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Abstract: In this paper, we deal with the problem of uniqueness of meromorphic functions

that share three values IM and a fourth value CM, and prove some results which answer a open

question on uniqueness of meromorphic functions. Examples show that the conditions of

theorems in this paper are necessary.
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1. Introduction and main results. In this

paper, a meromorphic function means meromorphic

in the complex plane. We use the usual notations of

Nevanlinna theory of meromorphic functions as

explained in [1].

Let f be a nonconstant meromorphic function.

The order of f , denoted �ðfÞ, is defined by

�ðfÞ ¼ lim sup
r!1

logT ðr; fÞ
log r

:

The lower order of f , denoted �ðfÞ, is defined by

�ðfÞ ¼ lim inf
r!1

logT ðr; fÞ
log r

:

If the order and the lower order of f are equal, that

is �ðfÞ ¼ �ðfÞ, then f is called a function with

normal growth.

Let f be a nonconstant meromorphic function.

If the order of f is finite, we denote by Sðr; fÞ any
quantity satisfying

Sðr; fÞ ¼ Oðlog rÞ ðr ! 1Þ:

If the order of f is infinite, we denote by Sðr; fÞ any
quantity satisfying

Sðr; fÞ ¼ OðlogðrT ðr; fÞÞÞ ðr ! 1; r 62 EÞ;

where E is a set of positive real numbers of finite

linear measure, not necessarily the same at each

occurrence.

Let f and g be two nonconstant meromorphic

functions. If for some a 2 C [ f1g, f and g have

same set of a-points with the same multiplicities, we

say that f and g share the value a CM (counting

multiplicities), and if we do not consider the

multiplicities then f and g are said to share the

value a IM (ignoring multiplicities) (see [2]).

In 1926, R. Nevanlinna [3] proved the following

theorem.

Theorem A. Let f and g be two distinct

nonconstant meromorphic functions and aj ðj ¼
1; 2; 3; 4Þ be four distinct values. If f and g share aj
ðj ¼ 1; 2; 3; 4Þ CM, then f is a Möbius transforma-

tion of g. Furthermore, two of aj ðj ¼ 1; 2; 3; 4Þ, say
a3 and a4, are Picard exceptional values of f and g,

and the cross ratio ða1; a2; a3; a4Þ ¼ �1.

In 1976, L. Rubel asked the following question:

whether CM can be replaced by IM in the hypoth-

esis of Theorem A with the same conclusion or not?

In 1979, G. G. Gundersen [4] gave a negative

answer for this question by the following counter-

example:

f ¼ eh þ 1

ðeh � 1Þ2
and g ¼

ðeh þ 1Þ2

8ðeh � 1Þ
;

where h is a nonconstant entire function. It is

easy to verify that f and g share the four values

0; 1;1;�1=8, where none of the four values are

shared CM, and f is not a Möbius transformation of

g. Other examples of meromorphic functions that

share four values where none of the four values are

shared CM, were given by N. Steinmetz [5] and M.

Reinders [6].

On the other hand, G. G. Gundersen [7] proved

the following result which is an improvement of

Theorem A.

Theorem B. If two distinct nonconstant

meromorphic functions share two values CM and

share two other values IM, then the functions share
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all four values CM (hence the conclusions of

Theorem A hold).

Between these examples and Theorem B, G. G.

Gundersen [10] posed the following open question,

which is the long-standing one:

Gundersen’s question: If two nonconstant

meromorphic functions share three values IM and

share a fourth value CM, then do the functions

necessarily share all four values CM?

In resent years, improvements of Theorem B

were made by G. G. Gundersen [10], E. Mues

[11–13], M. Reinders [6,14], S. P. Wang [15],

H. Ueda [16,17], H. X. Yi and C. T. Zhou [18],

T. P. Czubiak and G. G. Gundersen [19], G. D.

Qiu [20], J. P. Wang [21,22], B. Huang [23,24], B.

