Discreteness criteria and algebraic convergence theorem for subgroups in PU(1, n; C)

By Wensheng CAO^{*)} and Xiantao WANG^{**)}

(Communicated by Heisuke HIRONAKA, M. J. A., March 13, 2006)

Abstract: In this paper, we will study the discreteness criterion for non-elementary subgroups in PU(1, n; C). Several discreteness criteria are obtained. As an application, the convergence theorem of discrete subgroups in PU(1, n; C) is discussed.

Key words: Discreteness criterion; convergence theorem; subgroup in PU(1, n; C).

1. Introduction. Throughout this paper, we will adopt the same notations and definitions as in [3, 11, 12, 13] such as H_C^n , U(1, n; C), PU(1, n; C), discrete groups, limit sets and so on. For example, a subgroup G in PU(1, n; C) is called *non-elementary* if it contains two non-elliptic elements of infinite order with distinct fixed points. Otherwise G is called *elementary*. See [3, 7, 8, 11, 12, 13, 14, 17, 18] etc. for more details of complex hyperbolic space H_C^n .

In 1976, Jørgensen ([9]) proved a necessary condition for a non-elementary two generator subgroup of SL(2, C) to be discrete, which is called Jørgensen's inequality. By using this inequality, Jørgensen discussed the discreteness criterion and proved that

Theorem J_1 ([9]). A non-elementary subgroup G of SL(2, C) is discrete if and only if all its two-generator subgroups are discrete.

Theorem J₂ ([10]). A non-elementary subgroup G of SL(2, R) is discrete if and only if each one-generator subgroup of G is discrete.

See [1, 5, 15, 16, 19, 20, 21] etc. for generalizations of Theorems J_1 and J_2 in *n*-dimensional hyperbolic space.

In complex hyperbolic space, Kamiya ([13]) proved that

Theorem K. If G is a non-elementary finitely generated subgroup of PU(1, n; C), then G is discrete if and only if $\langle f, g \rangle$ is discrete for any f and g in G.

Dai etc. ([4]) generalized Theorem K as follows:

Theorem DFN. If G is a non-elementary subgroup of PU(1,n;C) with Condition A, then G is discrete if and only if $\langle f,g \rangle$ is discrete for any f and g in G.

Here, G is said to satisfy Condition A if it has no sequence $\{g_j\}$ of distinct elements of finite order such that $\operatorname{Card}(\operatorname{fix}(g_j)) = \infty$ and $g_j \to I$ as $j \to \infty$, where $\operatorname{fix}(g_j) = \{x \in \partial H_C^n : g_j(x) = x\}.$

As the first main aim of this paper, we will study the discreteness criterion further and prove.

Theorem 1.1. Let $G \subset PU(1, n; C)$ be nonelementary. Then G is discrete if and only if W(G)is discrete (i.e., finite) and all non-elementary subgroups generated by two loxodromic elements of G are discrete.

Here

$$W(G) = \bigcap_{f \in h(G)} G_{\mathrm{fix}(f)},$$

where h(G) is the set of all loxodromic elements in G and $G_{\text{fix}(f)} = \{g \in G : \text{fix}(f) \subset \text{fix}(g)\}.$

Following Theorem 1.1, we have

Corollary 1.1. If a non-elementary subgroup $G \subset PU(1, n; C)$ is not discrete, then either there exists a sequence in G consisting of elliptic elements such that it converges to I or there exists a two-generator subgroup of G which is non-elementary and non-discrete.

Theorem 1.2. Let $G \subset PU(1, n; C)$ be nonelementary and $\dim[M(G)]$ be even. Then G is discrete if and only if W(G) is finite and each onegenerator subgroup of G is discrete.

Here M(G) denotes the smallest G-invariant, totally geodesic sub-manifold (cf. [3]).

As the second main aim of this paper, by using Theorem 1.1, we will discuss the convergence theo-

²⁰⁰⁰ Mathematics Subject Classification. Primary 30F40, 30C62.

^{*)} School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China

^{**)} Corresponding author: Department of Mathematics, Hunan Normal University, Changsha, Hunan 410082,P. R. China

rem in PU(1, n; C) and prove

Theorem 1.3. Let G_0 be a non-elementary and discrete group of PU(1, n; C). For all positive integers m, let ρ_m be an isomorphism of G_0 onto a discrete group $G_m \subset PU(1, n; C)$. Assume that

$$\rho_m(g) \to \rho(g) \ (m \to \infty) \ \forall g \in G_0, \ \rho(g) \in PU(1, n; C).$$

Then the group $G = \{\rho(g) : g \in G_0\}$ is discrete and ρ is an isomorphism of G_0 onto G.

Remark 1.1. Theorems 1.1 is a generalization of Theorems K and DFN.

Remark 1.2. Corollary 1.1 is a generalization of Theorem 1.3 in [4].

Remark 1.3. Theorem 1.2 is a generalization of Theorem J_2 and Theorem 2 in [1] into the case of PU(1, n; C).

