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Abstract:  We prove that the Steiner ratio for hyperbolic surfaces is 1/2.
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1. Introduction. Let M be a complete
Riemannian manifold without boundary. Let P be a
finite set of points in M. A shortest network inter-
connecting P is called a Steiner minimum tree which
is denoted as SMT(P). An SMT(P) may have ver-
tices which are not in P. Such vertices are called
Steiner points. A spanning tree on P is a tree with
vertex set P. A shortest spanning tree on P is called
a minimum spanning tree on P which is denoted as
MST(P). Let L(T') be the total length of edges in a
tree T. The Steiner ratio is given by

B _ . . L(SMT(P))
p=p(M)= 1%fm.

Du and Hwang ([1]) have proved that p = v/3/2 if
M is the Euclidean plane. This was the affirmative
answer of a famous conjecture of Gilbert and Pollak
([2])- Rubinstein and Weng ([4]) have proved that
p = V/3/2 if M is a 2-dimensional sphere of con-
stant curvature. Ivanov, Tuzhilin and Cieslik ([3])
have estimated some Steiner ratios for manifolds. In
particular, they proved that p < 3/4 if M is a sim-
ply connected complete surface of constant curvature
—1 without boundary, and that p < v/3/2 if M is a
surface of constant curvature —1.

In the present note we prove the following
theorem.

Theorem 1. The Steiner ratio p(M) is 1/2 if
M is a simply connected complete surface of negative
constant curvature without boundary.

A simply connected complete Riemannian man-
ifold of negative constant curvature without bound-
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ary is called a hyperbolic space.

2. The lower bound of Steiner ratio. Let
M be a complete surface without boundary and P
a set of n points in M. Then, SMT(P) satisfies the
following properties.

(1) All terminal points of SMT(P) are points in P.
(2) Any two edges meet at an angle of at least 120°.
(3) Every Steiner point has degree exactly three.

(4) There are at most (n — 2) Steiner points in

SMT(P).

We say that a tree T' is a Steiner tree if T' satisfies (1)
to (3). A Steiner tree T is by definition full if T
has exactly n — 2 Steiner points. Any Steiner tree
can be decomposed into an edge-disjoint union of
full Steiner trees.

Any tree T will become a polygonal region with
boundary if its edges are replaced with e-belts as its
widen edges. Two terminal points are adjacent in T
if they are consecutive on the boundary.

The following lemma is stated in [1]. However,
we give a proof here because the idea will be impor-
tant in proving Theorem 1.

Lemma 2. Let M be a complete surface with-

out boundary. Then,

p(M) >

DO =

Proof. Let P = {p1,...,pn} be a set of points
in M where p; and p; 41 are adjacent in SMT(P) and
Dn+1 = p1. We may assume that SMT(P) is full. Let
S(pi, pit+1) be the minimal subtree from p; to p;4+1 of
SMT(P). Then, we have

d(pispi+1) < L(S(pispi+1))

for i = 1,...,n where d( -, -) is the distance in-
duced from the Riemannian metric of M. We set

L =31 d(pi,pis1). Since
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n

ZL(S(piapi+1)) = 2L(SMT(P)),

i=1

we see that L < 2L(SMT(P)). Since

L .
E S maX{d(pivpi-‘rl) | = 1’ R 7n}7
we have

L(MST(P)) < L —max{d(p;,pi+1) | i=1,...

n—1

< L.

n

Therefore, we have the inequality

L(SMT(P)) S n L o 1
L(MST(P)) ~ (n—1)L2 = 2
This completes the proof of Lemma 2. L]
3. Proof of Theorem 1. Let H be the

Poincaré disk, namely, H = {(z,y) | 2% + y? < 1}
with Riemannian metric

4 (dx2 + dyz)

for a positive c. Any complete simply connected sur-
face M of negative constant curvature —c without
boundary is isometric to H. The geodesic lines are
circles which meet at the right angle to the bound-
ary OH. Let T'(p, ¢) be the unique geodesic segment
connecting points p and g in H. The most impor-
tant property to be used in our proof is that any se-
quence of segments T'(pg, gx) converges to a geodesic
line T connecting ps and g if the sequences of
points pr and ¢ converge to points po, and ¢ in
OH, respectively.

