The q-Eulerian distribution of the elliptic Weyl group of type $A_{1}^{(1,1)}$

By Tadayoshi Takebayashi
Department of Mathematical Science, School of Science and Engineering,
Waseda University, Ohkubo Shinjuku-ku, Tokyo 169-8555, Japan
(Communicated by Heisuke Hironaka, m. J. a., March 13, 2006)

Abstract

We calculate the q-Eulerian distribution $W(t, q)$ of the elliptic Weyl group of type $A_{1}^{(1,1)}$, which is a formal power series in $\mathbf{Z}[[t, q]]$, and classically defined for any Coxeter system (W, S).

Key words: q-Eulerian distribution; elliptic Weyl group.

1. Introduction. Let (W, S) be a Coxeter system, then for $w \in W$, its length and descent number are defined by $l(w)=\min \{l: w=$ $s_{i_{1}} s_{i_{2}} \cdots s_{i_{l}}$ for some $\left.s_{i_{k}} \in S\right\}, \operatorname{des}(w)=$ $|\{s \in S: l(w s)<l(w)\}|, \quad$ and the bivariate generating function which is called the q-Eulerian distribution; $W(t, q)=\sum_{w \in W} t^{\operatorname{des}(w)} q^{l(w)}$ is defined ([2]). For example, when W is the symmetric group S_{n}, the following result was given by Stanley [3]; $\sum_{n \geq 0} x^{n} /[n]_{q} \sum_{w \in S_{n}} t^{d e s(w)} q^{l(w)}=(1-t) \exp (x(1-$ $t): \bar{q}) /(1-t \exp (x(1-t): q))$ where $\exp (x: q)=$ $\sum_{n \geq 0} x^{n} /[n]_{q}, \quad[n]_{q}=\left(1-q^{n}\right) /(1-q)$. When W is finite, $W(t, 1)$ is called the Eulerian polynomial of W. In this paper, we calculate $W(t, q)$ for the elliptic Weyl group of type $A_{1}^{(1,1)}$ with the given generator system. Here we note that the elliptic Weyl groups are not Coxeter groups, but in a sense, generalized Coxeter groups ([1]), and we can define their lengths, descent numbers and q-Eulerian distribution similarly to Coxeter groups. In the case of the elliptic Weyl group $W\left(A_{1}^{(1,1)}\right)$ with the given generator system, the length distribution, which are also called Poincaré series; $W(q)=\sum_{w \in W} q^{l(w)}$ was calculated by Wakimoto [4], and in a different way by the author [5]. To calculate $W(t, q)$ for that, we use the previous result [5].

2. The q-Eulerian distribution of the el-

 liptic Weyl group $\boldsymbol{W}\left(\boldsymbol{A}_{1}^{(1,1)}\right)$. The elliptic Weyl group $W\left(A_{1}^{(1,1)}\right)$ of type $A_{1}^{(1,1)}$ is presented as follows ([1]):Generators: $w_{i}, w_{i}^{*}(i=0,1)$.
Relations: $w_{i}^{2}=w_{i}^{* 2}=1(i=0,1)$,

$$
w_{0} w_{0}^{*} w_{1} w_{1}^{*}=1
$$

2000 Mathematics Subject Classification. 20D30.

We set $T=w_{1} w_{0}, R=w_{1}^{*} w_{1}=w_{0} w_{0}^{*}$, then there hold the relations; $T R=R T, w_{1} T=T^{-1} w_{1}$, $w_{1} R=R^{-1} w_{1}$. We calculate $W(t, q)$ by using the same method as [5]. Noting $W\left(A_{1}^{(1,1)}\right)=$ $\left\{R^{m} T^{n} w_{1}, R^{m} T^{n}, m, n \in \mathbf{Z}\right\}$, we divide them into the following cases; $\left\{(\mathrm{I}) T^{n}(n \geq 0)\right.$, (II) $T^{-n}(n \geq$ 1), (III) $T^{n} w_{1}(n \geq 0)$, (IV) $\left.T^{-n} w_{1}(n \geq 1)\right\}$, and multiply the elements $R^{m}(m \in \mathbf{Z})$ on the left by those. Further we use the following

