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On the difference between the ordinary height

and the canonical height on elliptic curves
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Abstract: We estimate the bounds for the difference between the ordinary height and the
canonical height on elliptic curves over number fields. Our result is an improvement of the recent
result of Cremona, Prickett, and Siksek (J. Number Theory 116 (2006), 42–68). Our bounds are
usually sharper than the other known bounds.
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1. Introduction. Let E be an elliptic curve
over a number field K. Height functions on E

are real-valued functions on the Mordell-Weil group
E(K). In the study of elliptic curves, height func-
tions are important in both the theory and the ap-
plication. There are some kinds of height functions,
each of them has its own advantage. For example,
the ordinary (or Weil, naive) height h is easily cal-
culated, and the canonical (or Néron-Tate) height ĥ
is easy to treat theoretically.

It is known that there are constants c1, c2 de-
pending only on the model for the elliptic curve E
and the field of definition K such that

c1 ≤ h(P )− ĥ(P ) ≤ c2

for all P ∈ E(K). It is important to estimate the
bounds c1, c2 effectively. These bounds are used to
determine Mordell-Weil basis of elliptic curves, and
to determine integral points on elliptic curves. Since
these height are logarithmic, we can save much time
if we can obtain sharp bounds.

The bounds for the difference h−ĥ have been es-
timated by many authors, for example, Zimmer [10],
Silverman [7], Siksek [4], and Cremona, Prickett, and
Siksek [2]. Our bounds (Theorem 2.1) are improve-
ments of the result in [2]. While only the duplica-
tion map is used in [2], we use general multiplication
maps. Our algorithm (see Section 4) are quite simi-
lar to that in [2]. Hence, it is easy to implement this
algorithm. And we can make our bounds entirely
rigorous.

In this paper, we present the bounds for h − ĥ
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and relations of the bounds and the multiplierm used
in the multiplication map. At the end of the paper,
we give a few examples to compare our bounds with
other bounds. The detailed proof of our result will
be published elsewhere ([9]).

2. Statement of the main theorem. We
fix the following notations.
K a number field,
OK the ring of integers of K,
MK the set of all places of K,
M0

K the set of non-Archimedean places of K,
M∞

K the set of Archimedean places of K,
v a place of K,
Kv the completion of K at v,
nv the local degree [Kv : Qv],
| · |v the standard absolute value associated to v.

For v ∈M0
K , we use the following notations.

kv the residue field at v,
qv the cardinality of the residue field kv.
Let E be an elliptic curve given by the Weier-

strass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, a2, a3, a4, a6 ∈ OK . For v ∈ M0
K , we de-

note by E0(Kv) the set of points with non-singular
reduction. E0(Kv) is a subgroup of E(Kv). The in-
dex cv = [E(Kv) : E0(Kv)] is called Tamagawa index
at v.

We define bi, ci, the discriminant ∆, and j-
invariant j as usual (see [6, Chapter 3, Section 1]).

Let φm, ψ2
m be multiplication polynomials of

E (see [5, Section 1.3]). Note that x(mP ) =
φm(x(P ))/ψ2

m(x(P )) if mP 6= O.
The ordinary height function h : E(K) → R is
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Table I. Values of αv

Kodaira type of Emin
v cv αv

any 1 0
Ir, r even 2 or r r/4
Ir, r odd r (r2 − 1)/4r

III 2 1/2
IV 3 2/3
I∗0 2 or 4 1
I∗r 2 1
I∗r 4 (r + 4)/4

IV∗ 3 4/3
III∗ 2 3/2

defined by

h(P ) =
1

[K : Q]

∑
v∈MK

nv log max{1, |x(P )|v}

if P 6= O, and h(O) = 0.
The canonical height function ĥ : E(K) → R is

defined by

ĥ(P ) = lim
i→∞

1
4i
h(2iP ).

For a positive integer m, we define the function
Φm,v : E(Kv) → R by

(1) Φm,v(P ) =
max

{
|φm(x(P ))|v, |ψ2

m(x(P ))|v
}

max{1, |x(P )|v}m2

if P 6= O, and Φm,v(O) = 1. We can prove that Φm,v

is a bounded continuous function. We define

ε−1
m,v = inf

P∈E(Kv)
Φm,v(P ),

δ−1
m,v = sup

P∈E(Kv)

Φm,v(P ).

We can prove that εm,v exists, i.e., the infimum ap-
pearing in its definition is positive, especially non-
zero.

Let

Sv(m) =
log δm,v

m2 − 1
, Tv(m) =

log εm,v

m2 − 1
.

