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Steiner ratio for hyperbolic surfaces
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Abstract: We prove that the Steiner ratio for hyperbolic surfaces is 1/2.
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1. Introduction. Let M be a complete
Riemannian manifold without boundary. Let P be a
finite set of points in M . A shortest network inter-
connecting P is called a Steiner minimum tree which
is denoted as SMT(P ). An SMT(P ) may have ver-
tices which are not in P . Such vertices are called
Steiner points. A spanning tree on P is a tree with
vertex set P . A shortest spanning tree on P is called
a minimum spanning tree on P which is denoted as
MST(P ). Let L(T ) be the total length of edges in a
tree T . The Steiner ratio is given by

ρ = ρ(M) = inf
P

L(SMT(P ))
L(MST(P ))

.

Du and Hwang ([1]) have proved that ρ =
√

3/2 if
M is the Euclidean plane. This was the affirmative
answer of a famous conjecture of Gilbert and Pollak
([2]). Rubinstein and Weng ([4]) have proved that
ρ =

√
3/2 if M is a 2-dimensional sphere of con-

stant curvature. Ivanov, Tuzhilin and Cieslik ([3])
have estimated some Steiner ratios for manifolds. In
particular, they proved that ρ ≤ 3/4 if M is a sim-
ply connected complete surface of constant curvature
−1 without boundary, and that ρ <

√
3/2 if M is a

surface of constant curvature −1.
In the present note we prove the following

theorem.
Theorem 1. The Steiner ratio ρ(M) is 1/2 if

M is a simply connected complete surface of negative
constant curvature without boundary .

A simply connected complete Riemannian man-
ifold of negative constant curvature without bound-
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ary is called a hyperbolic space.

2. The lower bound of Steiner ratio. Let
M be a complete surface without boundary and P

a set of n points in M . Then, SMT(P ) satisfies the
following properties.
(1) All terminal points of SMT(P ) are points in P .
(2) Any two edges meet at an angle of at least 120◦.
(3) Every Steiner point has degree exactly three.
(4) There are at most (n − 2) Steiner points in

SMT(P ).
We say that a tree T is a Steiner tree if T satisfies (1)
to (3). A Steiner tree T is by definition full if T

has exactly n − 2 Steiner points. Any Steiner tree
can be decomposed into an edge-disjoint union of
full Steiner trees.

Any tree T will become a polygonal region with
boundary if its edges are replaced with ε-belts as its
widen edges. Two terminal points are adjacent in T

if they are consecutive on the boundary.
The following lemma is stated in [1]. However,

we give a proof here because the idea will be impor-
tant in proving Theorem 1.

Lemma 2. Let M be a complete surface with-
out boundary . Then,

ρ(M) ≥ 1
2
.

Proof . Let P = {p1, . . . , pn} be a set of points
in M where pi and pi+1 are adjacent in SMT(P ) and
pn+1 = p1. We may assume that SMT(P ) is full. Let
S(pi, pi+1) be the minimal subtree from pi to pi+1 of
SMT(P ). Then, we have

d(pi, pi+1) ≤ L(S(pi, pi+1))

for i = 1, . . . , n where d( · , · ) is the distance in-
duced from the Riemannian metric of M . We set
L =

∑n
i=1 d(pi, pi+1). Since
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n∑
i=1

L(S(pi, pi+1)) = 2L(SMT(P )),

we see that L ≤ 2L(SMT(P )). Since

L

n
≤ max{d(pi, pi+1) | i = 1, . . . , n},

we have

L(MST(P )) ≤ L−max{d(pi, pi+1) | i = 1, . . . , n}

≤ n− 1
n

L.

Therefore, we have the inequality

L(SMT(P ))
L(MST(P ))

≥ n

(n− 1)L
L

2
>

1
2
.

This completes the proof of Lemma 2.
3. Proof of Theorem 1. Let H be the

Poincaré disk, namely, H = {(x, y) | x2 + y2 < 1}
with Riemannian metric

ds2 =
4

(
dx2 + dy2

)
c(1− x2 − y2)2

for a positive c. Any complete simply connected sur-
face M of negative constant curvature −c without
boundary is isometric to H. The geodesic lines are
circles which meet at the right angle to the bound-
ary ∂H. Let T (p, q) be the unique geodesic segment
connecting points p and q in H. The most impor-
tant property to be used in our proof is that any se-
quence of segments T (pk, qk) converges to a geodesic
line T connecting p∞ and q∞ if the sequences of
points pk and qk converge to points p∞ and q∞ in
∂H, respectively.