Lemma 2.1. (i) Let w be a minimal expression by w_{0} and w_{1}. Then even if we attach * to any letters of w, the length of w does not decrease.
(ii) For a positive integer m,

$$
\begin{aligned}
R^{m} & =\left(w_{1}^{*} w_{1}\right)^{m}=\underbrace{w_{1}^{*} w_{0}^{*} w_{1}^{*} \cdots w_{k}^{*}}_{m} \underbrace{w_{k} \cdots w_{1} w_{0} w_{1}}_{m} \\
& =\left(w_{0} w_{0}^{*}\right)^{m}=\underbrace{w_{0} w_{1} w_{0} \cdots w_{k}}_{m} \underbrace{w_{k}^{*} \cdots w_{0}^{*} w_{1}^{*} w_{0}^{*}}_{m}
\end{aligned}
$$

where $w_{k} \in\left\{w_{0}, w_{1}\right\}$.
Proof. (i) is the same as [5], and (ii) is directly calculated.
(I) $\quad T^{n}=\left(w_{1} w_{0}\right)^{n}(n \geq 0)$.

When $n=0$, for $w=R^{m}=\left(w_{1}^{*} w_{1}\right)^{m}=$ $\left(w_{0} w_{0}^{*}\right)^{m}(m \geq 1), \operatorname{des}(w)=\left|\left\{w_{1}, w_{0}^{*}\right\}\right|=2$ and for $w=R^{-m}=\left(w_{1} w_{1}^{*}\right)=\left(w_{0}^{*} w_{0}\right)^{m}(m \geq 1), \operatorname{des}(w)=$ $\left|\left\{w_{1}^{*}, w_{0}\right\}\right|=2$.

When $n \geq 1$, we consider $w=R^{k} T^{n}(k \geq 0)$. Noting the relation $R w_{1} w_{0}=w_{1}^{*} w_{0}=w_{1} w_{0}^{*}$, and using Lemma 2.1 (i),
(i) if $k=0$, then $w=\left(w_{1} w_{0}\right)^{n}$, and $\operatorname{des}(w)=\left|\left\{w_{0}\right\}\right|=1$,
(ii) if $1 \leq k \leq 2 n-1$, then $w=\left(w_{11} w_{10}\right) \cdots\left(w_{n-1,1} w_{n-1,0}\right)\left(w_{n, 1} w_{n, 0}\right)$, where $w_{i 1} \in\left\{w_{1}, w_{1}^{*}\right\}, w_{i 0} \in\left\{w_{0}, w_{0}^{*}\right\}$, and $\operatorname{des}(w)=\left|\left\{w_{0}, w_{0}^{*}\right\}\right|=2$,
(iii) if $k=2 n$, then $w=\left(w_{1}^{*} w_{0}^{*}\right)^{n}$, and $\operatorname{des}(w)=\left|\left\{w_{0}^{*}\right\}\right|=1$.
Further using Lemma 2.1 (ii), for
$w=R^{2 n+m} T^{n}=$
$\left\{\begin{array}{l}=\left(w_{0} w_{0}^{*}\right)^{m}\left(w_{1}^{*} w_{0}^{*}\right)^{n} \\ =w_{0} w_{1} w_{0} \cdots w_{k} w_{k}^{*} \cdots w_{0}^{*} w_{1}^{*} w_{0}^{*}\left(w_{1}^{*} w_{0}^{*}\right)^{n} \\ =\left(w_{1}^{*} w_{0}^{*}\right)^{n}\left(w_{1}^{*} w_{1}\right)^{m} \\ =\left(w_{1}^{*} w_{0}^{*}\right)^{n} w_{1}^{*} w_{0}^{*} w_{1}^{*} \cdots w_{k}^{*} w_{k} \cdots w_{1} w_{0} w_{1} \quad(m \geq 1),\end{array}\right.$
$\operatorname{des}(w)=\left|\left\{w_{0}^{*}, w_{1}\right\}\right|=2$, and for
$w=R^{-m} T^{n}=$
$\left\{\begin{array}{l}=\left(w_{0}^{*} w_{0}\right)^{m}\left(w_{1} w_{0}\right)^{n} \\ =w_{0}^{*} w_{1}^{*} w_{0}^{*} \cdots w_{k}^{*} w_{k} \cdots w_{0} w_{1} w_{0}\left(w_{1} w_{0}\right)^{n} \\ =\left(w_{1} w_{0}\right)^{n}\left(w_{1} w_{1}^{*}\right)^{m} \\ =\left(w_{1} w_{0}\right)^{n} w_{1} w_{0} w_{1} \cdots w_{k} w_{k}^{*} \cdots w_{1}^{*} w_{0}^{*} w_{1}^{*} \quad(m \geq 1),\end{array}\right.$
$\operatorname{des}(w)=\left|\left\{w_{0}, w_{1}^{*}\right\}\right|=2$. From the above, we have;