Huang and J. Y. Du [25], K. Ishizaki [26], P.

Li [27], W. H. Yao [28], and other authors (see [2]),

but Gundersen’s question is still open. Gundersen’s

question is the main open question in the theory

of meromorphic functions that share four values.

This question appears to be difficult (see [10]).

In this paper we will do a step in this direction.

It is easy to prove that meromorphic function

with two Picard exceptional values is a function

with normal growth (see [2, Theorem 1.42 and

Theorem 1.44]). From Theorem A, we know that

two distinct nonconstant meromorphic functions

sharing four values CM are functions with normal

growth. It is natural to ask the following open

question:

Open question: Must f and g be functions

with normal growth, if f and g are two distinct

nonconstant meromorphic functions sharing three

values IM and sharing a fourth value CM?

In this paper we give a positive answer to this

question. In fact, we shall prove the following

theorem.

Theorem 1. Let f and g be two distinct

nonconstant meromorphic functions and aj ðj ¼
1; 2; 3; 4Þ be four distinct values. If f and g share a1,

a2, a3 IM and a4 CM, then f and g are functions with

normal growth, f and g have the same order, and the

order of f and g is a positive integer or infinite.

From Theorem 1, we immediately obtain the

following theorems on uniqueness of meromorphic

functions.

Theorem 2. Let f and g be two nonconstant

meromorphic functions sharing three values IM and

sharing a fourth value CM. If f and g are not

functions with normal growth, then f � g.

Theorem 3. Let f and g be two nonconstant

meromorphic functions sharing three values IM and

sharing a fourth value CM. If the order of f and g

is neither a positive integer nor infinite, then f � g.

The following examples show that the conclu-

sion of Theorem 1 can occur, and that the condition

‘‘f and g are not functions with normal growth’’ in

Theorem 2 is necessary, the condition ‘‘order of f

and g is neither a positive integer nor infinite’’ in

Theorem 3 is necessary.

Example 1. Let f ¼ ez, g ¼ e�z. It is easy to

verify that f and g share 0; 1;1;�1 CM and that

�ðfÞ ¼ �ðgÞ ¼ �ðfÞ ¼ �ðgÞ ¼ 1, however f 6� g.

Example 2. Let f ¼ 2eh

eh�1
, g ¼ 2

1�eh
, where h

is a transcendental entire function. It is easy to

verify that f and g share 0; 1;1; 2 CM and that

�ðfÞ ¼ �ðgÞ ¼ �ðfÞ ¼ �ðgÞ ¼ 1, however f 6� g.

2. Some Lemmas.

Lemma 1 (see [8] or [2, Theorem 2.16]). Let

f and g be nonconstant rational functions. If f and g

share four distinct values IM, then f � g.

Lemma 2 (see [2, Corollary of Theorem 1.5]).

Let f be a nonconstant meromorphic function. Then

f is a rational function if and only if

lim inf
r!1

T ðr; fÞ
log r

< 1:

Lemma 3 (see [9] or [2, Theorem 1.19]). Let

T1ðrÞ and T2ðrÞ be two nonnegative and nondecreas-

ing real functions defined in r > r0 > 0. If

T1ðrÞ ¼ OðT2ðrÞÞ ðr ! 1; r 62 EÞ;

where E is a set with finite linear measure, then

lim sup
r!1

logþ T1ðrÞ
log r

� lim sup
r!1

logþ T2ðrÞ
log r

and

lim inf
r!1

logþ T1ðrÞ
log r

� lim inf
r!1

logþ T2ðrÞ
log r

;

which mean that the order and the lower of T1ðrÞ are
not greater than the order and the lower of T2ðrÞ,
respectively.

Lemma 4 (see [2, Theorem 1.42 and Theorem

1.44]). Let f be a nonconstant meromorphic func-

tion and a, b be two distinct finite values. If a and b

are Picard exceptional values of f, then

f ¼ aeh � b

eh � 1
;
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where h is a nonconstant entire function. If h is a

polynomial of degree �, then �ðfÞ ¼ �ðfÞ ¼ �. If h

is a transcendental entire function, then �ðfÞ ¼
�ðfÞ ¼ 1. In both cases, f is a function with normal

growth.

