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The number of semidihedral or modular extensions of a local field

By Makoto Ito∗) and Masakazu Yamagishi∗∗)

(Communicated by Heisuke Hironaka, m.j.a., Feb. 13, 2007)

Abstract: We calculate the number of Galois extensions, up to isomorphism, of a local
field whose Galois groups are isomorphic to the semidihedral (resp. modular) group of order 2m

(m ≥ 4).
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1. Introduction. For a field k and a finite
group G, let ν(k, G) denote the number of Galois ex-
tensions, up to isomorphism, of k with Galois group
G. It is well known that ν(k, G) is finite when k is
a local field (in this note, a local field means a finite
extension of the l-adic field Ql, where l is a prime).

In a previous paper [4], the second author ob-
tained a general formula for ν(k, G) when k is a local
field and G is a p-group (p a prime), which gener-
alizes Šafarevič’s formula, and as an application he
calculated ν(k, D2m) and ν(k, Q2m) for m ≥ 3, where

D2m = 〈x, y |x2m−1
= y2 = 1, y−1xy = x−1〉

is the dihedral group of order 2m and

Q2m = 〈x, y |x2m−1
= 1, y2 = x2m−2

, y−1xy = x−1〉
is the generalized quaternion group of order 2m.

In this note, using the formula for ν(k, G) ob-
tained in [4], we calculate ν(k, SD2m) and ν(k, M2m)
for m ≥ 4, where

SD2m = 〈x, y |x2m−1
= y2 = 1, y−1xy = x2m−2−1〉

is the semidihedral group of order 2m and

M2m = 〈x, y |x2m−1
= y2 = 1, y−1xy = x2m−2+1〉

is the modular group of order 2m.
These four types of groups are the only finite

non-abelian 2-groups of order 2m which have ele-
ments of order 2m−1.
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2. Semidihedral (resp. modular) groups.
We state some basic facts on the groups SD2m and
M2m , which we need later. We omit the proofs since
they are elementary. We denote the cyclic group of
order 2m by C2m .

Lemma 1. Let G = SD2m (m ≥ 4).
(1) An automorphism of G is described as

x �→ xa, y �→ xby

where a is odd and b is even. In particular,
|Aut(G)| = 22m−4.

(2) The subgroups of G containing G2[G, G] = 〈x2〉
are as follows:

subgroup G = 〈x, y〉 〈x2, y〉 〈x2, xy〉 〈x〉 〈x2〉
isom. to SD2m D2m−1 Q2m−1 C2m−1 C2m−2

(3) There are 2m−2 +3 conjugacy classes of G; they
are

• {1},
• {xa, x−a} (a = 2, 4, 6, . . . , 2m−2 − 2),

• {x2m−2},
• {xa, x−a+22m−2}

(a = ±1,±3,±5, . . . ,±(2m−3 − 1)),

• {y, x2y, . . . , x2m−1−2y},
• {xy, x3y, . . . , x2m−1−1y}.

(4) [G, G] = 〈x2〉, G/[G, G] ∼= C2 × C2. In particu-
lar, the number of 1-dimensional complex char-
acters of G is 4.

(5) The other 2m−2 − 1 irreducible complex char-
acters of G are the traces of the 2-dimensional
representations ρk of G defined by

ρk(x) =


ωk 0

0 (−ω−1)k


 , ρk(y) =


0 1

1 0


 ,
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where ω = exp
2π

√−1
2m−1

, and

k ∈ {2, 4, 6, . . . , 2m−2 − 2} ∪ {±1,±3,±5,

. . . ,±(2m−3 − 1)}.
Lemma 2. Let G = M2m (m ≥ 4).

(1) An automorphism of G is described as

x �→ xa or xay, y �→ y or x2m−2
y

where a is odd. In particular, |Aut(G)| = 2m.

(2) The subgroups of G containing G2[G, G] = 〈x2〉
are as follows:

subgroup G = 〈x, y〉 〈x2, y〉 〈x2, xy〉 〈x〉 〈x2〉
isom. to M2m C2m−2 × C2 C2m−1 C2m−1 C2m−2

(3) There are 5 · 2m−3conjugacy classes of G; they
are

• {xa} (a = 0, 2, 4, . . . , 2m−1 − 2),

• {xa, xa+2m−2}
(a = 1, 3, 5, . . . , 2m−2 − 1),

• {xay, xa+2m−2
y}

(a = 0, 1, 2, . . . , 2m−2 − 1).

(4) [G, G] = 〈x2m−2 〉, G/[G, G] ∼= C2m−2 × C2. In
particular, the number of 1-dimensional complex
characters of G is 2m−1.