$$
\begin{aligned}
W(t, q)_{(I)}= & 1+\sum_{m \geq 1} 2 t^{2} q^{2 m}+\sum_{n \geq 1} 2 t q^{2 n} \\
& +\sum_{n \geq 1}(2 n-1) t^{2} q^{2 n}+\sum_{n \geq 1, m \geq 1} 2 t^{2} q^{2 n+2 m} .
\end{aligned}
$$

From now on, similarly to (I) we calculate the others.
(II) $\quad T^{-n}=\left(w_{0} w_{1}\right)^{n}(n \geq 1)$.

For $k \geq 0$, we consider $w=R^{-k} T^{-n}$.
(i) $\quad \begin{aligned} & \text { if } k=0, \text { then } w=T^{-n}=\left(w_{0} w_{1}\right)^{n}, \text { and } \\ & \operatorname{des}(w)=\left|\left\{w_{1}\right\}\right|=1,\end{aligned}$
(ii) if $1 \leq k \leq 2 n-1$,
then $w=\left(w_{10} w_{11}\right) \cdots\left(w_{n, 0} w_{n, 1}\right)$,
where $w_{i 0} \in\left\{w_{0}, w_{0}^{*}\right\}, w_{i 1} \in\left\{w_{1}, w_{1}^{*}\right\}$, and $\operatorname{des}(w)=\left|\left\{w_{1}, w_{1}^{*}\right\}\right|=2$,
(iii) if $k=2 n$, then $w=\left(w_{0}^{*} w_{1}^{*}\right)^{n}$, and $\operatorname{des}(w)=\left|\left\{w_{1}^{*}\right\}\right|=1$.

Further, for

$$
w=R^{-2 n-m} T^{-n}=\left(w_{1} w_{1}^{*}\right)^{m}\left(w_{0}^{*} w_{1}^{*}\right)^{n} \quad(m \geq 1)
$$

$\left(w_{1}^{*} w_{1}\right)^{m}\left(w_{0} w_{1}\right)^{n}(m \geq 1), \operatorname{des}(w)=\left|\left\{w_{1}, w_{0}^{*}\right\}\right|=2$. From the above, we have;

$$
\begin{aligned}
W(t, q)_{(I I)}= & \sum_{n \geq 1} 2 t q^{2 n}+\sum_{n \geq 1}(2 n-1) t^{2} q^{2 n} \\
& +\sum_{n \geq 1, m \geq 1} 2 t^{2} q^{2 n+2 m}
\end{aligned}
$$

(III) $\quad T^{n} w_{1}=\left(w_{1} w_{0}\right)^{n} w_{1}(n \geq 0)$.

