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The q-Eulerian distribution of the elliptic Weyl group of type A
(1,1)
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Abstract: We calculate the q-Eulerian distribution W (t, q) of the elliptic Weyl group of
type A

(1,1)
1 , which is a formal power series in Z[[t, q]], and classically defined for any Coxeter

system (W,S).
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1. Introduction. Let (W,S) be a Coxeter
system, then for w ∈ W , its length and de-
scent number are defined by l(w) = min{l : w =
si1si2 · · · sil

for some sik
∈ S}, des(w) =

|{s ∈ S : l(ws) < l(w)}|, and the bivariate gener-
ating function which is called the q-Eulerian dis-
tribution; W (t, q) =

∑
w∈W tdes(w)ql(w) is defined

([2]). For example, when W is the symmetric group
Sn, the following result was given by Stanley [3];∑

n≥0 x
n/[n]q

∑
w∈Sn

tdes(w)ql(w) = (1−t) exp(x(1−
t) : q)/(1 − t exp(x(1 − t) : q)) where exp(x : q) =∑

n≥0 x
n/[n]q, [n]q = (1 − qn)/(1 − q). When W

is finite, W (t, 1) is called the Eulerian polynomial of
W . In this paper, we calculate W (t, q) for the el-
liptic Weyl group of type A(1,1)

1 with the given gen-
erator system. Here we note that the elliptic Weyl
groups are not Coxeter groups, but in a sense, gener-
alized Coxeter groups ([1]), and we can define their
lengths, descent numbers and q-Eulerian distribution
similarly to Coxeter groups. In the case of the ellip-
tic Weyl group W

(
A

(1,1)
1

)
with the given generator

system, the length distribution, which are also called
Poincaré series; W (q) =

∑
w∈W ql(w) was calculated

by Wakimoto [4], and in a different way by the au-
thor [5]. To calculate W (t, q) for that, we use the
previous result [5].

2. The q-Eulerian distribution of the el-
liptic Weyl group W

(
A

(1,1)
1

)
. The elliptic Weyl

group W
(
A

(1,1)
1

)
of type A(1,1)

1 is presented as fol-
lows ([1]):
Generators: wi, w

∗
i (i = 0, 1).

Relations: w2
i = w∗2i = 1 (i = 0, 1),

w0w
∗
0w1w

∗
1 = 1.
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We set T = w1w0, R = w∗1w1 = w0w
∗
0 , then

there hold the relations; TR = RT , w1T = T−1w1,
w1R = R−1w1. We calculate W (t, q) by using
the same method as [5]. Noting W

(
A

(1,1)
1

)
=

{RmTnw1, R
mTn,m, n ∈ Z}, we divide them into

the following cases; {(I) Tn (n ≥ 0), (II) T−n (n ≥
1), (III) Tnw1 (n ≥ 0), (IV) T−nw1 (n ≥ 1)}, and
multiply the elements Rm (m ∈ Z) on the left by
those. Further we use the following

Lemma 2.1. (i) Let w be a minimal ex-
pression by w0 and w1. Then even if we attach
∗ to any letters of w, the length of w does not
decrease.

(ii) For a positive integer m,

Rm = (w∗1w1)m = w∗1w
∗
0w

∗
1 · · ·w∗k︸ ︷︷ ︸

m

wk · · ·w1w0w1︸ ︷︷ ︸
m

= (w0w
∗
0)m = w0w1w0 · · ·wk︸ ︷︷ ︸

m

w∗k · · ·w∗0w∗1w∗0︸ ︷︷ ︸
m

where wk ∈ {w0, w1}.
Proof . (i) is the same as [5], and (ii) is directly

calculated.
(I) Tn = (w1w0)n (n ≥ 0).
When n = 0, for w = Rm = (w∗1w1)m =

(w0w
∗
0)m (m ≥ 1), des(w) = |{w1, w

∗
0}| = 2 and for

w = R−m = (w1w
∗
1) = (w∗0w0)m (m ≥ 1), des(w) =

|{w∗1 , w0}| = 2.
When n ≥ 1, we consider w = RkTn (k ≥ 0).

Noting the relation Rw1w0 = w∗1w0 = w1w
∗
0 , and

using Lemma 2.1 (i),
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(i) if k = 0, then w = (w1w0)n, and
des(w) = |{w0}| = 1,

(ii) if 1 ≤ k ≤ 2n− 1, then
w = (w11w10) · · · (wn−1,1wn−1,0)(wn,1wn,0),
where wi1 ∈ {w1, w

∗
1}, wi0 ∈ {w0, w

∗
0}, and

des(w) = |{w0, w
∗
0}| = 2,

(iii) if k = 2n, then w = (w∗1w
∗
0)n, and

des(w) = |{w∗0}| = 1.
Further using Lemma 2.1 (ii), for

w=R2n+mTn =
=(w0w

∗
0)m(w∗1w

∗
0)n

=w0w1w0 · · ·wkw
∗
k · · ·w∗0w∗1w∗0(w∗1w

∗
0)n

=(w∗1w
∗
0)n(w∗1w1)m

=(w∗1w
∗
0)nw∗1w

∗
0w

∗
1 · · ·w∗kwk · · ·w1w0w1 (m≥ 1),

des(w) = |{w∗0 , w1}| = 2, and for

w=R−mTn =
=(w∗0w0)m(w1w0)n

=w∗0w
∗
1w

∗
0 · · ·w∗kwk · · ·w0w1w0(w1w0)n

=(w1w0)n(w1w
∗
1)m

=(w1w0)nw1w0w1 · · ·wkw
∗
k · · ·w∗1w∗0w∗1 (m≥ 1),

des(w) = |{w0, w
∗
1}| = 2. From the above, we have;

W (t,q)(I) =1 +
∑
m≥1

2t2q2m +
∑
n≥1

2tq2n

+
∑
n≥1

(2n− 1)t2q2n +
∑

n≥1,m≥1

2t2q2n+2m.

