The q-Eulerian distribution of the elliptic Weyl group of type $A_1^{(1,1)}$

By Tadayoshi TAKEBAYASHI

Department of Mathematical Science , School of Science and Engineering, Waseda University, Ohkubo Shinjuku-ku, Tokyo 169-8555, Japan (Communicated by Heisuke HIRONAKA, M. J. A., March 13, 2006)

Abstract: We calculate the q-Eulerian distribution W(t,q) of the elliptic Weyl group of type $A_1^{(1,1)}$, which is a formal power series in $\mathbf{Z}[[t,q]]$, and classically defined for any Coxeter system (W, S).

Key words: *q*-Eulerian distribution; elliptic Weyl group.

1. Introduction. Let (W, S) be a Coxeter system, then for $w \in W$, its length and descent number are defined by $l(w) = \min\{l: w =$ $s_{i_1}s_{i_2}\cdots s_{i_l}$ for some $s_{i_k} \in S$, $\operatorname{des}(w) =$ $|\{s \in S : l(ws) < l(w)\}|$, and the bivariate generating function which is called the q-Eulerian distribution; $W(t,q) = \sum_{w \in W} t^{\operatorname{des}(w)} q^{\hat{l}(w)}$ is defined ([2]). For example, when W is the symmetric group S_n , the following result was given by Stanley [3]; $\sum_{n\geq 0} x^n / [n]_q \sum_{w\in S_n} t^{des(w)} q^{l(w)} = (1-t) \exp(x(1-t):q) / (1-t) \exp(x(1-t):q)) \text{ where } \exp(x:q) = \sum_{w\in S_n} t^{des(w)} q^{l(w)} = (1-t) \exp(x(1-t):q) + \sum_{w\in S_n} t^{des(w)} q^{l(w)} = (1-t) \exp(x(1-t)) + \sum_{w\in S_n} t^{des(w)} q^{l(w)} q^{l(w)} = (1-t) \exp(x(1-t)) + \sum_{w\in S_n} t^{des(w)} q^{l(w)} q^{l(w)} q^{l(w)} = (1-t) \exp(x(1-t)) + \sum_{w\in S_n} t^{des(w)} q^{l(w)} q^{l(w$ $\sum_{n>0} x^n / [n]_q, \ [n]_q = (1-q^n) / (1-q).$ When W is finite, W(t, 1) is called the Eulerian polynomial of W. In this paper, we calculate W(t,q) for the elliptic Weyl group of type $A_1^{(1,1)}$ with the given generator system. Here we note that the elliptic Weyl groups are not Coxeter groups, but in a sense, generalized Coxeter groups ([1]), and we can define their lengths, descent numbers and q-Eulerian distribution similarly to Coxeter groups. In the case of the elliptic Weyl group $W(A_1^{(1,1)})$ with the given generator system, the length distribution, which are also called Poincaré series; $W(q) = \sum_{w \in W} q^{l(w)}$ was calculated by Wakimoto [4], and in a different way by the author [5]. To calculate W(t,q) for that, we use the previous result [5].

2. The *q*-Eulerian distribution of the elliptic Weyl group $W(A_1^{(1,1)})$. The elliptic Weyl group $W(A_1^{(1,1)})$ of type $A_1^{(1,1)}$ is presented as follows ([1]):

Generators: w_i, w_i^* (i = 0, 1). Relations: $w_i^2 = w_i^{*2} = 1$ (i = 0, 1),

$$w_0 w_0^* w_1 w_1^* = 1$$

We set $T = w_1 w_0$, $R = w_1^* w_1 = w_0 w_0^*$, then there hold the relations; TR = RT, $w_1T = T^{-1}w_1$, $w_1R = R^{-1}w_1$. We calculate W(t,q) by using the same method as [5]. Noting $W(A_1^{(1,1)}) =$ $\{R^m T^n w_1, R^m T^n, m, n \in \mathbf{Z}\}$, we divide them into the following cases; $\{(I) \ T^n \ (n \ge 0), (II) \ T^{-n} \ (n \ge 1)\}$, and multiply the elements $R^m \ (m \in \mathbf{Z})$ on the left by those. Further we use the following

Lemma 2.1. (i) Let w be a minimal expression by w_0 and w_1 . Then even if we attach * to any letters of w, the length of w does not decrease.

