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The number of semidihedral or modular extensions of a local field

By Makoto ITo*) and Masakazu YAMAGISHI**)

(Communicated by Heisuke HIRONAKA, M.J.A., Feb. 13, 2007)

Abstract: We calculate the number of Galois extensions, up to isomorphism, of a local
field whose Galois groups are isomorphic to the semidihedral (resp. modular) group of order 2™
(m >4).
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1. Introduction. For a field k and a finite
group G, let v(k, G) denote the number of Galois ex-
tensions, up to isomorphism, of k with Galois group
G. Tt is well known that v(k,G) is finite when k is
a local field (in this note, a local field means a finite
extension of the [-adic field Q;, where [ is a prime).

In a previous paper [4], the second author ob-
tained a general formula for v(k, G) when k is a local
field and G is a p-group (p a prime), which gener-
alizes Safarevi¢’s formula, and as an application he
calculated v(k, Dam ) and v(k, Qom) for m > 3, where

m—1 _
2 1$y = 1>

Dom = (z,y|x :y2:1,y_

is the dihedral group of order 2™ and

2'm71 2'm72 1 1>

QQ"":<‘r7y|x :1,y2:x 7y_ xy:x_

is the generalized quaternion group of order 2.

In this note, using the formula for v(k, G) ob-
tained in [4], we calculate v(k, SDam ) and v(k, Mam)
for m > 4, where

m—1 m—2
2 —1>

SDom = (z,y|a® =y’=Ly lay=uz

is the semidihedral group of order 2™ and

m—1 1 2m72+1>

Mym = (z,y|a®" ~ =y* =1y lay =z

is the modular group of order 2.

These four types of groups are the only finite
non-abelian 2-groups of order 2" which have ele-
ments of order 271,
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2. Semidihedral (resp. modular) groups.
We state some basic facts on the groups SDym and
Mom, which we need later. We omit the proofs since
they are elementary. We denote the cyclic group of
order 2™ by Com.

Lemma 1. Let G = SDom (m >4).
(1) An automorphism of G is described as

a

ezt oy aly

where a is odd and b is even.
|[Aut(G)| = 22m 4,

(2) The subgroups of G containing G?|G, G] = (x?)
are as follows:

In particular,

(x?)
Coym—2

(2% zy)| (z)
Qom—1 |Com—1

(2, y)
Dym—1

subgroup |G = (z, y)
SDom

isom. to

(3) There are 2™~2+3 conjugacy classes of G; they
are

o {1},
{227}
("),
{xa7x7a+22m_2}
(a=41,43,£5,...,£(2m 3 - 1)),

o {y,a%y,..., 2% "2y},

o {zy, 2y, ... .x¥" "y}
(4) [G,G] = (z%), G/|G,G] =2 Cy x Cy. In particu-

lar, the number of 1-dimensional complex char-
acters of G is 4.

(5) The other 2m~2 — 1 irreducible complex char-
acters of G are the traces of the 2-dimensional
representations pr of G defined by

(a =2,4,6,...,2m72 —2),
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2w/ —1

om—1 "~

where w = exp and

ke{2,4,6,...,2m72 -2} U {=£1,£3,+5,
™ 1))

Lemma 2. Let G = Mam (m > 4).
(1) An automorphism of G is described as

x—z% orx®y, yr—y or .132”"72?;
where a is odd. In particular, |Aut(G)| = 2™.

(2) The subgroups of G containing G*|G, G] = (z?)
are as follows:

(@) | ay)| (=) | (=)
Com—2 X C2| Cym-1 |Com—1|Com—2

subgroup |G = (z,y)
M2"7L

isom. to

(3) There are 5 - 2™ 3conjugacy classes of G; they

are
o {2} (a=0,2,4,...,2m"1 -2),
. {x“,x“+2m_2}

(a=1,3,5,...,2m72 1),
o {zty, 272"y
(a=0,1,2,...,2m72 —1).

(4) [G,G] = (22" ), G/|G,G] = Coym—2 x Cy. In
particular, the number of 1-dimensional complex
characters of G is 2™ 1.

(5) The other 2m~3 irreducible complex characters

of G are the traces of the 2-dimensional repre-
sentations py of G defined by

wk 0 0 1
pr(z) = , o opk(y) = ;
0 (—w)k 10
21y —1

where w = exp and

gm—1

k=1,3,5,...,2m 2 — 1.