Let n be an integer greater than 2. Let O be
the origin in H and 7;: [0,00) — H unit speed
geodesic rays for ¢ = 1,...,n such that v;(0) = O,
Z(%i(0), 4i41(0)) = 27 /n, where 4;(0) is the tangent
vector of v; at ¢ = 0 and Z(¥;(0),%i+1(0)) is the
angle of 4;(0) with 4;41(0) and yp,41 = 7. Let
P(s) = {vi(s) | i = 1,...,n} for a positive s. Let
S(7i(s),vi+1(s)) be the minimal subtree from ~;(s)
to viy1(s) of SMT(P(s)). We prove the following
lemma.

ds® =

Lemma 3. Forall i =1,...,n, we have

i LG9 741(5))
s=ood(7i(s),Yit1(s))
Proof. Let ®a;: [—di(s),d;(s)] — H be the

geodesic segment from ;(s) to 7;41(s) where
di(s) = d(vi(s),vi+1(s))/2. Then, *a; converges

=1.
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to the geodesic line «;: (—00,00) — H connect-
ing v;(00) = a;(—00) and 7;4+1(c0) = a;(c0). The
set of Steiner points for P(s) is nonempty because
of the inequality Z(—°c;_1(di—1(s)), *di(—di(s))) <
120° for sufficiently large s. The geodesic poly-
gon Ki(s) = S(7i(s), vi+1(s)) U “ai([—di(s), di(s)])
surrounds a convex domain. Let b;(s), j =
0,...,m, be the vertices of S(v;(s),7vi+1(s)) such
that they are in this order on it, bo(s) = 7i(s)
and b, (s) = Yi+1(s). Then, m <n —2. The in-
ner angles of K;(s) at b;(s) (j = 1,...,m — 1) are
120°. Let fBi: [0,00) — H, k = 1,2,3, be three
geodesic rays such that 8;(0) = b1(s), £1([0,00)) D
D(bo(s), by (), B((0.00)) > T(ba(s),ba(s)) and
Z(85(0),81(0)) = Z£(B3(0), 52(0)) = 120°. The
geodesic rays 0;([0,00)) (¢ = 1,2,3) divide H
into three parts. The geodesic polygons K;(s) and
K;_1(s) are contained in one of them, respectively.
We first claim that bi(s) is bounded as s —
0o. Suppose bi(s) — ~v;(00) as s — oo. Since
d(a—1(t), a;(R)) — 0 as t — oo, it follows that
at least one of G;([0,00)) (k = 2,3) intersects ei-
ther o;(R) or a;_1(R), contradicting the construc-
tion of the geodesic polygons K;(s) and K;_1(s) for
sufficiently large s. In the same way we can prove
that b,,—1(s) is bounded as s — oco. Combining
these facts, we see that the set {b1(s),...,bm-1(5)}

is bounded as s — oo.
Let f;(s),j=1,. — 1, be the foot of b;(s)
on Soy([— di(s),dl(s)]) namely, f;(s) is the unique

point in *a,((~d,(s), di(s)]) with d(b;(s), fi(s)) =
d(b;(s), *a;([—di(s),di(s)])). Then, we have
)

d(vi(s), vi+1(s)) < L(S ( i(8),vi+1(5)))
<d(y +2Zd

Since bj(s) and f;(s) are bounded as s — o0, we
see that
L(S(vi(s),7i+1(s)))
d(7i(s),vi+1(s))
This completes the proof of Lemma, 3. L]
Proof of Theorem 1. As was seen in Lem-

ma 2, the Steiner ratio is greater than or equal to
1/2. We will show that

L(SMT(P(s))) .
L(MST(P(s))) 2(n—1)

This fact implies that p(H) = 1/2. By the choice of
P(s) we have

i(8),Yit1(s

— 1 as

s — OQ.

as s — OQ.
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L(MST(P(s))) = (n — 1)d(y1(s),v2(s)). This completes the proof of Theorem 1. (]
Hence, we have
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