(ii) For a positive integer m,

$$R^{m} = (w_{1}^{*}w_{1})^{m} = \underbrace{w_{1}^{*}w_{0}^{*}w_{1}^{*}\cdots w_{k}^{*}}_{m} \underbrace{w_{k}\cdots w_{1}w_{0}w_{1}}_{m}$$
$$= (w_{0}w_{0}^{*})^{m} = \underbrace{w_{0}w_{1}w_{0}\cdots w_{k}}_{m} \underbrace{w_{k}^{*}\cdots w_{0}^{*}w_{1}^{*}w_{0}^{*}}_{m}$$

where $w_k \in \{w_0, w_1\}$.

Proof. (i) is the same as [5], and (ii) is directly calculated. $\hfill \Box$

(I) $T^n = (w_1 w_0)^n \ (n \ge 0).$

When n = 0, for $w = R^m = (w_1^* w_1)^m = (w_0 w_0^*)^m \ (m \ge 1)$, $\operatorname{des}(w) = |\{w_1, w_0^*\}| = 2$ and for $w = R^{-m} = (w_1 w_1^*) = (w_0^* w_0)^m \ (m \ge 1)$, $\operatorname{des}(w) = |\{w_1^*, w_0\}| = 2$.

When $n \ge 1$, we consider $w = R^k T^n$ $(k \ge 0)$. Noting the relation $Rw_1w_0 = w_1^*w_0 = w_1w_0^*$, and using Lemma 2.1 (i),

²⁰⁰⁰ Mathematics Subject Classification. 20D30.

T. TAKEBAYASHI

[Vol. 82(A),

(i) if
$$k = 0$$
, then $w = (w_1 w_0)^n$, and
 $des(w) = |\{w_0\}| = 1$.

- (ii) if $1 \le k \le 2n - 1$, then $w = (w_{11}w_{10})\cdots(w_{n-1,1}w_{n-1,0})(w_{n,1}w_{n,0}),$ where $w_{i1} \in \{w_1, w_1^*\}, w_{i0} \in \{w_0, w_0^*\},$ and $des(w) = |\{w_0, w_0^*\}| = 2,$ if k = 2n, then $w = (w_1^*w_0^*)^n$, and
- (iii) $des(w) = |\{w_0^*\}| = 1.$ Further using Lemma 2.1 (ii), for

$$w = R^{2n+m}T^n =$$

$$\begin{cases} = (w_0 w_0^*)^m (w_1^* w_0^*)^n \\ = w_0 w_1 w_0 \cdots w_k w_k^* \cdots w_0^* w_1^* w_0^* (w_1^* w_0^*)^n \\ = (w_1^* w_0^*)^n (w_1^* w_1)^m \\ = (w_1^* w_0^*)^n w_1^* w_0^* w_1^* \cdots w_k^* w_k \cdots w_1 w_0 w_1 \quad (m \ge 1), \end{cases}$$

$$des(w) = |\{w_0^*, w_1\}| = 2, \text{ and for}$$

$$w = R^{-m}T^{n} = \begin{cases} = (w_{0}^{*}w_{0})^{m}(w_{1}w_{0})^{n} \\ = w_{0}^{*}w_{1}^{*}w_{0}^{*}\cdots w_{k}^{*}w_{k}\cdots w_{0}w_{1}w_{0}(w_{1}w_{0})^{n} \\ = (w_{1}w_{0})^{n}(w_{1}w_{1}^{*})^{m} \\ = (w_{1}w_{0})^{n}w_{1}w_{0}w_{1}\cdots w_{k}w_{k}^{*}\cdots w_{1}^{*}w_{0}^{*}w_{1}^{*} \quad (m \ge 1), \end{cases}$$

 $des(w) = |\{w_0, w_1^*\}| = 2$. From the above, we have;

$$\begin{split} W(t,q)_{(I)} &= 1 + \sum_{m \ge 1} 2t^2 q^{2m} + \sum_{n \ge 1} 2t q^{2n} \\ &+ \sum_{n \ge 1} (2n-1)t^2 q^{2n} + \sum_{n \ge 1, m \ge 1} 2t^2 q^{2n+2m}. \end{split}$$

From now on, similarly to (I) we calculate the others.