Lemma 5 (see [1, Theorem 2.2] or [2, Theorem

1.7]). Let f be a nonconstant meromorphic func-

tion and k � 1 be an integer. Then

m r;
f ðkÞ

f

 !
¼ Sðr; fÞ:

Lemma 6 (see [10, Lemma 1] or [2, Theorem

4.4]). Let f and g be two distinct nonconstant

meromorphic functions, and let a1, a2, a3 and a4 be

four distinct complex numbers. If f and g share a1,

a2, a3 and a4 IM, then

(i) T ðr; fÞ ¼ T ðr; gÞ þ Sðr; fÞ;

(ii)
P4
j¼1

Nðr; 1
f�aj

Þ ¼ 2T ðr; fÞ þ Sðr; fÞ.

Lemma 7 (see [10, Lemma 3] or [2, Theorem

4.4]). Let f and g be distinct nonconstant mer-

omorphic functions that share four values a1, a2, a3
and a4 IM, where a4 ¼ 1. Then the following

statements hold:

(i) N1ðr; 0; f 0Þ ¼ Sðr; fÞ and N1ðr; 0; g0Þ ¼ Sðr; fÞ,
where N1ðr; 0; f 0Þ and N1ðr; 0; g0Þ ‘‘count’’ re-

spectively only those points in Nðr; 0; f 0Þ and

Nðr; 0; g0Þ which do not occur when fðzÞ ¼
gðzÞ ¼ ai for some i ¼ 1; 2; 3.

(ii) For i ¼ 1; 2; 3; 4, let N2ðr; aiÞ refer only to those

ai-points that are multiple for both f and g and

‘‘count’’ each such point the number of times of

the smaller of the two multiplicities. ThenX4
i¼1

N2ðr; aiÞ ¼ Sðr; fÞ:

Lemma 8 (see [2, Lemma 4.3]). Suppose

that fðzÞ is a nonconstant meromorphic function,

and P ðfÞ ¼ a0f
p þ a1f

p�1 þ � � � þ ap ða0 6¼ 0Þ is a

polynomial in f with degree p and coefficients aj
ðj ¼ 0; 1; 2; � � � ; pÞ are constants, suppose further-

more that bj ðj ¼ 1; 2; � � � ; qÞ ðq > pÞ are distinct

finite values. Then

P ðfÞ
ðf � b1Þðf � b2Þ � � � ðf � bqÞ

¼
Xq
j¼1

Aj

f � bj

where Aj ðj ¼ 1; 2; � � � ; qÞ are nonzero constants, and

m r;
P ðfÞf 0

ðf � b1Þðf � b2Þ � � � ðf � bqÞ

� �
¼ Sðr; fÞ:

Let f and g be two nonconstant meromorphic

functions sharing the value a IM. We denote by

Nðp;qÞðr; aÞ the reduced counting function of those

common zeros of f � a and g� a such that a is

taken by f with multiplicity p, and by g with

multiplicity q.

Lemma 9. Let f and g be distinct nonconst-

ant meromorphic functions that share four values

a1, a2, a3 and a4 IM, where a4 ¼ 1. Then

1

7
T ðr; fÞ �

X3
j¼1

X6
k¼1

N ð1;kÞðr; ajÞð2:1Þ

þ
X3
j¼1

X6
k¼2

N ðk;1Þðr; ajÞ þ Sðr; fÞ:

Proof. From Lemma 6 (i) we have

T ðr; fÞ ¼ T ðr; gÞ þ Sðr; fÞ:ð2:2Þ

By Lemma 7 (ii) we obtainX3
j¼1

N2ðr; ajÞ ¼ Sðr; fÞ:ð2:3Þ

From (2.2) and (2.3) we get for j ¼ 1; 2; 3

ð2:4Þ

Nðr; ajÞ ¼
X1
k¼1

Nð1;kÞðr; ajÞ þ
X1
k¼2

N ðk;1Þðr; ajÞ þ Sðr; fÞ

¼
X6
k¼1

Nð1;kÞðr; ajÞ þ
X1
k¼7

Nð1;kÞðr; ajÞ

þ
X6
k¼2

Nðk;1Þðr; ajÞ þ
X1
k¼7

Nðk;1Þðr; ajÞ þ Sðr; fÞ

�
X6
k¼1

Nð1;kÞðr; ajÞ þ
1

7
N r;

1

g� aj

� �

þ
X6
k¼2

Nðk;1Þðr; ajÞ þ
1

7
N r;

1

f � aj

� �
þ Sðr; fÞ

�
X6
k¼1

Nð1;kÞðr; ajÞ þ
1

7
T ðr; gÞ

þ
X6
k¼2

Nðk;1Þðr; ajÞ þ
1

7
T ðr; fÞ þ Sðr; fÞ

�
X6
k¼1

Nð1;kÞðr; ajÞ þ
X6
k¼2

Nðk;1Þðr; ajÞ

þ
2

7
T ðr; fÞ þ Sðr; fÞ:
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By the second fundamental theorem, we have

T ðr; fÞ �
X3
j¼1

Nðr; ajÞ þ Sðr; fÞ:ð2:5Þ

From (2.4) and (2.5) we get (2.1). �

3. Proof of Theorem 1. Since f 6� g, by

Lemma 1 we know that f and g are transcendental

meromorphic functions. From (2.2) and Lemma 3,

we obtain

�ðfÞ ¼ �ðgÞ; �ðfÞ ¼ �ðgÞ:ð3:1Þ

Suppose that �ðfÞ ¼ 1. Noting that �ðfÞ � �ðfÞ,
we have �ðfÞ ¼ �ðfÞ ¼ 1. Thus, the conclusions

of Theorem 1 hold. In the following we suppose

�ðfÞ < 1.

Without loss of generality, we assume that

a1 ¼ 0, a2 ¼ 1, a3 ¼ c and a4 ¼ 1. Put

� :¼ f 00

f 0 �
f 0

f
�

f 0

f � 1
�

f 0

f � c
ð3:2Þ

�
g00

g0
þ

g0

g
þ

g0

g� 1
þ

g0

g� c
:

By Lemma 5 and (2.2), we have

mðr;�Þ ¼ Sðr; fÞ:ð3:3Þ

Since f and g share a1, a2, a3 IM and a4 CM, by

simply calculating we can see that � is analytic at

any point z such that fðzÞ ¼ gðzÞ ¼ ai for some i ¼
1; 2; 3; 4. Thus, from (2.2) and Lemma 7 (i) we get

Nðr;�Þ � N1ðr; 0; f 0Þ þN1ðr; 0; g0Þð3:4Þ
¼ Sðr; fÞ:

From (3.3) and (3.4) we can easily deduce

T ðr;�Þ ¼ Sðr; fÞ:ð3:5Þ

Noting that �ðfÞ < 1, from (3.5) we can get

lim inf
r!1

T ðr;�Þ
log r

< 1:ð3:6Þ

From (3.6) and Lemma 2 we can see that � is a

rational function. From (3.2) we can deduce

� ¼ P1 þ
Xq
j¼1

mj

z� zj
;ð3:7Þ

where q ð� 0Þ, mj ð1 � j � qÞ are integers, and

zj ð1 � j � qÞ are those points such that f 0ðzjÞ ¼ 0

and g0ðzjÞðfðzjÞ � aiÞðgðzjÞ � aiÞ 6¼ 0 ði ¼ 1; 2; 3Þ, or

g0ðzjÞ ¼ 0 and f 0ðzjÞðfðzjÞ � aiÞðgðzjÞ � aiÞ 6¼ 0 ði ¼
1; 2; 3Þ, or f 0ðzjÞ ¼ 0 and g0ðzjÞ ¼ 0 with the different

