The number of semidihedral or modular extensions of a local field

By Makoto ITO^{*)} and Masakazu YAMAGISHI^{**)}

(Communicated by Heisuke HIRONAKA, M.J.A., Feb. 13, 2007)

Abstract: We calculate the number of Galois extensions, up to isomorphism, of a local field whose Galois groups are isomorphic to the semidihedral (resp. modular) group of order 2^m $(m \ge 4)$.

Key words: Local field; 2-extension.

1. Introduction. For a field k and a finite group G, let $\nu(k, G)$ denote the number of Galois extensions, up to isomorphism, of k with Galois group G. It is well known that $\nu(k, G)$ is finite when k is a local field (in this note, a local field means a finite extension of the *l*-adic field \mathbf{Q}_l , where *l* is a prime).

In a previous paper [4], the second author obtained a general formula for $\nu(k, G)$ when k is a local field and G is a p-group (p a prime), which generalizes Šafarevič's formula, and as an application he calculated $\nu(k, D_{2^m})$ and $\nu(k, Q_{2^m})$ for $m \ge 3$, where

$$D_{2^m} = \langle x, y \, | \, x^{2^{m-1}} = y^2 = 1, y^{-1}xy = x^{-1} \rangle$$

is the dihedral group of order 2^m and

$$Q_{2^m} = \langle x, y \, | \, x^{2^{m-1}} = 1, y^2 = x^{2^{m-2}}, y^{-1}xy = x^{-1} \rangle$$

is the generalized quaternion group of order 2^m .

In this note, using the formula for $\nu(k, G)$ obtained in [4], we calculate $\nu(k, SD_{2^m})$ and $\nu(k, M_{2^m})$ for $m \geq 4$, where

$$SD_{2^m} = \langle x, y | x^{2^{m-1}} = y^2 = 1, y^{-1}xy = x^{2^{m-2}-1} \rangle$$

is the semidihedral group of order 2^m and

$$M_{2^m} = \langle x, y \, | \, x^{2^{m-1}} = y^2 = 1, y^{-1}xy = x^{2^{m-2}+1} \rangle$$

is the modular group of order 2^m .

These four types of groups are the only finite non-abelian 2-groups of order 2^m which have elements of order 2^{m-1} . 2. Semidihedral (resp. modular) groups. We state some basic facts on the groups SD_{2^m} and M_{2^m} , which we need later. We omit the proofs since they are elementary. We denote the cyclic group of order 2^m by C_{2^m} .

Lemma 1. Let $G = SD_{2^m}$ $(m \ge 4)$. (1) An automorphism of G is described as

$$x \mapsto x^a, \quad y \mapsto x^b y$$

where a is odd and b is even. In particular, $|\operatorname{Aut}(G)| = 2^{2m-4}$.

(2) The subgroups of G containing $G^2[G,G] = \langle x^2 \rangle$ are as follows:

subgroup	$G=\langle x,y\rangle$	$\langle x^2,y\rangle$	$\langle x^2, xy\rangle$	$\langle x \rangle$	$\langle x^2 \rangle$
isom. to	SD_{2^m}	$D_{2^{m-1}}$	$Q_{2^{m-1}}$	$C_{2^{m-1}}$	$C_{2^{m-2}}$

- (3) There are $2^{m-2}+3$ conjugacy classes of G; they are
 - {1}, • { x^{a}, x^{-a} } ($a = 2, 4, 6, \dots, 2^{m-2} - 2$), • { $x^{2^{m-2}}$ }, • { $x^{a}, x^{-a+2^{2^{m-2}}}$ } ($a = \pm 1, \pm 3, \pm 5, \dots, \pm (2^{m-3} - 1)$), • { $y, x^{2}y, \dots, x^{2^{m-1}-2}y$ }, • { $xy, x^{3}y, \dots, x^{2^{m-1}-1}y$ }.
- (4) [G,G] = ⟨x²⟩, G/[G,G] ≅ C₂ × C₂. In particular, the number of 1-dimensional complex characters of G is 4.
- (5) The other $2^{m-2} 1$ irreducible complex characters of G are the traces of the 2-dimensional representations ρ_k of G defined by

$$\rho_k(x) = \begin{pmatrix} \omega^k & 0\\ 0 & (-\omega^{-1})^k \end{pmatrix}, \quad \rho_k(y) = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix},$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 11S20. *) Field of Mathematics and Mathematical Science, Department of Computer Science and Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466–8555, Japan.