Remark 1.4. Theorem 1.3 is a generalization of Theorem 1 in [9] and Theorem 1.6 in [20] into the case of PU(1, n; C).

2. The proofs of the main results.

2.1. The proof of Theorem 1.1. The following lemmas are crucial for us.

Lemma 2.1 ([4, 13]). Suppose that f and $g \in PU(1, n; C)$ generate a discrete and non-elementary group. Then

i) if f is parabolic or loxodromic, we have

$$\max\{N(f), N([f,g])\} \ge 2 - \sqrt{3},$$

where $[f,g] = fgf^{-1}g^{-1}$ is the commutator of fand g, N(f) = ||f - I||.

ii) if f is elliptic, we have

$$\max\{N(f), N([f, g^i]) : i = 1, 2, \dots, n+1\} \\ \ge 2 - \sqrt{3}.$$

Lemma 2.2 ([2]). If g is a loxodromic element in PU(1, n; C) and $f \in PU(1, n; C)$ does not interchange the two fixed points of g, then for all large enough j, the elements $g^j f$ or $g^{-j} f$ are loxodromic.

The proof of Theorem 1.1. The necessity is obvious. For the converse, we suppose that W(G) is finite and each non-elementary subgroup generated by two loxodromic elements of G is discrete, but Gitself is not discrete. Then there is a sequence $\{f_m\} \in$ G such that

$$f_m \to I \quad (m \to \infty).$$

Since G is non-elementary, there exist two loxodromic elements $g_j \in G$ (j = 1, 2) which have no common fixed point. Then for large enough m,

$$N(f_m) + \sum_{k=1}^{n+1} N([f_m, g_j^k]) < 2 - \sqrt{3} \quad (j = 1, 2).$$

We may assume that for large enough m, f_m doesn't interchange the fixed points of g_j (j = 1, 2) since $f_m \to I$ $(m \to \infty)$. Therefore $\langle f_m, g_j \rangle$ (j = 1, 2) are elementary for large enough m by Lemma 2.1. Hence $\operatorname{fix}(g_j) \subset \operatorname{fix}(f_m)$ holds for each j = 1, 2 and sufficiently large m. Let $T(k_1) = \bigcap_{m \geq k_1} \operatorname{fix}(f_m)$. Then $T(k_1)$ contains the linear span of the fixed points of g_j and so has dimension at least 1 for large positive integer k_1 . Thus by passing to a subsequence of $\{f_m\}$ (denoted by the same manner), we have

$$\Gamma(k_1) \neq \emptyset$$
 and $1 \leq \dim[T(k_1)] \leq n-1$.

Suppose that there exists some loxodromic element $g \in G$ such that

$$\operatorname{fix}(g) \cap T(k_1) = \emptyset.$$

Then (if needed, passing to a subsequence) there exists k_2 (> k_1) such that

$$\operatorname{fix}(g) \subset T(k_2)$$

and

$$\dim[T(k_1)] + 1 \le \dim[T(k_2)] \le n - 1$$

By repeating this step finite times, we can find k such that

 $fix(h) \subset T(k)$

holds for any loxodromic element $h \in G$. Then $f_m \in W(G)$ for all m > k. This contradiction completes the proof.

2.2. The proof of Theorem 1.2. The following lemma takes an important role in the proof of Theorem 1.2. Its proof follows from Corollary 4.5.3 in [3].

Lemma 2.3. Let $G \subset PU(1,n;F)$ be nonelementary and dim[M(G)] be even. If the identity is not an accumulation point of the elliptic elements in G, then G is discrete.

Lemma 2.4. Let $G_0 = G|_{M(G)} \subset PU(1, n; C)$ be non-elementary and $\dim[M(G)]$ be even. Then G_0 is discrete if and only if each one-generator subgroup of G_0 is discrete.

Proof. The necessity is obvious. For the converse, we suppose that each one-generator subgroup of G_0 is discrete, but G_0 itself is not discrete. Apply Theorem 1.1 to get a two-generator subgroup $\langle f, g \rangle$

50

of G_0 which is non-elementary and non-discrete. By choosing finitely many elements f_1, \dots, f_r , we can get a subgroup $G_1 = \langle f, g, f_1, \dots, f_r \rangle$ of G_0 such that G_1 is non-elementary and non-discrete and $M(G_1) =$ $M(G_0)$. Selberg's lemma tells us that G_1 contains a torsion-free subgroup G_2 with finite index. Then G_2 is also non-discrete and $M(G_2) = M(G_1)$. Since each one-generator subgroup of G_0 is discrete, we know that G_2 contains no elliptic element. It follows from $M(G_2) = M(G_0)$ and Lemma 2.3 that G_2 is discrete. This contradiction completes the proof.

The following lemma is obvious (cf. [22]).

Lemma 2.5. Let $G \subset PU(1,n;C)$ be nonelementary. Then G is discrete if and only if both $G|_{M(G)}$ and W(G) are discrete.

The proof of Theorem 1.2. Since $G|_{M(G)}$ is non-elementary and dim[M(G)] is even, by Lemma 2.4, $G|_{M(G)}$ is discrete if and only if each one-generator subgroup of $G|_{M(G)}$ is discrete. The proof follows from Lemma 2.5.

