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Discreteness criteria and algebraic convergence theorem

for subgroups in PU (1, n; C)

By Wensheng Cao∗) and Xiantao Wang∗∗)

(Communicated by Heisuke Hironaka, m. j. a., March 13, 2006)

Abstract: In this paper, we will study the discreteness criterion for non-elementary sub-
groups in PU (1, n;C). Several discreteness criteria are obtained. As an application, the conver-
gence theorem of discrete subgroups in PU (1, n;C) is discussed.
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1. Introduction. Throughout this paper,
we will adopt the same notations and definitions as
in [3, 11, 12, 13] such as Hn

C , U (1, n;C), PU (1, n;C),
discrete groups, limit sets and so on. For example, a
subgroup G in PU (1, n;C) is called non-elementary
if it contains two non-elliptic elements of infinite or-
der with distinct fixed points. Otherwise G is called
elementary. See [3, 7, 8, 11, 12, 13, 14, 17, 18] etc. for
more details of complex hyperbolic space Hn

C .
In 1976, Jørgensen ([9]) proved a necessary con-

dition for a non-elementary two generator subgroup
of SL(2, C) to be discrete, which is called Jørgensen’s
inequality. By using this inequality, Jørgensen dis-
cussed the discreteness criterion and proved that

Theorem J1 ([9]). A non-elementary sub-
group G of SL(2, C) is discrete if and only if all its
two-generator subgroups are discrete.

Theorem J2 ([10]). A non-elementary sub-
group G of SL(2, R) is discrete if and only if each
one-generator subgroup of G is discrete.

See [1, 5, 15, 16, 19, 20, 21] etc. for general-
izations of Theorems J1 and J2 in n-dimensional
hyperbolic space.

In complex hyperbolic space, Kamiya ([13])
proved that

Theorem K. If G is a non-elementary
finitely generated subgroup of PU (1, n;C), then G is
discrete if and only if 〈f, g〉 is discrete for any f and
g in G.

Dai etc. ([4]) generalized Theorem K as follows:
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Theorem DFN . If G is a non-elementary
subgroup of PU (1, n;C) with Condition A, then G

is discrete if and only if 〈f, g〉 is discrete for any f
and g in G.

Here, G is said to satisfy Condition A if it has
no sequence {gj} of distinct elements of finite order
such that Card(fix(gj)) = ∞ and gj → I as j →∞,
where fix(gj) = {x ∈ ∂Hn

C : gj(x) = x}.
As the first main aim of this paper, we will study

the discreteness criterion further and prove.
Theorem 1.1. Let G ⊂ PU (1, n;C) be non-

elementary . Then G is discrete if and only if W (G)
is discrete (i .e., finite) and all non-elementary sub-
groups generated by two loxodromic elements of G
are discrete.

Here

W (G) =
⋂

f∈h(G)

Gfix(f),

where h(G) is the set of all loxodromic elements in
G and Gfix(f) = {g ∈ G : fix(f) ⊂ fix(g)}.

Following Theorem 1.1, we have
Corollary 1.1. If a non-elementary subgroup

G ⊂ PU (1, n;C) is not discrete, then either there
exists a sequence in G consisting of elliptic elements
such that it converges to I or there exists a two-
generator subgroup of G which is non-elementary and
non-discrete.

Theorem 1.2. Let G ⊂ PU (1, n;C) be non-
elementary and dim[M(G)] be even. Then G is dis-
crete if and only if W (G) is finite and each one-
generator subgroup of G is discrete.

HereM(G) denotes the smallestG-invariant, to-
tally geodesic sub-manifold (cf. [3]).

As the second main aim of this paper, by using
Theorem 1.1, we will discuss the convergence theo-
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rem in PU (1, n;C) and prove
Theorem 1.3. Let G0 be a non-elementary

and discrete group of PU (1, n;C). For all positive
integers m, let ρm be an isomorphism of G0 onto a
discrete group Gm ⊂ PU (1, n;C). Assume that

ρm(g)→ ρ(g) (m→∞) ∀g ∈G0, ρ(g)∈PU (1, n;C).

