Steiner ratio for hyperbolic surfaces

By Nobuhiro Innami*) and Byung Hak Kim**)
(Communicated by Shigefumi Mori, M. J. A., June 12, 2006)

Abstract: We prove that the Steiner ratio for hyperbolic surfaces is 1/2.

Key words: Steiner ratio; Steiner tree; Riemannian geometry; geodesic; hyperbolic geometry.

1. Introduction. Let M be a complete Riemannian manifold without boundary. Let P be a finite set of points in M. A shortest network interconnecting P is called a $Steiner\ minimum\ tree$ which is denoted as SMT(P). An SMT(P) may have vertices which are not in P. Such vertices are called $Steiner\ points$. A spanning tree on P is a tree with vertex set P. A shortest spanning tree on P is called a $minimum\ spanning\ tree$ on P which is denoted as MST(P). Let L(T) be the total length of edges in a tree T. The $Steiner\ ratio$ is given by

$$\rho = \rho(M) = \inf_{P} \frac{L(SMT(P))}{L(MST(P))}.$$

Du and Hwang ([1]) have proved that $\rho = \sqrt{3}/2$ if M is the Euclidean plane. This was the affirmative answer of a famous conjecture of Gilbert and Pollak ([2]). Rubinstein and Weng ([4]) have proved that $\rho = \sqrt{3}/2$ if M is a 2-dimensional sphere of constant curvature. Ivanov, Tuzhilin and Cieslik ([3]) have estimated some Steiner ratios for manifolds. In particular, they proved that $\rho \leq 3/4$ if M is a simply connected complete surface of constant curvature -1 without boundary, and that $\rho < \sqrt{3}/2$ if M is a surface of constant curvature -1.

In the present note we prove the following theorem.

Theorem 1. The Steiner ratio $\rho(M)$ is 1/2 if M is a simply connected complete surface of negative constant curvature without boundary.

A simply connected complete Riemannian manifold of negative constant curvature without bound-

ary is called a hyperbolic space.

- 2. The lower bound of Steiner ratio. Let M be a complete surface without boundary and P a set of n points in M. Then, SMT(P) satisfies the following properties.
- (1) All terminal points of SMT(P) are points in P.
- (2) Any two edges meet at an angle of at least 120° .
- (3) Every Steiner point has degree exactly three.
- (4) There are at most (n-2) Steiner points in SMT(P).

We say that a tree T is a Steiner tree if T satisfies (1) to (3). A Steiner tree T is by definition full if T has exactly n-2 Steiner points. Any Steiner tree can be decomposed into an edge-disjoint union of full Steiner trees.

Any tree T will become a polygonal region with boundary if its edges are replaced with ϵ -belts as its widen edges. Two terminal points are *adjacent* in T if they are consecutive on the boundary.

The following lemma is stated in [1]. However, we give a proof here because the idea will be important in proving Theorem 1.

Lemma 2. Let M be a complete surface without boundary. Then,

$$\rho(M) \ge \frac{1}{2}.$$

Proof. Let $P = \{p_1, \ldots, p_n\}$ be a set of points in M where p_i and p_{i+1} are adjacent in SMT(P) and $p_{n+1} = p_1$. We may assume that SMT(P) is full. Let $S(p_i, p_{i+1})$ be the minimal subtree from p_i to p_{i+1} of SMT(P). Then, we have

$$d(p_i, p_{i+1}) \le L(S(p_i, p_{i+1}))$$

for $i=1,\ldots,n$ where $d(\cdot,\cdot)$ is the distance induced from the Riemannian metric of M. We set $L=\sum_{i=1}^n d(p_i,p_{i+1})$. Since

²⁰⁰⁰ Mathematics Subject Classification. Primary 53C20; Secondary 05C05.

^{*)} Department of Mathematics, Faculty of Science, Niigata University, Niigata, 950-2181, Japan.

^{**)} Department of Mathematics, Kyung Hee University, Suwon 446-701, Korea, and National Institute for Mathematical Science, Daejeon 305-340, Korea.

$$\sum_{i=1}^{n} L(S(p_i, p_{i+1})) = 2L(SMT(P)),$$

we see that $L \leq 2L(SMT(P))$. Since

$$\frac{L}{n} \le \max\{d(p_i, p_{i+1}) \mid i = 1, \dots, n\},\$$

we have

$$L(\text{MST}(P)) \le L - \max\{d(p_i, p_{i+1}) \mid i = 1, \dots, n\}$$

$$\le \frac{n-1}{n}L.$$

Therefore, we have the inequality

$$\frac{L(\mathrm{SMT}(P))}{L(\mathrm{MST}(P))} \geq \frac{n}{(n-1)L} \frac{L}{2} > \frac{1}{2}.$$

This completes the proof of Lemma 2.