multiplicities, but ðfðzjÞ � aiÞðgðzjÞ � aiÞ 6¼ 0 for

i ¼ 1; 2; 3. By (3.7) and integrating two sides of

(3.2), we can easily deduce

f 0gðg� 1Þðg� cÞ
g0fðf � 1Þðf � cÞ ¼ QðzÞeP ;ð3:8Þ

where QðzÞ ¼
Qq
j¼1

ðz� zjÞmj is a rational function,

and P ¼
R z
0 P1ð�Þ d� þ A is a polynomial, A is a

constant. Set

H :¼ QðzÞeP ;ð3:9Þ

Then we have

H ¼ f 0gðg� 1Þðg� cÞ
g0fðf � 1Þðf � cÞ

:ð3:10Þ

Assume that z0 is a point such that fðz0Þ ¼ a with

multiplicity p and gðz0Þ ¼ a with multiplicity q,

where a 2 fa1; a2; a3g. From (3.10) we obtain

Hðz0Þ ¼
p

q
:ð3:11Þ

We discuss the following two cases.

Case 1. Suppose that H � C, where C is a

nonzero constant. By Lemma 9 we know that at

least one ofX6
k¼1

N ð1;kÞðr; ajÞ þ
X6
k¼2

N ðk;1Þðr; ajÞ

6¼ Sðr; fÞ ðj ¼ 1; 2; 3Þ
must occur. Without loss of generality, we assume

that X6
k¼1

Nð1;kÞðr; 0Þ þ
X6
k¼2

N ðk;1Þðr; 0Þ 6¼ Sðr; fÞ:ð3:12Þ

From (3.12) we know that at least one of

N ð1;1Þðr; 0Þ 6¼ Sðr; fÞ;
N ð1;kÞðr; 0Þ 6¼ Sðr; fÞ ðk ¼ 2; 3; � � � ; 6Þ

and

N ðk;1Þðr; 0Þ 6¼ Sðr; fÞ ðk ¼ 2; 3; � � � ; 6Þ

must occur. We distinguish the following three

subcases.

Subcase 1.1. Suppose that Nð1;1Þðr; 0Þ 6¼
Sðr; fÞ. Then there exists a point z0 such that z0
is a simple zero of both f and g. From (3.11) we

have C ¼ 1. By (3.10) we obtain

f 0

fðf � 1Þðf � cÞ
�

g0

gðg� 1Þðg� cÞ
:ð3:13Þ
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Noting that f and g share 0, 1, c IM and 1 CM,

from (3.13) we can easily see that f and g share 0, 1,
c and 1 CM. By Theorem A and Lemma 4, we can

obtain the conclusions of Theorem 1.

Subcase 1.2. Suppose that Nð1;kÞðr; 0Þ 6¼
Sðr; fÞ ðk ¼ 2; 3; � � � ; 6Þ. Then there exists a point

z0 such that z0 is a simple zero of f, a zero of g of

order k, where 2 � k � 6. From (3.11) we have

C ¼ 1
k. By (3.10) we obtain

kf 0

fðf � 1Þðf � cÞ �
g0

gðg� 1Þðg� cÞ :ð3:14Þ

Noting that f and g share 0, 1, c IM, from (3.14) we

can easily see that for the common zeros of f � a

and g� a, where a 2 f0; 1; cg, if a is taken by f with

multiplicity p, and by g with multiplicity q, then
p
q
¼ 1

k
.