For $k \geq 0$, we consider $w=R^{k} T^{n} w_{1}$.
(i) if $k=0$, then $w=\left(w_{1} w_{0}\right)^{n} w_{1}$, and $\operatorname{des}(w)=\left|\left\{w_{1}\right\}\right|=1$,
(ii) if $1 \leq k \leq 2 n$,
then $w=\left(w_{11} w_{10}\right) \cdots\left(w_{n 1} w_{n 0}\right) w_{n+1,1}$, where $w_{i 1} \in\left\{w_{1}, w_{1}^{*}\right\}, w_{i 0} \in\left\{w_{0}, w_{0}^{*}\right\}$, and $\operatorname{des}(w)=\left|\left\{w_{1}, w_{1}^{*}\right\}\right|=2$,
(iii) if $k=2 n+1$, then $w=\left(w_{1}^{*} w_{0}^{*}\right)^{n} w_{1}^{*}$, and $\operatorname{des}(w)=\left|\left\{w_{1}^{*}\right\}\right|=1$.

Further, for $w=R^{2 n+1+m} T^{n} w_{1}=$ $\left(w_{0} w_{0}^{*}\right)^{m}\left(w_{1}^{*} w_{0}^{*}\right)^{n} w_{1}^{*}=w_{1}^{*}\left(w_{1} w_{1}^{*}\right)^{m}\left(w_{0}^{*} w_{1}^{*}\right)^{n}=$ $w_{1}^{*}\left(w_{0}^{*} w_{1}^{*}\right)^{n}\left(w_{0}^{*} w_{0}\right)^{m}(m \geq 1), \operatorname{des}(w)=\left|\left\{w_{1}^{*}, w_{0}\right\}\right|=$ 2 , and for $w=R^{-m} T^{n} w_{1}=\left(w_{0}^{*} w_{0}\right)^{m}\left(w_{1} w_{0}\right)^{n} w_{1}=$ $w_{1}\left(w_{1}^{*} w_{1}\right)^{m}\left(w_{0} w_{1}\right)^{n}=w_{1}\left(w_{0} w_{1}\right)^{n}\left(w_{0} w_{0}^{*}\right)^{m} \quad(m \geq$ $1), \operatorname{des}(w)=\left|\left\{w_{1}, w_{0}^{*}\right\}\right|=2$. From the above, we have;

$$
\begin{aligned}
W(t, q)_{(\mathrm{III})}= & \sum_{n \geq 0} 2 t q^{2 n+1}+\sum_{n \geq 0} 2 n t^{2} q^{2 n+1} \\
& +\sum_{n \geq 0, m \geq 1} 2 t^{2} q^{2 n+2 m+1}
\end{aligned}
$$

(IV) $T^{-n} w_{1}=\left(w_{0} w_{1}\right)^{n-1} w_{0}(n \geq 1)$.

For $k \geq 0$, we consider $w=R^{-k} T^{-n} w_{1}$.
(i) if $k=0$, then $w=\left(w_{0} w_{1}\right)^{n-1} w_{0}$, and $\operatorname{des}(w)=\left|\left\{w_{0}\right\}\right|=1$,
(ii) if $1 \leq k \leq 2 n-2$, then
$w=\left(w_{10} w_{11}\right) \cdots\left(w_{n-1,0} w_{n-1,1}\right) w_{n, 0}$,
where $w_{i 0} \in\left\{w_{0}, w_{0}^{*}\right\}, w_{i 1} \in\left\{w_{1}, w_{1}^{*}\right\}$, and $\operatorname{des}(w)=\left|\left\{w_{0}, w_{0}^{*}\right\}\right|=2$,
(iii) if $k=2 n-1$, then $w=\left(w_{0}^{*} w_{1}^{*}\right)^{n-1} w_{0}^{*}$, and $\operatorname{des}(w)=\left|\left\{w_{0}^{*}\right\}\right|=1$.

