadh 11586, Saudi Arabia

(Communicated by Heisuke HIRONAKA, M.J.A., Nov. 12, 2007)

Abstract: H.Choda proved that every element in the closed unit ball of a von Neumann algebra is average of two extreme points of the ball. Here, we prove the strict generalisation of Choda's result to arbitrary JBW^* -triples.

Key words: von Neumann algebra; JB^* -algebra; JBW^* -algebra; JBW^* -triple; Peirce decomposition; extreme points.

A Jordan algebra \mathcal{J} with product \circ is called a Banach Jordan algebra if there is a norm $\|.\|$ on \mathcal{J} making it a Banach space and $\|a \circ b\| \leq \|a\| \|b\|$. If, in addition, \mathcal{J} has a unit e with $\|e\| = 1$ then \mathcal{J} is called a unital Banach Jordan algebra. (details can be seen from [1,4,14,16], etc.)

In the sequel, $\{abc\}$ will denote the Jordan triple product of a, b, c defined in the Banach Jordan algebra \mathcal{J} as follows: $\{abc\} = (a \circ b) \circ c - (a \circ c) \circ b + (b \circ c) \circ a$.

A complex Banach Jordan algebra \mathcal{J} with involution * (see [12], for instance) is called a JB^* algebra if $||\{xx^*x\}|| = ||x||^3$ for all $x \in \mathcal{J}$. Let \mathcal{J} be a JB^* -algebra with unit e. As usual, an element $u \in \mathcal{J}$ is called unitary if $u \circ u^* = e$ and $u^2 \circ u^* = u$; this simply means that u^* is the inverse of u.

The class of JB^* -algebras was introduced by Kaplansky in 1976 which includes all C^* -algebras as a proper subclass (see [18]). Around the same time, a related class called JB-algebras was being studied by Alfsen, Shultz and Størmer (see [1]): A real Banach Jordan algebra \mathcal{J} is called a JB-algebra if $||x||^2 = ||x^2|| \le ||x^2 + y^2||$ for all $x, y \in \mathcal{J}$. These two classes of algebras are linked as follows (see [18,19]):

Theorem 1. (a). If \mathcal{A} is a JB^* -algebra then the set of self-adjoint elements (x with $x^* = x$) of \mathcal{A} is a JB-algebra.

(b). If \mathcal{B} is a JB-algebra then under a suitable norm the complexification $C_{\mathcal{B}}$ of \mathcal{B} is a JB^{*}-algebra.

Analogous to the von Neumann algebras, JBW^* -algebras constitute an important subclass of JB^* -algebras: A JB^* -algebra is called a JBW^* -

algebra if it is a Banach dual space. An example of a JBW^* -algebra can be constructed as follows:

Example 2. Let \Re denote the field of real numbers. Let \mathcal{H} be a real Hilbert space of dimension ≥ 2 with inner product \langle , \rangle . The direct sum $\mathcal{X} := \mathcal{H} \oplus \Re$ is a *JB*-algebra with product

$$(h, \lambda) \circ (h', \lambda') = (\lambda h' + \lambda' h, < h, h' > +\lambda\lambda')$$

and norm

$$||(h, \lambda)|| = ||h|| + |\lambda|$$

for all $h, h' \in \mathcal{H}$ and $\lambda, \lambda' \in \mathfrak{R}$. This *JB*-algebra is called a real spin factor and its complexification is a JBW^* -algebra (see [17]).

S. Sakai [13] studied von Neumann algebras from the viewpoint of C^* -algebra which is a Banach dual space and following his lines of argument one can easily see that every JBW^* -algebra \mathcal{J} has a unique predual.

In fact, by using a different approach, Horn [6] extended some of this to the following class of subspaces of JB^* -algebras.

Let \mathcal{A} be a JB^* -algebra and let \mathcal{B} be a norm closed subspace of \mathcal{A} . If $\{xy^*z\} \in \mathcal{B}$ for all $x, y, z \in \mathcal{B}$ then \mathcal{B} is called a JB^* -triple system (or JB^* -triple for short). If \mathcal{B} is a JB^* -triple system which is a Banach dual space then \mathcal{B} is called a JBW^* -triple system.