^{**)} Department of Mathematics, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466–8555, Japan.

where
$$\omega = \exp \frac{2\pi\sqrt{-1}}{2^{m-1}}$$
, and
 $k \in \{2, 4, 6, \dots, 2^{m-2} - 2\} \cup \{\pm 1, \pm 3, \pm 5, \dots, \pm (2^{m-3} - 1)\}.$

Lemma 2. Let $G = M_{2^m} \ (m \ge 4)$.

(1) An automorphism of G is described as

 $x\mapsto x^a \ or \ x^a y, \quad y\mapsto y \ or \ x^{2^{m-2}}y$

where a is odd. In particular, $|Aut(G)| = 2^m$.

(2) The subgroups of G containing $G^2[G,G] = \langle x^2 \rangle$ are as follows:

subgroup	$G=\langle x,y\rangle$	$\langle x^2,y\rangle$	$\langle x^2, xy\rangle$	$\langle x \rangle$	$\langle x^2 \rangle$
isom. to	M_{2^m}	$C_{2^{m-2}}\times C_2$	$C_{2^{m-1}}$	$C_{2^{m-1}}$	$C_{2^{m-2}}$

- (3) There are $5 \cdot 2^{m-3}$ conjugacy classes of G; they are
 - $\{x^a\}$ $(a = 0, 2, 4, \dots, 2^{m-1} 2),$ • $\{x^a, x^{a+2^{m-2}}\}$ $(a = 1, 3, 5, \dots, 2^{m-2} - 1),$ • $\{x^a y, x^{a+2^{m-2}}y\}$ $(a = 0, 1, 2, \dots, 2^{m-2} - 1).$
- (4) $[G,G] = \langle x^{2^{m-2}} \rangle$, $G/[G,G] \cong C_{2^{m-2}} \times C_2$. In particular, the number of 1-dimensional complex characters of G is 2^{m-1} .
- (5) The other 2^{m-3} irreducible complex characters of G are the traces of the 2-dimensional representations ρ_k of G defined by

$$\rho_k(x) = \begin{pmatrix} \omega^k & 0\\ 0 & (-\omega)^k \end{pmatrix}, \quad \rho_k(y) = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix},$$

where $\omega = \exp \frac{2\pi\sqrt{-1}}{2^{m-1}}$ and
 $k = 1, 3, 5, \dots, 2^{m-2} - 1.$

3. Tame case. In general, let k be a field, $\mathcal{G} = \mathcal{G}_k$ the Galois group of the maximal pro-2extension of k. By Galois theory, there is a oneto-one correspondence between the set of Galois extensions of k whose Galois group is isomorphic to a given finite 2-group G and the set of surjective homomorphisms from \mathcal{G} to G, up to automorphisms of G. Thus the calculation of $\nu(k, G)$ reduces to the enumeration of surjective homomorphisms from \mathcal{G} to G.

We first consider the case where the residue field of k has characteristic different from 2. The following result (together with the proof) is more or less well known (cf. e.g. [3]). **Theorem 3.** Let k be a local field, q the cardinality of the residue field of k. Suppose q is odd. Then we have for all $m \ge 4$,

$$\nu(k, SD_{2^m}) = \begin{cases} 2 & (q \equiv 2^{m-2} - 1 \pmod{2^{m-1}}), \\ 0 & (otherwise), \end{cases}$$
$$\nu(k, M_{2^m}) = \begin{cases} 0 & (q \equiv 1 \pmod{2^{m-1}}), \\ 2^{m-2} & (q \equiv 2^{m-2} + 1 \pmod{2^{m-1}}), \\ 2^{c-1} & (q \equiv 2^c + 1 \pmod{2^{c+1}}), \\ 1 \leq c \leq m-3). \end{cases}$$

Proof. The Galois group $\mathcal{G} = \mathcal{G}_k$ has the presentation

$$\mathcal{G} = \langle \sigma, \tau \, ; \, \sigma \tau \sigma^{-1} = \tau^q \rangle$$

as a pro-2-group, where σ is a lift of the Frobenius automorphism and τ is a generator of the inertia subgroup. There is a bijective mapping between the set of surjective homomorphisms from \mathcal{G} to G and the set

$$\{(X,Y) \in G \times G; \langle X,Y \rangle = G, YXY^{-1} = X^q\},\$$

given by $\pi \mapsto (\pi(\tau), \pi(\sigma))$.