3. Tame case. In general, let k be a field,
G = Gi the Galois group of the maximal pro-2-
extension of k. By Galois theory, there is a one-
to-one correspondence between the set of Galois ex-
tensions of k whose Galois group is isomorphic to a
given finite 2-group G and the set of surjective ho-
momorphisms from G to G, up to automorphisms of
G. Thus the calculation of v(k,G) reduces to the
enumeration of surjective homomorphisms from G to
G.

We first consider the case where the residue field
of k has characteristic different from 2. The following
result (together with the proof) is more or less well
known (cf. e.g. [3]).
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Theorem 3. Let k be a local field, q the car-
dinality of the residue field of k. Suppose q is odd.
Then we have for all m > 4,

2 (g=2m%-1
0 (otherwise),

(mod 27-1)),

I/(k,Sng) = { (mOd 2m71))7

0 (¢g=1
2m—2

(q = 27n—2 + 1
2071

(q=2°+1 (mod 2°¢t1),

1<c<m-3).

ok, M) (mod 2™~ 1)),

Proof. The Galois group G = Gi has the pre-

sentation
G=(o,7;0r0 =19

as a pro-2-group, where o is a lift of the Frobenius
automorphism and 7 is a generator of the inertia
subgroup. There is a bijective mapping between the
set of surjective homomorphisms from G to G and
the set

X, Y)eGxG; (X,)Y)=G, YXY ! =X,
{(X,Y) (X,Y)

given by m — (7(7), w(0)).
First let G = SDam. A pair (X,Y) € G x G

generates G if and only if

(1) X =2 Y = 2% where a is odd,

(2) X = 2%, Y = 2’ where b is odd, or

(3) X = 2%, Y = 2%y where a — b is odd.

In each case, we verify whether XY X~y ~! =1

holds.

(1) We have X9Y X1y —1 = 22(a=2"""+1)  Since
a is odd, X9Y XY ! =1 holds if and only if
q=2m"2—1 (mod 2™ 1).

(2) We have X7y X1y 1
_ x2m_3a(q71)+2m_272b 7& 1.

(3) We have XY X 1y —!

— 22" Pa(g=1)+2" " +2(a—b) £1.

Thus the number of surjective homomorphisms from
G to Gis 22m 3 if ¢ = 22772 — 1 (mod 2™71), 0
otherwise. Since |[Aut(G)| = 22™~%, we obtain the
result.

Let next G = Mom. The three conditions that a
pair (X,Y) € G x G should generate G are literally
the same as in the case of SDom.

(1) We have X9Y X1y —1 = 22(e=2" "1 Since

a is odd, X9Y X 'Y~ = 1 holds if and only if

qg=2""2+41 (mod 2™~ 1).
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27n—2
)

(2) We have XY X1y ! = 227+ Dale-1)+
which is equal to 1 if and only if a(¢—1) = 2m2
(mod 2m~1).

(3) The same conclusion as (2).
Let 2¢ be the maximal power of 2 dividing ¢ —1, i.e.,
¢=2°+1 (mod 2°M).
The number of a’s satisfying
0<a<2™ ' a(g—1)=2""2 (mod 2™ 1)

is 2¢if ¢ < m—2, 0 otherwise. Therefore, the number
of surjective homomorphisms from G to G is

0 (c>m—2),

92m—2 (c=m—2),

2¢tm=1 (¢ <m —2)
Since |Aut(G)| = 2™, we obtain the result. O
Remark 4. Fardouz [1] gave a detailed de-

scription of semidihedral (resp. modular) extensions
in the tame case. One can easily deduce Theorem 3
from his result.

Remark 5. The first author 2] gave an alter-
native proof of Theorem 3 by using the same method
as in the wild case.

4. Wild case. We consider the case where
the residue field of k£ has characteristic 2. For a pos-
itive integer N, we denote the group of Nth roots of
unity by pxn.

Theorem 6. Let k be a finite extension field
of Q2 with degree n, q the maximal power of 2 such
that k D pg. Let U be the image of Gy, in Z5 under
the canonical isomorphism

Gal(Qz(p2=)/Qz2) = Z3,
induced by the Galois action on pgee := | pigi.
(1) If ¢ > 4, then

v(k, SDam)

— 27nn—7n—2n+4 (271

— 12" —1) (m >4).

(2) If g =2 and n is odd, then

l/(k, SDQm)
B 2mn7m7n+6(2n _ 1) (m > 5)7
© | 22n(2ntl — 1)2 (m = 4).