(II) $T^{-n} = (w_0 w_1)^n \ (n \ge 1).$ For $k \ge 0$, we consider $w = R^{-k}T^{-n}$.

(i) if
$$k = 0$$
, then $w = T^{-n} = (w_0 w_1)^n$, and
 $des(w) = |\{w_1\}| = 1$,

(ii) if
$$1 \le k \le 2n - 1$$
,
then $w = (w_{10}w_{11})\cdots(w_{n,0}w_{n,1})$,
where $w_{i0} \in \{w_0, w_0^*\}, w_{i1} \in \{w_1, w_1^*\}$, and
 $des(w) = |\{w_1, w_1^*\}| = 2$,

(iii) if
$$k = 2n$$
, then $w = (w_0^* w_1^*)^n$, and
 $des(w) = |\{w_1^*\}| = 1.$

Further, for

$$w = R^{-2n-m}T^{-n} = (w_1w_1^*)^m (w_0^*w_1^*)^n \quad (m \ge 1),$$

des(w) = $|\{w_1^*, w_0\}| = 2$, and for $w = R^mT^{-n} =$

 $(w_1^*w_1)^m (w_0w_1)^n \ (m \ge 1), \ \operatorname{des}(w) = |\{w_1, w_0^*\}| = 2.$ From the above, we have;

$$W(t,q)_{(II)} = \sum_{n\geq 1} 2tq^{2n} + \sum_{n\geq 1} (2n-1)t^2q^{2n} + \sum_{n\geq 1,m\geq 1} 2t^2q^{2n+2m}.$$

(III) $T^n w_1 = (w_1 w_0)^n w_1 \ (n \ge 0).$ For $k \ge 0$, we consider $w = R^k T^n w_1$.

(i) if
$$k = 0$$
, then $w = (w_1 w_0)^n w_1$, and
 $des(w) = |\{w_1\}| = 1$,

- (ii) if $1 \le k \le 2n$, then $w = (w_{11}w_{10})\cdots(w_{n1}w_{n0})w_{n+1,1}$, where $w_{i1} \in \{w_1, w_1^*\}, w_{i0} \in \{w_0, w_0^*\}$, and $des(w) = |\{w_1, w_1^*\}| = 2$, if k = 2n + 1, then $w = (w_1^* w_0^*)^n w_1^*$, and
- (iii) $des(w) = |\{w_1^*\}| = 1.$

Further, for $w = R^{2n+1+m}T^nw_1$ $(w_0w_0^*)^m(w_1^*w_0^*)^nw_1^* = w_1^*(w_1w_1^*)^m(w_0^*w_1^*)^n =$ $w_1^*(w_0^*w_1^*)^n(w_0^*w_0)^m \ (m \ge 1), \operatorname{des}(w) = |\{w_1^*, w_0\}| =$ 2, and for $w = R^{-m}T^nw_1 = (w_0^*w_0)^m(w_1w_0)^nw_1 =$ $w_1(w_1^*w_1)^m(w_0w_1)^n = w_1(w_0w_1)^n(w_0w_0^*)^m (m \ge 0$ 1), $des(w) = |\{w_1, w_0^*\}| = 2$. From the above, we have;

$$W(t,q)_{(\text{III})} = \sum_{n \ge 0} 2tq^{2n+1} + \sum_{n \ge 0} 2nt^2q^{2n+1} + \sum_{n \ge 0, m \ge 1} 2t^2q^{2n+2m+1}.$$

(IV) $T^{-n}w_1 = (w_0w_1)^{n-1}w_0 \ (n \ge 1).$ For $k \ge 0$, we consider $w = R^{-k}T^{-n}w_1$.