First let $G = SD_{2^m}$. A pair $(X, Y) \in G \times G$ generates G if and only if

(1) $X = x^a, Y = x^b y$ where a is odd,

(2) $X = x^a y, Y = x^b$ where b is odd, or

(3) $X = x^a y$, $Y = x^b y$ where a - b is odd.

In each case, we verify whether $X^{q}YX^{-1}Y^{-1} = 1$ holds.

- (1) We have $X^{q}YX^{-1}Y^{-1} = x^{a(q-2^{m-2}+1)}$. Since *a* is odd, $X^{q}YX^{-1}Y^{-1} = 1$ holds if and only if $q \equiv 2^{m-2} - 1 \pmod{2^{m-1}}$.
- (2) We have $X^q Y X^{-1} Y^{-1}$ = $x^{2^{m-3}a(q-1)+2^{m-2}-2b} \neq 1$.
- (3) We have $X^{q}YX^{-1}Y^{-1}$ = $x^{2^{m-3}a(q-1)+2^{m-2}+2(a-b)} \neq 1.$

Thus the number of surjective homomorphisms from \mathcal{G} to G is 2^{2m-3} if $q \equiv 2^{2m-2} - 1 \pmod{2^{m-1}}$, 0 otherwise. Since $|\operatorname{Aut}(G)| = 2^{2m-4}$, we obtain the result.

Let next $G = M_{2^m}$. The three conditions that a pair $(X, Y) \in G \times G$ should generate G are literally the same as in the case of SD_{2^m} .

(1) We have $X^{q}YX^{-1}Y^{-1} = x^{a(q-2^{m-2}-1)}$. Since *a* is odd, $X^{q}YX^{-1}Y^{-1} = 1$ holds if and only if $q \equiv 2^{m-2} + 1 \pmod{2^{m-1}}$.

No. 2]

an

- (2) We have $X^{q}YX^{-1}Y^{-1} = x^{(2^{m-3}+1)a(q-1)+2^{m-2}}$, which is equal to 1 if and only if $a(q-1) \equiv 2^{m-2}$ (mod 2^{m-1}).
- (3) The same conclusion as (2).
- Let 2^c be the maximal power of 2 dividing q-1, i.e.,

$$q \equiv 2^c + 1 \pmod{2^{c+1}}.$$

The number of a's satisfying

$$0 \le a < 2^{m-1}, \ a(q-1) \equiv 2^{m-2} \pmod{2^{m-1}}$$

is 2^c if $c \leq m-2$, 0 otherwise. Therefore, the number of surjective homomorphisms from \mathcal{G} to G is

$$\begin{cases} 0 & (c > m-2), \\ 2^{2m-2} & (c = m-2), \\ 2^{c+m-1} & (c < m-2). \end{cases}$$

Since $|\operatorname{Aut}(G)| = 2^m$, we obtain the result.

Remark 4. Fardoux [1] gave a detailed description of semidihedral (resp. modular) extensions in the tame case. One can easily deduce Theorem 3 from his result.

Remark 5. The first author [2] gave an alternative proof of Theorem 3 by using the same method as in the wild case.

4. Wild case. We consider the case where the residue field of k has characteristic 2. For a positive integer N, we denote the group of Nth roots of unity by μ_N .

Theorem 6. Let k be a finite extension field of \mathbf{Q}_2 with degree n, q the maximal power of 2 such that $k \supset \mu_q$. Let U be the image of \mathcal{G}_k in \mathbf{Z}_2^{\times} under the canonical isomorphism

$$\operatorname{Gal}(\mathbf{Q}_2(\mu_{2^{\infty}})/\mathbf{Q}_2) \cong \mathbf{Z}_2^{\times},$$

induced by the Galois action on $\mu_{2^{\infty}} := \bigcup \mu_{2^i}$.