(3) If g =2, n is even and U = (—1 +2F) (f > 2),
then
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l/(k, SDQNL)
2mn7m72n+5 (2n

(m> f+3),
2mn—m—2n+5 (2n

— 1)(2n+1 +of-2 1)

—1@2ntt $2mt - 1)

(m = f+2),
—1)(2ntt 4 2m=t 1)
d<m< f+1).

+2mn—n+1
2mn7m72n+5 (2n

(4) If ¢ = 2, n is even and U = {£1} x (1 +
2175) (f > 2), then
V(k,SDQm)

2mn—m—2n+5(2n

(m > f+2),
2mn7m72n+5 (2n

— 1)ttt 42172 1)
a —1@@rtt42mt - 1)
4<m< f+2).

(5) We have

2mn72n71(2n+1 _ 1)2q
(2™ > 8q),
2mn+m—2n—3 ((27z+1 _ 1)2 + 2n)

(16 < 2™ = 4q),
2mn+mf2n73(2n _

l/(k7 Mgm) =

D@2 - 1)

(16 < 2™ < 2¢).

Proof . Instead of finding surjective homomor-
phisms, we use a formula in [4]. For a finite 2-group
G, we have

1
v(k,G) = TAR(G)| EH:MG(H)OC(H),

where H runs over all subgroups of G, ug( ) is the
Mobius function on the partially ordered set consist-
ing of all subgroups of G, and a(H) = ay(H) =
|Hom(Gy, H)|. See [4] for the details about ug(H)
and o(H). We recall the following
(—1)iili—1)/2

if HD> G?|G,G) and [G : H] = 2¢,

0 otherwise.

e na(H) =

e If H is abelian, then
a(H) = |H|" x |{h € H; h? = 1}|.

e «H) is expressed as a sum over the irreducible
complex characters of H, this is the reason why
we need irreducible characters of SDsm and
Mom.
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Let G = SDy» or Myn. We must calculate
a(H) for non-abelian subgroups H of G such that
H D> G?[G,G]. We shall omit the details of the
calculation, but just exhibit the result. (We have
already done in [4] for H = Dam, Qam.)

(1) In this case, we have
a(Dam) = a(Qam)

(2m)ntt (4 + q%%)

(2™ > 2q),
2m2 ]
(27n)n+1 <4+ )

2’ﬂ
(8 <2™ <2q),
OZ(SDQ'"L) = Oé(DQm) = Oz(QQm)

(m > 4).

(2) In this case, we have

a(Dam) = (2m)"+1 (4 + 2%) (m > 3),

(2m)n+ (4 - zi)

(m > 4),

1
8n+1 4 — —
(=)

(m = 3)7
a(SDym) = a(Dam) = a(Q2m)

a(Qam) =

(m > 4).

(3) In this case, we have
Oé(DQm) = Oé(ng)
27711
R )

2n
B (m>f+1),
- m\n 2m72_1
(2)+1<4+ 5 )

B<m< f41),

2f-1_1
(2m)n+1 <4+ T)
(m > f+3),
(2m)n 1 <4+ il 1)
a(SDam) = 2n
(m = f + 2)’ 5
om—3 _ |
(2m)ntt <4+ o >
A<m< f+1).

(4) In this case, we have

Oé(DQm) = Oé(ng)
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(2m)n+t <4+ 21‘17—1)

277,
_ ) (m=f+1),
B m\n 2m72_1
(2 ) +1 <4+ T)

B<m< f41),

f=1_
(Qm)n+1 <4+ 2 1>
27),
> f+2),
a(SDym) = =7 )mes -1
(2m)n+1 (4+ )
on
d<m< f+1).
(5) We have
(2m)m+t - 2q
(2™ > 8q),
Oé(MQm) =

1
(Zm)7z+1 . 27n—3 (4 + 2_n>
(16 < 2™ < 4q).

Example 7 (cf. [2]).

32 (m>5),

36 (m=4),
v(Qa, Mym) = 9-2m72  (m > 4).

Remark 8. Let k be as in Theorem 6. Com-
paring Theorem 6 with [4, Theorem 2.2], we remark
that

V(Q27SD2"”) = {

v(k,SDam) = 2v(k, Dam) = 2v(k, Qam)

holds for m >4, m >5, m> f+3,m> f+2in
(1), (2), (3), (4), respectively.
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