 JB^* -triples are not algebras (as they generally are only closed under the triple product). Nevertheless they are associated with interesting geometric objects (see [10,16]) and it is possible for instance to calculate the extreme points of the unit ball of a JB^* -triple. If \mathcal{X} is a normed space, we denote by $\mathcal{E}(\mathcal{X})_1$ the set of extreme points of the

²⁰⁰⁰ Mathematics Subject Classification. Primary 17C65, 46H70, 46L10, 46L70; Secondary 17C27, 46K70.

Nos. 9–10]

closed unit ball $(\mathcal{X})_1$ in \mathcal{X} .

Theorem 3 ([11]). Let \mathcal{J} be JB^* -triple and let $v \in \mathcal{J}$. $v \in \mathcal{E}(\mathcal{J})_1$ if and only if

$$a - 2\{vv^*a\} + \{v\{va^*v\}^*v\} = 0$$

for all $a \in \mathcal{J}$.

When \mathcal{J} is a JB^* -triple which is contained in the algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators on some Hilbert space \mathcal{H} , this condition can be written as $(e - vv^*)a(e - v^*v) = 0$ for all $a \in \mathcal{J}$, a condition originally obtained by Kadison [8] for C^* -algebras and later generalised by Harris [5]. If $v \in \mathcal{E}(\mathcal{J})_1$ then $v = \{vv^*v\}$, so v is a partial isometry (in the usual terms of operator theory), it is also frequently called tripotent in papers on triples; for details see [5–7,9,11].

If \mathcal{J} is a JB^* -triple and v is a non-zero tripotent in \mathcal{J} then \mathcal{J} can be decomposed as follows:

$$\mathcal{J} = \mathcal{J}_0(v) \oplus \mathcal{J}_{\frac{1}{2}}(v) \oplus \mathcal{J}_1(v)$$

where $\mathcal{J}_k(v) = \{x \in \mathcal{J} : \{vv^*x\} = kx\}$ is called the Peirce k-space of v for $k = 0, \frac{1}{2}, 1$. The above decomposition of \mathcal{J} is called the Peirce decomposition of \mathcal{J} with respect to v; more details can be found in [16] where it is also shown that each Peirce space is a JB^* -subtriple of \mathcal{J} .

Let \mathcal{J} be a JB^* -triple and let $v \in \mathcal{J}$ be a nonzero tripotent. v is called complete (or maximal) if $\mathcal{J}_0(v) = \{0\}$. In geometric terms, the complete tripotents of a JB^* -triple are precisely the extreme points of $(\mathcal{J})_1$ by [7; 1.15].

In Theorem 4 of paper [3], H. Choda proved that every element in the unit ball of a von Neumann algebra is the average of two extreme points of the unit ball. In the following discussion, we generalise this result of Choda to JBW^* -triples. This will be done in a completely different way to Choda's proof.

By [2, (2.2)], $\mathcal{J}_1(v)$ becomes a JB^* -algebra under product \circ_1 and the new involution $*_1$ defined by

$$x \circ_1 y = \{xv^*y\}$$
 and $x^{*_1} = \{vx^*v\}.$

If the tripotent u is unitary then \mathcal{J} coincides with the Peirce 1-space; see details from [16].

We also need the following lemma for our main result:

Lemma 4. If \mathcal{J} is a JB^* -triple and $v \in \mathcal{E}(\mathcal{J})_1$, then every unitary u in the JB^* -algebra $\mathcal{J}_1(v)$ is in $\mathcal{E}(\mathcal{J})_1$.

Proof. Since v an extreme point of $(\mathcal{J})_1$ is a complete tripotent, $\mathcal{J}_0(v) = \{0\}$. We denote the new triple product (induced by \circ_1) in $\mathcal{J}_1(v)$ by $\{,,\}_1$. Define the map F from the JB^* -triple $(\mathcal{J}_1(v), *, \{,,\})$ to the JB^* -triple $(\mathcal{J}_1(v), *_1, \{,,\}_1)$ by F(y) = y. Then F being a surjective isometry is a JB^* -triple isomorphism by [10, Proposition 5.5]. In particular, for any unitary u in the algebra $\mathcal{J}_1(v)$,

$$u = \{uu^{*_1}u\}_1 = \{uu^*u\}$$

and $\{uu^*v\} = \{uu^{*_1}v\}_1 = v$

This means u is a tripotent in \mathcal{J} and $v \in \mathcal{J}_1(u)$. Hence by [6, Lemma 1.14(1)], $\mathcal{J}_0(u) \subseteq \mathcal{J}_0(v)$ so $\mathcal{J}_0(u) = \{0\}$. Thus $u \in \mathcal{E}(\mathcal{J})_1$.