Then the group G = {ρ(g) : g ∈ G0} is discrete and
ρ is an isomorphism of G0 onto G.

Remark 1.1. Theorems 1.1 is a generaliza-
tion of Theorems K and DFN .

Remark 1.2. Corollary 1.1 is a generalization
of Theorem 1.3 in [4].

Remark 1.3. Theorem 1.2 is a generalization
of Theorem J2 and Theorem 2 in [1] into the case of
PU (1, n;C).

Remark 1.4. Theorem 1.3 is a generalization
of Theorem 1 in [9] and Theorem 1.6 in [20] into the
case of PU (1, n;C).

2. The proofs of the main results.
2.1. The proof of Theorem 1.1. The fol-

lowing lemmas are crucial for us.
Lemma 2.1 ([4, 13]). Suppose that f and g ∈

PU (1, n;C) generate a discrete and non-elementary
group. Then

i) if f is parabolic or loxodromic, we have

max{N(f), N([f, g])} ≥ 2−
√

3,

where [f, g] = fgf−1g−1 is the commutator of f
and g, N(f) = ‖f − I‖.

ii) if f is elliptic, we have

max{N(f), N([f, gi]) : i = 1, 2, . . . , n+ 1}

≥ 2−
√

3.

Lemma 2.2 ([2]). If g is a loxodromic element
in PU (1, n;C) and f ∈ PU (1, n;C) does not inter-
change the two fixed points of g, then for all large
enough j, the elements gjf or g−jf are loxodromic.

The proof of Theorem 1.1. The necessity is
obvious. For the converse, we suppose that W (G) is
finite and each non-elementary subgroup generated
by two loxodromic elements of G is discrete, but G
itself is not discrete. Then there is a sequence {fm} ∈
G such that

fm → I (m→∞).

Since G is non-elementary, there exist two lox-
odromic elements gj ∈ G (j = 1, 2) which have no
common fixed point. Then for large enough m,

N(fm) +
n+1∑
k=1

N([fm, g
k
j ]) < 2−

√
3 (j = 1, 2).

We may assume that for large enough m, fm

doesn’t interchange the fixed points of gj (j =
1, 2) since fm → I (m → ∞). Therefore 〈fm, gj〉
(j = 1, 2) are elementary for large enough m by
Lemma 2.1. Hence fix(gj) ⊂ fix(fm) holds for each
j = 1, 2 and sufficiently large m. Let T (k1) =⋂

m≥k1
fix(fm). Then T (k1) contains the linear span

of the fixed points of gj and so has dimension at least
1 for large positive integer k1. Thus by passing to a
subsequence of {fm} (denoted by the same manner),
we have

T (k1) 6= ∅ and 1 ≤ dim[T (k1)] ≤ n− 1.

Suppose that there exists some loxodromic ele-
ment g ∈ G such that

fix(g) ∩ T (k1) = ∅.

Then (if needed, passing to a subsequence) there ex-
ists k2 (> k1) such that

fix(g) ⊂ T (k2)

and

dim[T (k1)] + 1 ≤ dim[T (k2)] ≤ n− 1.

By repeating this step finite times, we can find k such
that

fix(h) ⊂ T (k)

holds for any loxodromic element h ∈ G. Then fm ∈
W (G) for all m > k. This contradiction completes
the proof.

2.2. The proof of Theorem 1.2. The fol-
lowing lemma takes an important role in the proof of
Theorem 1.2. Its proof follows from Corollary 4.5.3
in [3].

Lemma 2.3. Let G ⊂ PU (1, n;F ) be non-
elementary and dim[M(G)] be even. If the identity
is not an accumulation point of the elliptic elements
in G, then G is discrete.

Lemma 2.4. Let G0 = G|M(G) ⊂ PU (1, n;C)
be non-elementary and dim[M(G)] be even. Then
G0 is discrete if and only if each one-generator sub-
group of G0 is discrete.