Let n be an integer greater than 2. Let O be
the origin in H and γi : [0,∞) −→ H unit speed
geodesic rays for i = 1, . . . , n such that γi(0) = O,
∠(γ̇i(0), γ̇i+1(0)) = 2π/n, where γ̇i(0) is the tangent
vector of γi at t = 0 and ∠(γ̇i(0), γ̇i+1(0)) is the
angle of γ̇i(0) with γ̇i+1(0) and γn+1 = γ1. Let
P (s) = {γi(s) | i = 1, . . . , n} for a positive s. Let
S(γi(s), γi+1(s)) be the minimal subtree from γi(s)
to γi+1(s) of SMT(P (s)). We prove the following
lemma.

Lemma 3. For all i = 1, . . . , n, we have

lim
s→∞

L(S(γi(s), γi+1(s)))
d(γi(s), γi+1(s))

= 1.

Proof . Let sαi : [−di(s), di(s)] −→ H be the
geodesic segment from γi(s) to γi+1(s) where
di(s) = d(γi(s), γi+1(s))/2. Then, sαi converges

to the geodesic line αi : (−∞,∞) −→ H connect-
ing γi(∞) = αi(−∞) and γi+1(∞) = αi(∞). The
set of Steiner points for P (s) is nonempty because
of the inequality ∠(−sα̇i−1(di−1(s)), sα̇i(−di(s))) <

120◦ for sufficiently large s. The geodesic poly-
gon Ki(s) = S(γi(s), γi+1(s)) ∪ sαi([−di(s), di(s)])
surrounds a convex domain. Let bj(s), j =
0, . . . ,m, be the vertices of S(γi(s), γi+1(s)) such
that they are in this order on it, b0(s) = γi(s)
and bm(s) = γi+1(s). Then, m ≤ n− 2. The in-
ner angles of Ki(s) at bj(s) (j = 1, . . . ,m − 1) are
120◦. Let βk : [0,∞) −→ H, k = 1, 2, 3, be three
geodesic rays such that βk(0) = b1(s), β1([0,∞)) ⊃
T (b0(s), b1(s)), β2([0,∞)) ⊃ T (b1(s), b2(s)) and
∠(β̇3(0), β̇1(0)) = ∠(β̇3(0), β̇2(0)) = 120◦. The
geodesic rays βk([0,∞)) (k = 1, 2, 3) divide H

into three parts. The geodesic polygons Ki(s) and
Ki−1(s) are contained in one of them, respectively.

We first claim that b1(s) is bounded as s −→
∞. Suppose b1(s) −→ γi(∞) as s −→ ∞. Since
d(αi−1(t), αi(R)) −→ 0 as t −→ ∞, it follows that
at least one of βk([0,∞)) (k = 2, 3) intersects ei-
ther αi(R) or αi−1(R), contradicting the construc-
tion of the geodesic polygons Ki(s) and Ki−1(s) for
sufficiently large s. In the same way we can prove
that bm−1(s) is bounded as s −→ ∞. Combining
these facts, we see that the set {b1(s), . . . , bm−1(s)}
is bounded as s −→∞.

Let fj(s), j = 1, . . . ,m− 1, be the foot of bj(s)
on sαi([−di(s), di(s)]), namely, fj(s) is the unique
point in sαi([−di(s), di(s)]) with d(bj(s), fj(s)) =
d(bj(s), sαi([−di(s), di(s)])). Then, we have

d(γi(s), γi+1(s)) ≤ L(S(γi(s), γi+1(s)))

≤ d(γi(s), γi+1(s)) + 2
m−1∑
j=1

d(bj(s), fj(s)).

Since bj(s) and fj(s) are bounded as s −→ ∞, we
see that

L(S(γi(s), γi+1(s)))
d(γi(s), γi+1(s))

−→ 1 as s −→∞.

This completes the proof of Lemma 3.
Proof of Theorem 1. As was seen in Lem-

ma 2, the Steiner ratio is greater than or equal to
1/2. We will show that

L(SMT(P (s)))
L(MST(P (s)))

−→ n

2(n− 1)
as s −→∞.

This fact implies that ρ(H) = 1/2. By the choice of
P (s) we have
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L(MST(P (s))) = (n− 1)d(γ1(s), γ2(s)).

Hence, we have

L(SMT(P (s)))
L(MST(P (s)))

=
1
2

∑n
i=1 L(S(γi(s), γi+1(s)))
(n− 1)d(γ1(s), γ2(s))

=
1
2

n

n− 1

∑n
i=1 L(S(γi(s), γi+1(s)))

nd(γ1(s), γ2(s))

=
1
2

n

n− 1

∑n
i=1 L(S(γi(s), γi+1(s)))∑n

i=1 d(γi(s), γi+1(s))
.

Therefore, it follows Lemma 3 that

lim
s→∞

L(SMT(P (s)))
L(MST(P (s)))

=
n

2(n− 1)
.

This completes the proof of Theorem 1.
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