From now on, similarly to (I) we calculate the
others.

(II) T−n = (w0w1)n (n ≥ 1).
For k ≥ 0, we consider w = R−kT−n.

(i) if k = 0, then w = T−n = (w0w1)n, and
des(w) = |{w1}| = 1,

(ii) if 1 ≤ k ≤ 2n− 1,
then w = (w10w11) · · · (wn,0wn,1),
where wi0 ∈ {w0, w

∗
0}, wi1 ∈ {w1, w

∗
1}, and

des(w) = |{w1, w
∗
1}| = 2,

(iii) if k = 2n, then w = (w∗0w
∗
1)n, and

des(w) = |{w∗1}| = 1.

Further, for

w = R−2n−mT−n = (w1w
∗
1)m(w∗0w

∗
1)n (m ≥ 1),

des(w) = |{w∗1 , w0}| = 2, and for w = RmT−n =

(w∗1w1)m(w0w1)n (m ≥ 1), des(w) = |{w1, w
∗
0}| = 2.

From the above, we have;

W (t, q)(II) =
∑
n≥1

2tq2n +
∑
n≥1

(2n− 1)t2q2n

+
∑

n≥1,m≥1

2t2q2n+2m.

(III) Tnw1 = (w1w0)nw1 (n ≥ 0).
For k ≥ 0, we consider w = RkTnw1.

(i) if k = 0, then w = (w1w0)nw1, and
des(w) = |{w1}| = 1,

(ii) if 1 ≤ k ≤ 2n,
then w = (w11w10) · · · (wn1wn0)wn+1,1,

where wi1 ∈ {w1, w
∗
1}, wi0 ∈ {w0, w

∗
0}, and

des(w) = |{w1, w
∗
1}| = 2,

(iii) if k = 2n+ 1, then w = (w∗1w
∗
0)nw∗1 , and

des(w) = |{w∗1}| = 1.

Further, for w = R2n+1+mTnw1 =
(w0w

∗
0)m(w∗1w

∗
0)nw∗1 = w∗1(w1w

∗
1)m(w∗0w

∗
1)n =

w∗1(w∗0w
∗
1)n(w∗0w0)m (m ≥ 1), des(w) = |{w∗1 , w0}| =

2, and for w = R−mTnw1 = (w∗0w0)m(w1w0)nw1 =
w1(w∗1w1)m(w0w1)n = w1(w0w1)n(w0w

∗
0)m (m ≥

1), des(w) = |{w1, w
∗
0}| = 2. From the above, we

have;

W (t, q)(III) =
∑
n≥0

2tq2n+1 +
∑
n≥0

2nt2q2n+1

+
∑

n≥0,m≥1

2t2q2n+2m+1.

(IV) T−nw1 = (w0w1)n−1w0 (n ≥ 1).
For k ≥ 0, we consider w = R−kT−nw1.

(i) if k = 0, then w = (w0w1)n−1w0, and
des(w) = |{w0}| = 1,

(ii) if 1 ≤ k ≤ 2n− 2, then
w = (w10w11) · · · (wn−1,0wn−1,1)wn,0,

where wi0 ∈ {w0, w
∗
0}, wi1 ∈ {w1, w

∗
1}, and

des(w) = |{w0, w
∗
0}| = 2,

(iii) if k = 2n− 1, then w = (w∗0w
∗
1)n−1w∗0 , and

des(w) = |{w∗0}| = 1.

Further, for w = R−(2n−1)−mT−nw1 =
(w1w

∗
1)m(w∗0w

∗
1)n−1w∗0 = (w∗0w

∗
1)n−1(w∗0w0)mw∗0 =

(w∗0w
∗
1)n−1w∗0(w∗1w1)m (m ≥ 1), des(w) =

|{w∗0 , w1}| = 2, and for w = RmT−nw1 =
(w∗1w1)m(w0w1)n−1w0 = (w0w1)n−1(w0w

∗
0)mw0 =
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(w0w1)n−1w0(w1w
∗
1)m (m ≥ 1), des(w) =

|{w0, w
∗
1}| = 2. From the above, we have;

W (t, q)(IV) =
∑
n≥1

2tq2n−1 +
∑
n≥1

(2n− 2)t2q2n−1

+
∑

n≥1,m≥1

2t2q2n+2m−1.

Proposition 2.2. The q-Eulerian distribu-
tion of W

(
A

(1,1)
1

)
with the above generator system

is given as follows:

W (t,q)=
∑

w∈W
(
A

(1,1)
1

)tdes(w)ql(w) =(1−q+2qt)2/(1−q)2.

Proof . From the above (I)–(IV),

W (t, q) = 1 +
∑
m≥1

2t2q2m +
∑
n≥1

2tq2n

+
∑
n≥1

(2n− 1)t2q2n +
∑

n≥1,m≥1

2t2q2n+2m

+
∑
n≥1

2tq2n +
∑
n≥1

(2n− 1)t2q2n

+
∑

n≥1,m≥1

2t2q2n+2m +
∑
n≥0

2tq2n+1

+
∑
n≥0

2nt2q2n+1 +
∑

n≥0,m≥1

2t2q2n+2m+1

+
∑
n≥1

2tq2n−1 +
∑
n≥1

(2n− 2)t2q2n−1

+
∑

n≥1,m≥1

2t2q2n+2m−1

=
(1− q + 2qt)2

(1− q)2
.
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