Proof . The necessity is obvious. For the con-
verse, we suppose that each one-generator subgroup
of G0 is discrete, but G0 itself is not discrete. Apply
Theorem 1.1 to get a two-generator subgroup 〈f, g〉
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of G0 which is non-elementary and non-discrete. By
choosing finitely many elements f1, · · · , fr, we can
get a subgroupG1 = 〈f, g, f1, · · · , fr〉 ofG0 such that
G1 is non-elementary and non-discrete andM(G1) =
M(G0). Selberg’s lemma tells us that G1 contains a
torsion-free subgroup G2 with finite index. Then G2

is also non-discrete andM(G2) = M(G1). Since each
one-generator subgroup of G0 is discrete, we know
that G2 contains no elliptic element. It follows from
M(G2) = M(G0) and Lemma 2.3 that G2 is discrete.
This contradiction completes the proof.

The following lemma is obvious (cf. [22]).
Lemma 2.5. Let G ⊂ PU (1, n;C) be non-

elementary . Then G is discrete if and only if both
G|M(G) and W (G) are discrete.

The proof of Theorem 1.2. Since G|M(G)

is non-elementary and dim[M(G)] is even, by
Lemma 2.4, G|M(G) is discrete if and only if each
one-generator subgroup of G|M(G) is discrete. The
proof follows from Lemma 2.5.

2.3. The proof of Theorem 1.3.
Lemma 2.6. Let G be a non-elementary sub-

group of PU (1, n;C) and {ρm} be a sequence of iso-
morphisms of G onto discrete subgroups ρm(G) ⊂
PU (1, n;C). If

ρm(g) → g (m→∞) ∀g ∈ G,

then G is either discrete or W (G) is infinite.
Proof . By Theorem 1.1, we only need to show

that 〈f, g〉 is discrete for any two loxodromic ele-
ments f , g in G which have no common fixed points
under the condition W (G) is finite.

Suppose that there are two loxodromic elements
f, g ∈ G with no common fixed points such that the
two-generator subgroup 〈f, g〉 is not discrete. It fol-
lows from Selberg’s lemma that there exists a torsion
free subgroup G1 of 〈f, g〉 with finite index. There-
fore G1 is non-elementary and there is a sequence
{hj} of G1 such that hj → I as j → ∞. For any
two loxodromic elements f1, f2 in G1 which have no
common fixed point, it follows by continuity that

N(ρm(hj)) +
n+1∑
k=1

N([ρm(hj), ρm(fk
i )]) < 2−

√
3,

i = 1, 2

for large j and m. Thus, 〈ρm(hj), ρm(fi)〉 is elemen-
tary by Lemma 2.1 and the discreteness of ρm(G).
Thus

fix(fi) ⊂ fix(hj), i = 1, 2

for large j. Hence we may assume that all hj are
elliptic and we can find an integer L such that

fix(q) ⊂ Th(L)

for all loxodromic elements q ∈ G1, where Th(L) =⋂
m≥L fix(hm).

Since the conditions hj → I (j → ∞) and
ord(hj) < m imply that hj = I for all large enough
j, we may assume that there is a purely elliptic se-
quence {gj} of G such that for all j, ord(gj) = ∞
and

gj → I (j →∞).

For any loxodromic element h ∈ G, considering the
two-generator group ρm(〈h, gj〉) = ρm(〈hlgj , h〉), we
can find an integer M such that

fix(p) ⊂ Tg(M)

for all loxodromic elements p ∈ G.
It means that gj ∈W (G) for j > M . The finite-

ness of W (G) implies that there exists j0 such that
for all j > j0, gj = I. This is the desired contradic-
tion.

The proof of Theorem 1.3. We can prove
that the map ρ is an isomorphism as the proof of
Theorem 5.10 in [15].