For each valuation v ∈ M0
K let Emin

v be a min-
imal model for E over Kv, and let ∆min

v be the dis-
criminant of Emin

v . For almost all v ∈ M0
K , we can

take Emin
v = E and ∆min

v = ∆ since E is already
minimal at v. For v ∈ M0

K , we define the constants
αv according to the Kodaira type of Emin

v and the
Tamagawa index cv as in Table I. Then our main
theorem is as follows:

Theorem 2.1 ([9, Theorem 3.1]). Let m ≥ 2
be an integer . For all P ∈ E(K),

1
[K : Q]

∑
v∈M∞

K

nvSv(m)

≤ h(P )− ĥ(P )

≤ 1
[K : Q]

∑
v∈M∞

K

nvTv(m)

+
1

[K : Q]

∑
v∈M0

K

(
αv +

1
6

ordv(∆/∆min
v )

)
log qv.

Remark 2.2. For v ∈ M0
K such that

ordv(∆) = 0, we have αv = 0 and ordv(∆/∆min
v ) =

0. Therefore the summation over M0
K is a finite sum.

Remark 2.3. If m = 2, Theorem 2.1 is the
same as [2, Theorem 1].

3. Relation between bounds and multi-
pliers. In this section, we consider the relation be-
tween the bounds in Theorem 2.1 and the multiplier
m.

First, we define a local height function
λv : E(Kv) \ {O} → R by

λv(P ) = log max{1, |x(P )|v}

+
∞∑

i=0

1
4i+1

log Φ2,v(2iP ).

Remark 3.1. Some authors use different def-
initions of local height functions. Let λ′v be the def-
inition of [8, 11, 12]. Then we have

λv = 2λ′v +
1
6

log |∆|v.

The canonical height function is represented as
the summation of the local height functions.

Proposition 3.2 ([8, Chapter VI, Theorem
2.1]). For all P ∈ E(K) \ {O},

ĥ(P ) =
1

[K : Q]

∑
v∈MK

nvλv(P ).

We define the function Ψv : E(Kv) → R by

Ψv(P ) = log max{1, |x(P )|v} − λv(P )

if P 6= O and by Ψv(O) = 0. Then, by Proposi-
tion 3.2, the difference between the ordinary height
and the canonical height is represented as follows:

h(P )− ĥ(P ) =
1

[K : Q]

∑
v∈MK

nvΨv(P ).
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Hence we obtain the bounds for h − ĥ if we bound
Ψv. Cremona et al. [2] determined the extrema of
Ψv when v is non-Archimedean.

Proposition 3.3 ([2, Proposition 8]). Let v ∈
M0

K . Then,

inf
P∈E(Kv)

Ψv(P ) = 0,

sup
P∈E(Kv)

Ψv(P ) =
(
αv +

1
6

ordv(∆/∆min
v )

)
log qv.

The author proved the following result including
the case of Archimedean places.

Proposition 3.4. Let v ∈ MK and m ≥ 2 be
an integer . Then, for all P ∈ E(Kv),

Sv(m) ≤ Ψv(P ) ≤ Tv(m).

Theorem 2.1 follows from Propositions 3.3
and 3.4 immediately.

We can estimate the differences between the ex-
trema of Ψv and Sv(m), Tv(m) by the following
proposition and its corollaries.

Proposition 3.5. Let v ∈ MK and m ≥ 2 be
an integer . Then,

0 ≤ inf
P∈E(Kv)

Ψv(P )− Sv(m) ≤ c

m2 − 1
,

0 ≤ Tv(m)− sup
P∈E(Kv)

Ψv(P ) ≤ c

m2 − 1
,

where

c = sup
P∈E(Kv)

Ψv(P )− inf
P∈E(Kv)

Ψv(P ).

The following corollaries say that we can com-
pute the extrema of Ψv with arbitrary precision.

Corollary 3.6.

lim
m→∞

Sv(m) = inf
P∈E(Kv)

Ψv(P ),

lim
m→∞

Tv(m) = sup
P∈E(Kv)

Ψv(P ).

Corollary 3.7. Let m ≥ 2 be an integer .
Then,

0 ≤ inf
P∈E(Kv)

Ψv(P )− Sv(m) ≤ cm,

0 ≤ Tv(m)− sup
P∈E(Kv)

Ψv(P ) ≤ cm,

where

cm =
1
m2

(Tv(m)− Sv(m)) .

Furthermore, we can prove the following propo-
sition.

Proposition 3.8. Let m ≥ 2, l ≥ 1 be inte-
gers. Then,

Sv(m) ≤ Sv(ml), Tv(ml) ≤ Tv(m),

i .e., the bounds in Theorem 2.1 become sharper when
we change m to ml.

Remark 3.9. By the proposition, we can ob-
tain sharper bounds than those of [2] if we take m =
2l and l ≥ 2.

Remark 3.10. There seems to be no relation
between the bounds for m and m′ generally. For
example, it is not necessarily true that

Sv(m) ≤ Sv(m′), Tv(m′) ≤ Tv(m)

if m is a divisor of m′. We will show some counterex-
amples in Section 5.