(1) If $q \ge 4$, then

$$\nu(k, SD_{2^m}) = 2^{mn-m-2n+4}(2^n-1)(2^{n+2}-1) \quad (m \ge 4)$$

(2) If q = 2 and n is odd, then

$$\nu(k, SD_{2^m}) = \begin{cases} 2^{mn-m-n+6}(2^n-1) & (m \ge 5), \\ 2^{2n}(2^{n+1}-1)^2 & (m=4). \end{cases}$$

(3) If q = 2, n is even and $U = \langle -1 + 2^f \rangle$ $(f \ge 2)$, then

$$\nu(k, SD_{2^m}) = \begin{cases} 2^{mn-m-2n+5}(2^n-1)(2^{n+1}+2^{f-2}-1) \\ (m \ge f+3), \\ 2^{mn-m-2n+5}(2^n-1)(2^{n+1}+2^{m-4}-1) \\ +2^{mn-n+1} & (m = f+2), \\ 2^{mn-m-2n+5}(2^n-1)(2^{n+1}+2^{m-4}-1) \\ (4 \le m \le f+1). \end{cases}$$

(4) If q = 2, *n* is even and $U = \{\pm 1\} \times (1 + 2^{f} \mathbf{Z}_{2})$ $(f \ge 2)$, then

$$\nu(k, SD_{2^m}) = \begin{cases} 2^{mn-m-2n+5}(2^n-1)(2^{n+1}+2^{f-2}-1) \\ (m \ge f+2), \\ 2^{mn-m-2n+5}(2^n-1)(2^{n+1}+2^{m-4}-1) \\ (4 \le m \le f+2). \end{cases}$$

(5) We have

$$\nu(k, M_{2^m}) = \begin{cases} 2^{mn-2n-1}(2^{n+1}-1)^2 q\\ (2^m \ge 8q),\\ 2^{mn+m-2n-3} \left((2^{n+1}-1)^2+2^n\right)\\ (16 \le 2^m = 4q),\\ 2^{mn+m-2n-3}(2^n-1)(2^{n+2}-1)\\ (16 \le 2^m \le 2q). \end{cases}$$

Proof. Instead of finding surjective homomorphisms, we use a formula in [4]. For a finite 2-group G, we have

$$\nu(k,G) = \frac{1}{|\operatorname{Aut}(G)|} \sum_{H} \mu_G(H) \alpha(H)$$

where H runs over all subgroups of G, $\mu_G()$ is the Möbius function on the partially ordered set consisting of all subgroups of G, and $\alpha(H) = \alpha_k(H) =$ $|\text{Hom}(\mathcal{G}_k, H)|$. See [4] for the details about $\mu_G(H)$ and $\alpha(H)$. We recall the following

•
$$\mu_G(H) = \begin{cases} (-1)^i 2^{i(i-1)/2} \\ \text{if } H \supset G^2[G,G] \text{ and } [G:H] = 2^i, \\ 0 \quad \text{otherwise.} \end{cases}$$

- If H is abelian, then $\alpha(H) = |H|^{n+1} \times |\{h \in H; h^q = 1\}|.$
- $\alpha(H)$ is expressed as a sum over the irreducible complex characters of H, this is the reason why we need irreducible characters of SD_{2^m} and M_{2^m} .

Let $G = SD_{2^m}$ or M_{2^m} . We must calculate $\alpha(H)$ for non-abelian subgroups H of G such that $H \supset G^2[G,G]$. We shall omit the details of the calculation, but just exhibit the result. (We have already done in [4] for $H = D_{2^m}, Q_{2^m}$.) (1) In this case, we have

$$\alpha(D_{2^m}) = \alpha(Q_{2^m})$$

$$= \begin{cases} (2^m)^{n+1} \left(4 + \frac{q/2 - 1}{2^n}\right) \\ (2^m \ge 2q), \\ (2^m)^{n+1} \left(4 + \frac{2^{m-2} - 1}{2^n}\right) \\ (8 \le 2^m \le 2q), \\ \alpha(SD_{2^m}) = \alpha(D_{2^m}) = \alpha(Q_{2^m}) \quad (m \ge 4). \end{cases}$$