Since G0 is discrete and non-elementary, there
are loxodromic elements f, g ∈ G0 which have no
common fixed point such that 〈f, g〉 is discrete, non-
elementary and isomorphic to the free group of rank
two. Similarly, we can show that 〈ρm(f), ρm(g)〉 is
discrete and non-elementary by similar reasoning as
that in [15], and then 〈ρ(f), ρ(g)〉 is non-elementary.
Thus, G is non-elementary.

We claim that W (G) is finite.
At first, we prove that every nontrivial element

ρ(h) in W (G) is an element of finite order. Sup-
pose that ord(ρ(h)) = ∞. Then 〈ρ(h)〉 is infinite
and there is a sequence {ρ(hk)} of 〈ρ(h)〉 such that
ρ(hk) → I as k → ∞. Hence ρ(hk) → I as k →
∞. We know ord(h) = ∞ since ord(ρ(h)) = ∞.
It follows from the discreteness of G0 that h is not
elliptic. There is a loxodromic element q ∈ G0 such
that 〈h, q〉 is non-elementary and isomorphic to a free
group of rank two. So is 〈hk, q〉 for every integer k,
and 〈ρm(hk), ρm(q)〉 is discrete and non-elementary.
By Lemma 2.1, we have

N(ρm(hk)) +
n+1∑
l=1

N([ρm(hk), ρm(ql)]) > 2−
√

3
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for all m and k. This contradicts the facts ρm(hk) →
ρ(hk) as m → ∞ and ρ(hk) → I as k → ∞. There-
fore, every nontrivial element ρ(h) ∈ W (G) is an
element of finite order.

By Gehring and Martin [6], ρ−1[W (G)] ⊂ G0 is
finite. Thus W (G) is finite.

Consider the sequence of isomorphisms
ψm : G→ Gm defined by

ψm(g) = ρm(ρ−1(g)) ∀g ∈ G, m ∈ N.

Then ψm(g) → g as m → ∞ for each g ∈ G. It
follows from Lemma 2.6 that G is discrete.
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don Math. Soc. (2) 61 (2000), no. 3, 761–773.

[ 6 ] F. W. Gehring and G. J. Martin, Discrete quasi-
conformal groups. I, Proc. London Math. Soc. (3)
55 (1987), no. 2, 331–358.

[ 7 ] W. M. Goldman, Complex hyperbolic geometry,
Oxford Univ. Press, New York, 1999.

[ 8 ] W. M. Goldman and J. R. Parker, Dirichlet poly-
hedra for dihedral groups acting on complex hy-
perbolic space, J. Geom. Anal. 2 (1992), no. 6,
517–554.

[ 9 ] T. Jørgensen, On discrete groups of Möbius trans-
formations, Amer. J. Math. 98 (1976), no. 3,
739–749.

[ 10 ] T. Jørgensen and P. Klein, Algebraic convergence
of finitely generated Kleinian groups, Quart. J.
Math. Oxford Ser. (2) 33 (1982), no. 131, 325–
332.

[ 11 ] S. Kamiya, Notes on elements of U (1, n;C ), Hi-
roshima Math. J. 21 (1991), no. 1, 23–45.

[ 12 ] S. Kamiya, Notes on some classical series asso-
ciated with discrete subgroups of U (1, n;C ) on
∂Bn × ∂Bn × ∂Bn, Proc. Japan Acad. Ser. A
Math. Sci. 68 (1992), no. 6, 137–139.

[ 13 ] S. Kamiya, Chordal and matrix norms of uni-
tary transformations, First Korean-Japanese Col-
loquium on Finite or infinite dimensional com-
plex analysis (eds. J. Kajiwara, H. Kazama and
K. H. Shon), 1993, 121–125.

[ 14 ] S. Kamiya, On discrete subgroups of PU (1, 2;C )
with Heisenberg translations, J. London Math.
Soc. (2) 62 (2000), no. 3, 827–842.

[ 15 ] G. J. Martin, On discrete Möbius groups in
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