(5) The other 2m−3 irreducible complex characters
of G are the traces of the 2-dimensional repre-
sentations ρk of G defined by

ρk(x) =


ωk 0

0 (−ω)k


 , ρk(y) =


0 1

1 0


 ,

where ω = exp
2π

√−1
2m−1

and

k = 1, 3, 5, . . . , 2m−2 − 1.
3. Tame case. In general, let k be a field,

G = Gk the Galois group of the maximal pro-2-
extension of k. By Galois theory, there is a one-
to-one correspondence between the set of Galois ex-
tensions of k whose Galois group is isomorphic to a
given finite 2-group G and the set of surjective ho-
momorphisms from G to G, up to automorphisms of
G. Thus the calculation of ν(k, G) reduces to the
enumeration of surjective homomorphisms from G to
G.

We first consider the case where the residue field
of k has characteristic different from 2. The following
result (together with the proof) is more or less well
known (cf. e.g. [3]).

Theorem 3. Let k be a local field, q the car-
dinality of the residue field of k. Suppose q is odd.
Then we have for all m ≥ 4,

ν(k, SD2m) =

{
2 (q ≡ 2m−2 − 1 (mod 2m−1)),
0 (otherwise),

ν(k, M2m) =




0 (q ≡ 1 (mod 2m−1)),
2m−2

(q ≡ 2m−2 + 1 (mod 2m−1)),
2c−1

(q ≡ 2c + 1 (mod 2c+1),
1 ≤ c ≤ m − 3).

Proof . The Galois group G = Gk has the pre-
sentation

G = 〈σ, τ ; στσ−1 = τq〉
as a pro-2-group, where σ is a lift of the Frobenius
automorphism and τ is a generator of the inertia
subgroup. There is a bijective mapping between the
set of surjective homomorphisms from G to G and
the set

{(X, Y ) ∈ G × G ; 〈X, Y 〉 = G, Y XY −1 = Xq},
given by π �→ (π(τ), π(σ)).

First let G = SD2m . A pair (X, Y ) ∈ G × G

generates G if and only if
(1) X = xa, Y = xby where a is odd,

(2) X = xay, Y = xb where b is odd, or

(3) X = xay, Y = xby where a − b is odd.
In each case, we verify whether XqY X−1Y −1 = 1
holds.
(1) We have XqY X−1Y −1 = xa(q−2m−2+1). Since

a is odd, XqY X−1Y −1 = 1 holds if and only if
q ≡ 2m−2 − 1 (mod 2m−1).

(2) We have XqY X−1Y −1

= x2m−3a(q−1)+2m−2−2b �= 1.

(3) We have XqY X−1Y −1

= x2m−3a(q−1)+2m−2+2(a−b) �= 1.
Thus the number of surjective homomorphisms from
G to G is 22m−3 if q ≡ 22m−2 − 1 (mod 2m−1), 0
otherwise. Since |Aut(G)| = 22m−4, we obtain the
result.

Let next G = M2m . The three conditions that a
pair (X, Y ) ∈ G × G should generate G are literally
the same as in the case of SD2m .
(1) We have XqY X−1Y −1 = xa(q−2m−2−1). Since

a is odd, XqY X−1Y −1 = 1 holds if and only if
q ≡ 2m−2 + 1 (mod 2m−1).
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(2) We have XqY X−1Y −1 = x(2m−3+1)a(q−1)+2m−2
,

which is equal to 1 if and only if a(q−1) ≡ 2m−2

(mod 2m−1).

(3) The same conclusion as (2).
Let 2c be the maximal power of 2 dividing q−1, i.e.,

q ≡ 2c + 1 (mod 2c+1).

The number of a’s satisfying

0 ≤ a < 2m−1, a(q − 1) ≡ 2m−2 (mod 2m−1)

is 2c if c ≤ m−2, 0 otherwise. Therefore, the number
of surjective homomorphisms from G to G is


0 (c > m − 2),
22m−2 (c = m − 2),
2c+m−1 (c < m − 2).

Since |Aut(G)| = 2m, we obtain the result.
Remark 4. Fardoux [1] gave a detailed de-

scription of semidihedral (resp. modular) extensions
in the tame case. One can easily deduce Theorem 3
from his result.

Remark 5. The first author [2] gave an alter-
native proof of Theorem 3 by using the same method
as in the wild case.

4. Wild case. We consider the case where
the residue field of k has characteristic 2. For a pos-
itive integer N , we denote the group of Nth roots of
unity by µN .

Theorem 6. Let k be a finite extension field
of Q2 with degree n, q the maximal power of 2 such
that k ⊃ µq. Let U be the image of Gk in Z×

2 under
the canonical isomorphism

Gal(Q2(µ2∞)/Q2) ∼= Z×
2 ,

induced by the Galois action on µ2∞ :=
⋃
i

µ2i .

(1) If q ≥ 4, then

ν(k, SD2m)

= 2mn−m−2n+4(2n − 1)(2n+2 − 1) (m ≥ 4).

(2) If q = 2 and n is odd, then

ν(k, SD2m)

=

{
2mn−m−n+6(2n − 1) (m ≥ 5),
22n(2n+1 − 1)2 (m = 4).