(2) In this case, we have

$$\alpha(D_{2^m}) = (2^m)^{n+1} \left(4 + \frac{1}{2^n}\right) \quad (m \ge 3),$$

$$\alpha(Q_{2^m}) = \begin{cases} (2^m)^{n+1} \left(4 + \frac{1}{2^n}\right) \\ (m \ge 4), \\ 8^{n+1} \left(4 - \frac{1}{2^n}\right) \\ (m = 3), \end{cases}$$

$$\alpha(SD_{2^m}) = \alpha(D_{2^m}) = \alpha(Q_{2^m}) \quad (m \ge 4).$$

(3) In this case, we have

$$\alpha(D_{2^m}) = \alpha(Q_{2^m})$$

$$= \begin{cases} (2^m)^{n+1} \left(4 + \frac{2^{f-1} - 1}{2^n}\right) \\ (m \ge f+1), \\ (2^m)^{n+1} \left(4 + \frac{2^{m-2} - 1}{2^n}\right) \\ (3 \le m \le f+1), \end{cases}$$

$$\alpha(SD_{2^m}) = \begin{cases} (2^m)^{n+1} \left(4 + \frac{2^{f-1} - 1}{2^n}\right) \\ (m \ge f+3), \\ (2^m)^{n+1} \left(4 + \frac{2^{m-2} - 1}{2^n}\right) \\ (m = f+2), \\ (2^m)^{n+1} \left(4 + \frac{2^{m-3} - 1}{2^n}\right) \\ (4 \le m \le f+1). \end{cases}$$

(4) In this case, we have

$$\alpha(D_{2^m}) = \alpha(Q_{2^m})$$

$$= \begin{cases} (2^{m})^{n+1} \left(4 + \frac{2^{f-1} - 1}{2^{n}}\right) \\ (m \ge f+1), \\ (2^{m})^{n+1} \left(4 + \frac{2^{m-2} - 1}{2^{n}}\right) \\ (3 \le m \le f+1), \end{cases}$$
$$\alpha(SD_{2^{m}}) = \begin{cases} (2^{m})^{n+1} \left(4 + \frac{2^{f-1} - 1}{2^{n}}\right) \\ (m \ge f+2), \\ (2^{m})^{n+1} \left(4 + \frac{2^{m-3} - 1}{2^{n}}\right) \\ (4 \le m \le f+1). \end{cases}$$

(5) We have

$$\alpha(M_{2^m}) = \begin{cases} (2^m)^{n+1} \cdot 2q \\ (2^m \ge 8q), \\ (2^m)^{n+1} \cdot 2^{m-3} \left(4 + \frac{1}{2^n}\right) \\ (16 \le 2^m \le 4q). \end{cases}$$

Example 7 (cf. [2]).

$$\nu(\mathbf{Q}_2, SD_{2^m}) = \begin{cases} 32 & (m \ge 5), \\ 36 & (m = 4), \end{cases}$$
$$\nu(\mathbf{Q}_2, M_{2^m}) = 9 \cdot 2^{m-2} & (m \ge 4). \end{cases}$$

Remark 8. Let k be as in Theorem 6. Comparing Theorem 6 with [4, Theorem 2.2], we remark that

$$\nu(k, SD_{2^m}) = 2\nu(k, D_{2^m}) = 2\nu(k, Q_{2^m})$$

holds for $m \ge 4$, $m \ge 5$, $m \ge f + 3$, $m \ge f + 2$ in (1), (2), (3), (4), respectively.

Acknowledgment. The authors are grateful to the referee for useful comments and suggestions.

References

- G. Fardoux, Sur les extensions pseudodiédrales d'un corps local, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), A145–A148.
- [2] M. Ito, On 2-extensions of a local field, Master's thesis, Nagoya Institute of Technology, 2007. (in Japanese).
- [3] C. U. Jensen, Finite groups as Galois groups over arbitrary fields, in *Proceedings of the Interna*tional Conference on Algebra, Part 2 (Novosibirsk, 1989), 435–448, Contemp. Math., Part 2, Amer. Math. Soc., Providence, RI, 1992.
- M. Yamagishi, On the number of Galois pextensions of a local field, Proc. Amer. Math. Soc. 123 (1995), no. 8, 2373–2380.

No. 2]