3. Proof of Theorem 1. Let H be the Poincaré disk, namely, $H = \{(x,y) \mid x^2 + y^2 < 1\}$ with Riemannian metric

$$ds^{2} = \frac{4(dx^{2} + dy^{2})}{c(1 - x^{2} - y^{2})^{2}}$$

for a positive c. Any complete simply connected surface M of negative constant curvature -c without boundary is isometric to H. The geodesic lines are circles which meet at the right angle to the boundary ∂H . Let T(p,q) be the unique geodesic segment connecting points p and q in H. The most important property to be used in our proof is that any sequence of segments $T(p_k,q_k)$ converges to a geodesic line T connecting p_∞ and q_∞ if the sequences of points p_k and q_k converge to points p_∞ and q_∞ in ∂H , respectively.

Let n be an integer greater than 2. Let O be the origin in H and $\gamma_i \colon [0,\infty) \longrightarrow H$ unit speed geodesic rays for $i=1,\ldots,n$ such that $\gamma_i(0)=O$, $\angle(\dot{\gamma}_i(0),\dot{\gamma}_{i+1}(0))=2\pi/n$, where $\dot{\gamma}_i(0)$ is the tangent vector of γ_i at t=0 and $\angle(\dot{\gamma}_i(0),\dot{\gamma}_{i+1}(0))$ is the angle of $\dot{\gamma}_i(0)$ with $\dot{\gamma}_{i+1}(0)$ and $\gamma_{n+1}=\gamma_1$. Let $P(s)=\{\gamma_i(s)\mid i=1,\ldots,n\}$ for a positive s. Let $S(\gamma_i(s),\gamma_{i+1}(s))$ be the minimal subtree from $\gamma_i(s)$ to $\gamma_{i+1}(s)$ of $\mathrm{SMT}(P(s))$. We prove the following lemma.

Lemma 3. For all i = 1, ..., n, we have

$$\lim_{s \to \infty} \frac{L(S(\gamma_i(s), \gamma_{i+1}(s)))}{d(\gamma_i(s), \gamma_{i+1}(s))} = 1.$$

Proof. Let ${}^s\alpha_i \colon [-d_i(s), d_i(s)] \longrightarrow H$ be the geodesic segment from $\gamma_i(s)$ to $\gamma_{i+1}(s)$ where $d_i(s) = d(\gamma_i(s), \gamma_{i+1}(s))/2$. Then, ${}^s\alpha_i$ converges

to the geodesic line $\alpha_i:(-\infty,\infty)\longrightarrow H$ connecting $\gamma_i(\infty) = \alpha_i(-\infty)$ and $\gamma_{i+1}(\infty) = \alpha_i(\infty)$. The set of Steiner points for P(s) is nonempty because of the inequality $\angle(-s\dot{\alpha}_{i-1}(d_{i-1}(s)), {}^s\dot{\alpha}_i(-d_i(s))) <$ 120° for sufficiently large s. The geodesic polygon $K_i(s) = S(\gamma_i(s), \gamma_{i+1}(s)) \cup {}^s\alpha_i([-d_i(s), d_i(s)])$ surrounds a convex domain. Let $b_i(s)$, j = $0, \ldots, m$, be the vertices of $S(\gamma_i(s), \gamma_{i+1}(s))$ such that they are in this order on it, $b_0(s) = \gamma_i(s)$ and $b_m(s) = \gamma_{i+1}(s)$. Then, $m \le n-2$. The inner angles of $K_i(s)$ at $b_j(s)$ (j = 1, ..., m-1) are 120°. Let $\beta_k: [0,\infty) \longrightarrow H$, k=1,2,3, be three geodesic rays such that $\beta_k(0) = b_1(s), \beta_1([0,\infty)) \supset$ $T(b_0(s), b_1(s)), \beta_2([0, \infty)) \supset T(b_1(s), b_2(s))$ and $\angle(\dot{\beta}_3(0), \dot{\beta}_1(0)) = \angle(\dot{\beta}_3(0), \dot{\beta}_2(0)) = 120^{\circ}.$ geodesic rays $\beta_k([0,\infty))$ (k=1,2,3) divide H into three parts. The geodesic polygons $K_i(s)$ and $K_{i-1}(s)$ are contained in one of them, respectively.