Further, for $w=R^{-(2 n-1)-m} T^{-n} w_{1}=$ $\left(w_{1} w_{1}^{*}\right)^{m}\left(w_{0}^{*} w_{1}^{*}\right)^{n-1} w_{0}^{*}=\left(w_{0}^{*} w_{1}^{*}\right)^{n-1}\left(w_{0}^{*} w_{0}\right)^{m} w_{0}^{*}=$ $\left(w_{0}^{*} w_{1}^{*}\right)^{n-1} w_{0}^{*}\left(w_{1}^{*} w_{1}\right)^{m} \quad(m \geq 1), \quad \operatorname{des}(w)=$ $\left|\left\{w_{0}^{*}, w_{1}\right\}\right|=2$, and for $w=R^{m} T^{-n} w_{1}=$ $\left(w_{1}^{*} w_{1}\right)^{m}\left(w_{0} w_{1}\right)^{n-1} w_{0}=\left(w_{0} w_{1}\right)^{n-1}\left(w_{0} w_{0}^{*}\right)^{m} w_{0}=$
$\left(w_{0} w_{1}\right)^{n-1} w_{0}\left(w_{1} w_{1}^{*}\right)^{m} \quad(m \geq 1), \quad \operatorname{des}(w) \quad=$ $\left|\left\{w_{0}, w_{1}^{*}\right\}\right|=2$. From the above, we have;

$$
\begin{aligned}
W(t, q)_{(\mathrm{IV})}= & \sum_{n \geq 1} 2 t q^{2 n-1}+\sum_{n \geq 1}(2 n-2) t^{2} q^{2 n-1} \\
& +\sum_{n \geq 1, m \geq 1} 2 t^{2} q^{2 n+2 m-1}
\end{aligned}
$$

Proposition 2.2. The q-Eulerian distribution of $W\left(A_{1}^{(1,1)}\right)$ with the above generator system is given as follows:
$W(t, q)=\sum_{w \in W\left(A_{1}^{(1,1)}\right)} t^{\operatorname{des}(w)} q^{l(w)}=(1-q+2 q t)^{2} /(1-q)^{2}$.
Proof. From the above (I)-(IV),

$$
\begin{aligned}
W(t, q)= & 1+\sum_{m \geq 1} 2 t^{2} q^{2 m}+\sum_{n \geq 1} 2 t q^{2 n} \\
& +\sum_{n \geq 1}(2 n-1) t^{2} q^{2 n}+\sum_{n \geq 1, m \geq 1} 2 t^{2} q^{2 n+2 m} \\
& +\sum_{n \geq 1} 2 t q^{2 n}+\sum_{n \geq 1}(2 n-1) t^{2} q^{2 n} \\
& +\sum_{n \geq 1, m \geq 1} 2 t^{2} q^{2 n+2 m}+\sum_{n \geq 0} 2 t q^{2 n+1} \\
& +\sum_{n \geq 0} 2 n t^{2} q^{2 n+1}+\sum_{n \geq 0, m \geq 1} 2 t^{2} q^{2 n+2 m+1}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{n \geq 1} 2 t q^{2 n-1}+\sum_{n \geq 1}(2 n-2) t^{2} q^{2 n-1} \\
& +\sum_{n \geq 1, m \geq 1} 2 t^{2} q^{2 n+2 m-1} \\
= & \frac{(1-q+2 q t)^{2}}{(1-q)^{2}} .
\end{aligned}
$$

References

[1] K. Saito and T. Takebayashi, Extended affine root systems. III. Elliptic Weyl groups, Publ. Res. Inst. Math. Sci. 33 (1997), no. 2, 301-329.
[2] V. Reiner, The distribution of descent and length in a Coxeter group, Electron. J. Combin. 2 (1995), R 25. (Electronic).
[3] R. P. Stanley, Binomial posets, Möbius inversion, and permutation enumeration, J. Combinatorial Theory Ser. A 20 (1976), no. 3, 336-356.
[4] M. Wakimoto Poincaré series of the Weyl group of elliptic Lie algebras $A_{1}^{(1,1)}$ and $A_{1}^{(1,1) *}$. (Preprint). q-alg/9705025.
[5] T. Takebayashi, Poincaré series of the Weyl groups of the elliptic root systems $A_{1}^{(1,1)}, A_{1}^{(1,1)^{*}}$ and $A_{2}^{(1,1)}$, J. Algebraic Combin. 17 (2003), no. 3, 211-223.