(3) If q = 2, n is even and U = 〈−1 + 2f〉 (f ≥ 2),
then

ν(k, SD2m)

=




2mn−m−2n+5(2n − 1)(2n+1 + 2f−2 − 1)
(m ≥ f + 3),

2mn−m−2n+5(2n − 1)(2n+1 + 2m−4 − 1)
+2mn−n+1 (m = f + 2),

2mn−m−2n+5(2n − 1)(2n+1 + 2m−4 − 1)
(4 ≤ m ≤ f + 1).

(4) If q = 2, n is even and U = {±1} × (1 +
2fZ2) (f ≥ 2), then

ν(k, SD2m)

=




2mn−m−2n+5(2n − 1)(2n+1 + 2f−2 − 1)
(m ≥ f + 2),

2mn−m−2n+5(2n − 1)(2n+1 + 2m−4 − 1)
(4 ≤ m ≤ f + 2).

(5) We have

ν(k, M2m) =




2mn−2n−1(2n+1 − 1)2q
(2m ≥ 8q),

2mn+m−2n−3
(
(2n+1 − 1)2 + 2n

)
(16 ≤ 2m = 4q),

2mn+m−2n−3(2n − 1)(2n+2 − 1)
(16 ≤ 2m ≤ 2q).

Proof . Instead of finding surjective homomor-
phisms, we use a formula in [4]. For a finite 2-group
G, we have

ν(k, G) =
1

|Aut(G)|
∑
H

µG(H)α(H),

where H runs over all subgroups of G, µG( ) is the
Möbius function on the partially ordered set consist-
ing of all subgroups of G, and α(H) = αk(H) =
|Hom(Gk, H)|. See [4] for the details about µG(H)
and α(H). We recall the following

• µG(H) =




(−1)i2i(i−1)/2

if H ⊃ G2[G, G] and [G : H ] = 2i,

0 otherwise.

• If H is abelian, then
α(H) = |H |n+1 × |{h ∈ H ; hq = 1}|.

• α(H) is expressed as a sum over the irreducible
complex characters of H , this is the reason why
we need irreducible characters of SD2m and
M2m .
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Let G = SD2m or M2m . We must calculate
α(H) for non-abelian subgroups H of G such that
H ⊃ G2[G, G]. We shall omit the details of the
calculation, but just exhibit the result. (We have
already done in [4] for H = D2m , Q2m .)
(1) In this case, we have

α(D2m) = α(Q2m)

=




(2m)n+1

(
4 +

q/2 − 1
2n

)
(2m ≥ 2q),

(2m)n+1

(
4 +

2m−2 − 1
2n

)
(8 ≤ 2m ≤ 2q),

α(SD2m) = α(D2m) = α(Q2m) (m ≥ 4).

(2) In this case, we have

α(D2m) = (2m)n+1

(
4 +

1
2n

)
(m ≥ 3),

α(Q2m) =




(2m)n+1

(
4 +

1
2n

)
(m ≥ 4),

8n+1

(
4 − 1

2n

)
(m = 3),

α(SD2m) = α(D2m) = α(Q2m) (m ≥ 4).

(3) In this case, we have

α(D2m) = α(Q2m)

=




(2m)n+1

(
4 +

2f−1 − 1
2n

)
(m ≥ f + 1),

(2m)n+1

(
4 +

2m−2 − 1
2n

)
(3 ≤ m ≤ f + 1),

α(SD2m) =




(2m)n+1

(
4 +

2f−1 − 1
2n

)
(m ≥ f + 3),

(2m)n+1

(
4 +

2m−2 − 1
2n

)
(m = f + 2),

(2m)n+1

(
4 +

2m−3 − 1
2n

)
(4 ≤ m ≤ f + 1).

(4) In this case, we have

α(D2m) = α(Q2m)

=




(2m)n+1

(
4 +

2f−1 − 1
2n

)
(m ≥ f + 1),

(2m)n+1

(
4 +

2m−2 − 1
2n

)
(3 ≤ m ≤ f + 1),

α(SD2m) =




(2m)n+1

(
4 +

2f−1 − 1
2n

)
(m ≥ f + 2),

(2m)n+1

(
4 +

2m−3 − 1
2n

)
(4 ≤ m ≤ f + 1).

(5) We have

α(M2m) =




(2m)n+1 · 2q

(2m ≥ 8q),

(2m)n+1 · 2m−3

(
4 +

1
2n

)
(16 ≤ 2m ≤ 4q).

Example 7 (cf. [2]).

ν(Q2, SD2m) =

{
32 (m ≥ 5),
36 (m = 4),

ν(Q2, M2m) = 9 · 2m−2 (m ≥ 4).

Remark 8. Let k be as in Theorem 6. Com-
paring Theorem 6 with [4, Theorem 2.2], we remark
that

ν(k, SD2m) = 2ν(k, D2m) = 2ν(k, Q2m)

holds for m ≥ 4, m ≥ 5, m ≥ f + 3, m ≥ f + 2 in
(1), (2), (3), (4), respectively.
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