We first claim that $b_1(s)$ is bounded as $s \to \infty$. Suppose $b_1(s) \to \gamma_i(\infty)$ as $s \to \infty$. Since $d(\alpha_{i-1}(t), \alpha_i(\mathbf{R})) \to 0$ as $t \to \infty$, it follows that at least one of $\beta_k([0,\infty))$ (k=2,3) intersects either $\alpha_i(\mathbf{R})$ or $\alpha_{i-1}(\mathbf{R})$, contradicting the construction of the geodesic polygons $K_i(s)$ and $K_{i-1}(s)$ for sufficiently large s. In the same way we can prove that $b_{m-1}(s)$ is bounded as $s \to \infty$. Combining these facts, we see that the set $\{b_1(s), \ldots, b_{m-1}(s)\}$ is bounded as $s \to \infty$.

Let $f_j(s)$, $j=1,\ldots,m-1$, be the foot of $b_j(s)$ on ${}^s\alpha_i([-d_i(s),d_i(s)])$, namely, $f_j(s)$ is the unique point in ${}^s\alpha_i([-d_i(s),d_i(s)])$ with $d(b_j(s),f_j(s))=d(b_j(s),{}^s\alpha_i([-d_i(s),d_i(s)]))$. Then, we have

$$d(\gamma_i(s), \gamma_{i+1}(s)) \le L(S(\gamma_i(s), \gamma_{i+1}(s)))$$

$$\leq d(\gamma_i(s), \gamma_{i+1}(s)) + 2 \sum_{j=1}^{m-1} d(b_j(s), f_j(s)).$$

Since $b_j(s)$ and $f_j(s)$ are bounded as $s \longrightarrow \infty$, we see that

$$\frac{L(S(\gamma_i(s),\gamma_{i+1}(s)))}{d(\gamma_i(s),\gamma_{i+1}(s))} \longrightarrow 1 \quad \text{as} \quad s \longrightarrow \infty.$$

This completes the proof of Lemma 3.

Proof of Theorem 1. As was seen in Lemma 2, the Steiner ratio is greater than or equal to 1/2. We will show that

$$\frac{L(\mathrm{SMT}(P(s)))}{L(\mathrm{MST}(P(s)))} \longrightarrow \frac{n}{2(n-1)} \quad \text{as} \quad s \longrightarrow \infty.$$

This fact implies that $\rho(H) = 1/2$. By the choice of P(s) we have

$$L(MST(P(s))) = (n-1)d(\gamma_1(s), \gamma_2(s)).$$

Hence, we have

$$\begin{split} & \frac{L(\text{SMT}(P(s)))}{L(\text{MST}(P(s)))} \\ &= \frac{1}{2} \frac{\sum_{i=1}^{n} L(S(\gamma_{i}(s), \gamma_{i+1}(s)))}{(n-1)d(\gamma_{1}(s), \gamma_{2}(s))} \\ &= \frac{1}{2} \frac{n}{n-1} \frac{\sum_{i=1}^{n} L(S(\gamma_{i}(s), \gamma_{i+1}(s)))}{nd(\gamma_{1}(s), \gamma_{2}(s))} \\ &= \frac{1}{2} \frac{n}{n-1} \frac{\sum_{i=1}^{n} L(S(\gamma_{i}(s), \gamma_{i+1}(s)))}{\sum_{i=1}^{n} d(\gamma_{i}(s), \gamma_{i+1}(s))}. \end{split}$$

Therefore, it follows Lemma 3 that

$$\lim_{s\to\infty}\frac{L(\mathrm{SMT}(P(s)))}{L(\mathrm{MST}(P(s)))}=\frac{n}{2(n-1)}.$$

This completes the proof of Theorem 1. \Box

References

- D.-Z. Du and F. K. Hwang, The Steiner ratio conjecture of Gilbert and Pollak is true, Proc. Nat. Acad. Sci. U.S.A. 87 (1990), no. 23, 9464–9466.
- [2] E. N. Gilbert and H. O. Pollak, Steiner minimal trees, SIAM J. Appl. Math. 16 (1968), 1–29.
- [3] A. O. Ivanov, A. A. Tuzhilin and D. Cieslik, Steiner ratio for manifolds, Mat. Zametki **74** (2003), no. 3, 387–395 (Russian); translation in Math. Notes **74** (2003), no. 3-4, 367–374.
- [4] J. H. Rubinstein and J. F. Weng, Compression theorems and Steiner ratios on spheres, J. Comb. Optim. 1 (1997), no. 1, 67–78.