- if k = 0, then $w = (w_0 w_1)^{n-1} w_0$, and
- (1) If k = 0, then $w (w_0 w_1) w_0$, and $des(w) = |\{w_0\}| = 1$, (ii) if $1 \le k \le 2n 2$, then $w = (w_{10}w_{11}) \cdots (w_{n-1,0}w_{n-1,1})w_{n,0}$, where $w_{i0} \in \{w_0, w_0^*\}, w_{i1} \in \{w_1, w_1^*\}$, and $des(w) = |\{w_0, w_0^*\}| = 2$, (iii) if k = 2n 1, then $w = (w_0^* w_1^*)^{n-1} w_0^*$, and $des(w) = |\{w_0^*\}| = 1$.

Further, for $w = R^{-(2n-1)-m}T^{-n}w_1 =$ $(w_1w_1^*)^m (w_0^*w_1^*)^{n-1}w_0^* = (w_0^*w_1^*)^{n-1} (w_0^*w_0)^m w_0^* = (w_0^*w_1^*)^{n-1}w_0^* (w_1^*w_1)^m \quad (m \ge 1), \quad \operatorname{des}(w) =$ $|\{w_0^*, w_1\}| = 2$, and for $w = R^m T^{-n} w_1 =$ $(w_1^*w_1)^m(w_0w_1)^{n-1}w_0 = (w_0w_1)^{n-1}(w_0w_0^*)^mw_0 =$

54

 $(w_0w_1)^{n-1}w_0(w_1w_1^*)^m$ $(m \ge 1)$, des $(w) = |\{w_0, w_1^*\}| = 2$. From the above, we have;

$$W(t,q)_{(\mathrm{IV})} = \sum_{n\geq 1} 2tq^{2n-1} + \sum_{n\geq 1} (2n-2)t^2q^{2n-1} + \sum_{n\geq 1,m\geq 1} 2t^2q^{2n+2m-1}.$$

Proposition 2.2. The q-Eulerian distribution of $W(A_1^{(1,1)})$ with the above generator system is given as follows:

$$W(t,q) = \sum_{w \in W\left(A_1^{(1,1)}\right)} t^{\operatorname{des}(w)} q^{l(w)} = (1 - q + 2qt)^2 / (1 - q)^2.$$

Proof. From the above (I)-(IV),

$$\begin{split} W(t,q) &= 1 + \sum_{m \ge 1} 2t^2 q^{2m} + \sum_{n \ge 1} 2t q^{2n} \\ &+ \sum_{n \ge 1} (2n-1)t^2 q^{2n} + \sum_{n \ge 1, m \ge 1} 2t^2 q^{2n+2m} \\ &+ \sum_{n \ge 1} 2t q^{2n} + \sum_{n \ge 1} (2n-1)t^2 q^{2n} \\ &+ \sum_{n \ge 1, m \ge 1} 2t^2 q^{2n+2m} + \sum_{n \ge 0} 2t q^{2n+1} \\ &+ \sum_{n \ge 0} 2nt^2 q^{2n+1} + \sum_{n \ge 0, m \ge 1} 2t^2 q^{2n+2m+1} \end{split}$$

$$+ \sum_{n \ge 1} 2tq^{2n-1} + \sum_{n \ge 1} (2n-2)t^2q^{2n-1}$$

$$+ \sum_{n \ge 1, m \ge 1} 2t^2q^{2n+2m-1}$$

$$= \frac{(1-q+2qt)^2}{(1-q)^2}.$$

References

- K. Saito and T. Takebayashi, Extended affine root systems. III. Elliptic Weyl groups, Publ. Res. Inst. Math. Sci. 33 (1997), no. 2, 301–329.
- V. Reiner, The distribution of descent and length in a Coxeter group, Electron. J. Combin. 2 (1995), R 25. (Electronic).
- [3] R. P. Stanley, Binomial posets, Möbius inversion, and permutation enumeration, J. Combinatorial Theory Ser. A 20 (1976), no. 3, 336–356.
- [4] M. Wakimoto Poincaré series of the Weyl group of elliptic Lie algebras $A_1^{(1,1)}$ and $A_1^{(1,1)*}$. (Preprint). q-alg/9705025.
- [5] T. Takebayashi, Poincaré series of the Weyl groups of the elliptic root systems $A_1^{(1,1)}$, $A_1^{(1,1)^*}$ and $A_2^{(1,1)}$, J. Algebraic Combin. **17** (2003), no. 3, 211–223.

No. 3]