Theorem 5. If \mathcal{J} is a JBW^* -triple then every element of $(\mathcal{J})_1$ is the average of two extreme points of $(\mathcal{J})_1$.

Proof. Let $x \in (\mathcal{J})_1$. By [6, Lemma 3.12], there exists a $v \in \mathcal{E}(\mathcal{J})_1$ such that $x \in \mathcal{J}_1(v)$ and $x = \{vx^*v\}$. Then $x^{*_1} = \{vx^*v\} = x$ so x is self-adjoint in the JB^* -algebra $\mathcal{J}_1(v)$. Hence there exist unitaries u_1, u_2 in the JB^* -algebra $\mathcal{J}_1(v)$ such that $x = \frac{1}{2}(u_1 + u_2)$ by [15, Theorem 2.11]. Then by the previous lemma $u_1, u_2 \in \mathcal{E}(\mathcal{J})_1$. Thus x is the average of two extreme points of $(\mathcal{J})_1$.

Remark 6. Of course, in JB^* -triples which are not unital JB^* -algebras it is not possible to talk about unitary elements, so the above Theorem 5 is best possible for JB^* -triples. Apart from certain C^* -algebras (for example, von Neumann algebras) we do not have any example of infinite-dimensional JB^* -algebra in which every element of the unit ball is the average of 2 unitaries.

Acknowledgement. Author is indebted to Dr. Martin A. Youngson for his help and encouragement during this work.

References

- E. M. Alfsen, F. W. Shultz and E. Størmer, A Gelfand-Naimark theorem for Jordan algebras, Advances in Math. 28 (1978), no. 1, 11–56.
- [2] R. Braun, W. Kaup and H. Upmeier, A holomorphic characterization of Jordan C*-algebras, Math. Z. 161 (1978), no. 3, 277–290.
- [3] H. Choda, An extremal property of the polar decomposition in von Neumann algebras, Proc. Japan Acad. 46 (1970), 341–344.
- [4] C. V. Devapakkiam, Jordan algebras with continuous inverse, Math. Japon. 16 (1971), 115–125.
- [5] L. A. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces, in *Proceedings on Infinite Dimensional Holomor*-

phy (Internat. Conf., Univ. Kentucky, Lexington, Ky., 1973), 13–40. Lecture Notes in Math., 364, Springer, Berlin, 1974.

- [6] G. Horn, Characterization of the predual and ideal structure of a JBW*-triple, Math. Scand. 61 (1987), no. 1, 117–133.
- [7] G. Horn, Classification of JBW*-triples of type I, Math. Z. 196 (1987), no. 2, 271–291.
- [8] R. V. Kadison, Isometries of operator algebras, Ann. of Math. (2) 54 (1951), 325–338.
- [9] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, Vol. I, Academic Press, New York, 1983.
- W. Kaup, Algebraic characterization of symmetric complex Banach manifolds, Math. Ann. 228 (1977), no. 1, 39–64.
- [11] W. Kaup and H. Upmeier, Jordan algebras and symmetric Siegel domains in Banach spaces, Math. Z. 157 (1977), no. 2, 179–200.
- [12] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973.

- [13] S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer, New York, 1971.
- [14] F. W. Shultz, On normed Jordan algebras which are Banach dual spaces, J. Funct. Anal. 31 (1979), no. 3, 360–376.
- [15] A. A. Siddiqui, Self-adjointness in unitary isotopes of JB*-algebras, Arch. Math. (Basel) 87 (2006), no. 4, 350–358.
- [16] H. Upmeier, Symmetric Banach manifolds and Jordan C*-algebras, North-Holland, Amsterdam, 1985.
- [17] H. Upmeier, Jordan algebras in analysis, operator theory, and quantum mechanics, Published for the Conference Board of the Mathematicl Sciences, Washington, DC, 1987.
- [18] J. D. M. Wright, Jordan C*-algebras, Mich. Math. J. 24 (1977), no. 3, 291–302.
- [19] M. A. Youngson, A Vidav theorem for Banach Jordan algebras, Math. Proc. Camb. Phil. Soc. 84 (1978), no. 2, 263–272.