Let

�1 :¼
kf 0

fðf � 1Þ
�

g0

gðg� 1Þ
:ð3:15Þ

It is easy to see that �1 is a entire function. By

Lemma 5 and Lemma 8, from (2.2) and (3.15) we

obtain mðr; �1Þ ¼ Sðr; fÞ. Thus,

T ðr; �1Þ ¼ Sðr; fÞ:ð3:16Þ

Noting that �ðfÞ < 1, from (3.16) we can get

lim inf
r!1

T ðr; �1Þ
log r

< 1:ð3:17Þ

From (3.17) and Lemma 2 we can see that �1 is a

polynomial. From (3.15) we can deduce

ðf � 1Þkg
fkðg� 1Þ ¼ e�;ð3:18Þ

where � ¼
R z
0 �1ð�Þ d� þ A is a polynomial, A is a

constant. By (2.2) and (3.18) we have

T ðr; e�Þ � T r;
ðf � 1Þk

fk

 !
þ T r;

g

g� 1

� �
þ Sðr; fÞ

¼ ðkþ 1ÞT ðr; fÞ þ Sðr; fÞ:ð3:19Þ

Again by Lemma 3, we obtain

�ðe�Þ � �ðfÞ:ð3:20Þ

From (3.18) we obtain

ðf � 1Þk

fk
¼ e� �

g� 1

g
:ð3:21Þ

From (3.21) we get

kT ðr; fÞ � T ðr; e�Þ þ T ðr; gÞ þ Sðr; fÞ:ð3:22Þ

By (2.2) and (3.22) we obtain

T ðr; e�Þ � ðk� 1ÞT ðr; fÞ þ Sðr; fÞ:ð3:23Þ

Noting f is a transcendental, from (3.23) we know

that � is a nonconstant polynomial. Thus,

�ðe�Þ ¼ �ðe�Þ ¼ �;ð3:24Þ

where � is the degree of �. By Lemma 3 and (3.23),

we obtain

�ðfÞ � �ðe�Þ:ð3:25Þ

Noting that �ðfÞ � �ðfÞ, from (3.20), (3.24) and

(3.25) we obtain the conclusions of Theorem 1.

Subcase 1.3. Suppose that N ðk;1Þðr; 0Þ 6¼
Sðr; fÞ ðk ¼ 2; 3; � � � ; 6Þ. Then there exists a point

z0 such that z0 is a simple zero of g, a zero of f of

order k, where 2 � k � 6. Similar to Subcase 1.2, we

can obtain the conclusions of Theorem 1.

Case 2. Suppose that H is not a constant.

By (2.2) and (3.10) and Lemma 6 (ii) we have

T ðr;HÞ � T r;
f 0

fðf � 1Þðf � cÞ

� �
ð3:26Þ

þ T r;
g0

gðg� 1Þðg� cÞ

� �
þ Sðr; fÞ

� 2
X3
j¼1

Nðr; ajÞ þ Sðr; fÞ

� 4T ðr; fÞ þ Sðr; fÞ:
Again by Lemma 3, we obtain

�ðHÞ � �ðfÞ:ð3:27Þ

From (3.11) we obtainX3
j¼1

X6
k¼1

N ð1;kÞðr; ajÞ þ
X3
j¼1

X6
k¼2

N ðk;1Þðr; ajÞð3:28Þ

�
X6
k¼1

N r;
1

H � 1
k

 !
þ
X6
k¼2

N r;
1

H � k

� �

� 11T ðr;HÞ þOð1Þ:

From (2.1) and (3.28) we get

T ðr; fÞ � 77T ðr;HÞ þ Sðr; fÞ:ð3:29Þ

Noting f is transcendental, from (3.29) we know

that H is transcendental. Again from (3.9) we know

that P is a nonconstant polynomial. Thus,

�ðHÞ ¼ �ðHÞ ¼ �;ð3:30Þ
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where � is the degree of P . By Lemma 3 and (3.29),

we obtain

�ðfÞ � �ðHÞ:ð3:31Þ

Noting that �ðfÞ � �ðfÞ, from (3.27), (3.30) and

(3.31) we obtain the conclusions of Theorem 1.

Theorem 1 is thus completely proved.
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