4. Remarks on implementation. In this
section, we describe a method for computing Sv(m)
and Tv(m).

When v ∈ M0
K , it is sufficient to use Tate’s al-

gorithm (see [8, Chapter IV, Section 9]).
Let v ∈ M∞

K . When v is a complex place, we
can use the method based on Gröbner basis, or the
repeated quadrisection method. See [2, Sections 8,
9].

When v is a real place, we can use a method
similar to that in [2, Section 7]. However, we need
some changes as follows:

We define polynomials f(x), g(x), p(x) by

f(x) = ψ2
m(x), g(x) = φm(x), p(x) = ψ2

2(x).

And we define polynomials F (x), G(x), P (x) by

F (x) = xm2
f(1/x), G(x) = xm2

g(1/x),

P (x) = x4p(1/x).

Let

D = {x ∈ [−1, 1] | p(x) ≥ 0},
D′ = {x ∈ [−1, 1] | P (x) ≥ 0}.

Note that f(x) = p(x) and F (x) = P (x) in [2] since
m = 2.

Then we can use the same method as that in [2,
Section 7].

5. Examples. In order to compare our re-
sult with other results, we quickly review Silver-
man’s bounds and Zimmer’s bounds. Note that
a1, a2, a3, a4, a6 ∈ OK .

Theorem 5.1 (Silverman [7]). For x ∈ K, we
define
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h(x) =
1

[K : Q]

∑
v∈MK

nv log max{1, |x|v},

h∞(x) =
1

[K : Q]

∑
v∈M∞

K

nv log max{1, |x|v}.

And we define

2∗ =

{
2 if b2 6= 0,
1 if b2 = 0,

and

µ(E) =
1
12
h(∆)+

1
12
h∞(j)+

1
2
h∞

(
b2
12

)
+

1
2

log 2∗.

Then, for all P ∈ E(K ),

−2µ(E)− 2.14 ≤ h(P )− ĥ(P )

≤ 1
12
h(j) + 2µ(E) + 1.946.

Theorem 5.2 (Zimmer). For x ∈ K, v ∈
MK , we define v(x) = − log |x|v. Let

µv = min
{
v(b2),

v(b4)
2

,
v(b6)

3
,
v(b8)

4

}
,

and

µl = − 1
[K : Q]

∑
v∈MK

nv min{0, µv},

µh =
1

[K : Q]

∑
v∈MK

nv max{0, µv}.

Then, for all P ∈ E(K),

−µl − log 2 ≤ h(P )− ĥ(P ) ≤ 2µl − µh +
8
3

log 2.

This theorem follows from Proposition 5.18 a)
and Theorem 5.35 c) in [5].

To compare the bounds in Theorem 2.1 with
the ones we described above, we give some examples.
PARI/GP [3] is used in the computation.

Example 5.3. Consider the elliptic curve
over Q:

E : y2 = x3 − 459x2 − 3478x+ 169057.

This is taken from [2, Example 4]. Theorem 2.1 gives
the following bounds.

−6.531924724 ≤ h− ĥ ≤ 0.4620981204 (m = 2),

−5.228881425 ≤ h− ĥ ≤ 0.4620981204 (m = 3),

−5.227187136 ≤ h− ĥ ≤ 0.4620981204 (m = 4),

−5.006931796 ≤ h− ĥ ≤ 0.4620981204 (m = 5).

Silverman’s bounds are

−15.40309857 ≤ h− ĥ ≤ 18.74780624,

and Zimmer’s bounds are

−8.208491752 ≤ h− ĥ ≤ 16.41698351.

We observe that the bounds in Theorem 2.1 are
sharper than the other ones.

According to [2, Example 4], the rank of E(Q)
is 4, and E(Q) has a basis

P1 = (16,−1), P2 = (−4,−419),

P3 = (−22,−113), P4 = (566,−5699).

Furthermore, it says that when P = 2P1,

h(P )− ĥ(P ) = 0.4620980788 · · · ,

and when P = P1 − 3P2 + P3 + 3P4,

h(P )− ĥ(P ) = −4.900153342 · · · .

We observe that the bounds in Theorem 2.1 are very
sharp.

We give counterexamples mentioned in Re-
mark 3.10. These curves are taken from Cremona’s
Elliptic Curve Data [1].

Example 5.4. Consider the curve 37a1 over
Q (cf. [1]):

E : y2 + y = x3 − x.

Then, Theorem 2.1 gives

−0.48648 ≤ h− ĥ ≤ 0.12298 (m = 3),

−0.46933 ≤ h− ĥ ≤ 0.12650 (m = 6).

The upper bound with m = 6 is worse than that with
m = 3.

Example 5.5. Consider the curve 20888a1
over Q (cf. [1]):

E : y2 = x3 − 52x+ 100.

Then, Theorem 2.1 gives

−2.1041 ≤ h− ĥ ≤ 1.8394 (m = 5),

−2.1193 ≤ h− ĥ ≤ 1.8394 (m = 10).

The lower bound with m = 10 is worse than that
with m = 5.
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