2.3. The proof of Theorem 1.3.

Lemma 2.6. Let G be a non-elementary subgroup of PU(1, n; C) and $\{\rho_m\}$ be a sequence of isomorphisms of G onto discrete subgroups $\rho_m(G) \subset$ PU(1, n; C). If

$$\rho_m(g) \to g \quad (m \to \infty) \quad \forall g \in G,$$

then G is either discrete or W(G) is infinite.

Proof. By Theorem 1.1, we only need to show that $\langle f, g \rangle$ is discrete for any two loxodromic elements f, g in G which have no common fixed points under the condition W(G) is finite.

Suppose that there are two loxodromic elements $f, g \in G$ with no common fixed points such that the two-generator subgroup $\langle f, g \rangle$ is not discrete. It follows from Selberg's lemma that there exists a torsion free subgroup G_1 of $\langle f, g \rangle$ with finite index. Therefore G_1 is non-elementary and there is a sequence $\{h_j\}$ of G_1 such that $h_j \to I$ as $j \to \infty$. For any two loxodromic elements f_1, f_2 in G_1 which have no common fixed point, it follows by continuity that

$$N(\rho_m(h_j)) + \sum_{k=1}^{n+1} N([\rho_m(h_j), \rho_m(f_i^k)]) < 2 - \sqrt{3},$$

$$i = 1, 2$$

for large j and m. Thus, $\langle \rho_m(h_j), \rho_m(f_i) \rangle$ is elementary by Lemma 2.1 and the discreteness of $\rho_m(G)$. Thus

$$\operatorname{fix}(f_i) \subset \operatorname{fix}(h_j), \quad i = 1, 2$$

for large j. Hence we may assume that all h_j are elliptic and we can find an integer L such that

$$fix(q) \subset T_h(L)$$

for all loxodromic elements $q \in G_1$, where $T_h(L) = \bigcap_{m>L} \operatorname{fix}(h_m)$.

Since the conditions $h_j \to I$ $(j \to \infty)$ and ord $(h_j) < m$ imply that $h_j = I$ for all large enough j, we may assume that there is a purely elliptic sequence $\{g_j\}$ of G such that for all j, $\operatorname{ord}(g_j) = \infty$ and

$$g_j \to I \quad (j \to \infty)$$

For any loxodromic element $h \in G$, considering the two-generator group $\rho_m(\langle h, g_j \rangle) = \rho_m(\langle h^l g_j, h \rangle)$, we can find an integer M such that

$$\operatorname{fix}(p) \subset T_g(M)$$

for all loxodromic elements $p \in G$.

It means that $g_j \in W(G)$ for j > M. The finiteness of W(G) implies that there exists j_0 such that for all $j > j_0$, $g_j = I$. This is the desired contradiction.

The proof of Theorem 1.3. We can prove that the map ρ is an isomorphism as the proof of Theorem 5.10 in [15].

Since G_0 is discrete and non-elementary, there are loxodromic elements $f, g \in G_0$ which have no common fixed point such that $\langle f, g \rangle$ is discrete, nonelementary and isomorphic to the free group of rank two. Similarly, we can show that $\langle \rho_m(f), \rho_m(g) \rangle$ is discrete and non-elementary by similar reasoning as that in [15], and then $\langle \rho(f), \rho(g) \rangle$ is non-elementary. Thus, G is non-elementary.

We claim that W(G) is finite.

At first, we prove that every nontrivial element $\rho(h)$ in W(G) is an element of finite order. Suppose that $ord(\rho(h)) = \infty$. Then $\langle \rho(h) \rangle$ is infinite and there is a sequence $\{\rho(h^k)\}$ of $\langle \rho(h) \rangle$ such that $\rho(h^k) \to I$ as $k \to \infty$. Hence $\rho(h^k) \to I$ as $k \to \infty$. We know $ord(h) = \infty$ since $ord(\rho(h)) = \infty$. It follows from the discreteness of G_0 that h is not elliptic. There is a loxodromic element $q \in G_0$ such that $\langle h, q \rangle$ is non-elementary and isomorphic to a free group of rank two. So is $\langle h^k, q \rangle$ for every integer k, and $\langle \rho_m(h^k), \rho_m(q) \rangle$ is discrete and non-elementary. By Lemma 2.1, we have

$$N(\rho_m(h^k)) + \sum_{l=1}^{n+1} N([\rho_m(h^k), \rho_m(q^l)]) > 2 - \sqrt{3}$$

for all m and k. This contradicts the facts $\rho_m(h^k) \rightarrow \rho(h^k)$ as $m \rightarrow \infty$ and $\rho(h^k) \rightarrow I$ as $k \rightarrow \infty$. Therefore, every nontrivial element $\rho(h) \in W(G)$ is an element of finite order.

By Gehring and Martin [6], $\rho^{-1}[W(G)] \subset G_0$ is finite. Thus W(G) is finite.

Consider the sequence of isomorphisms $\psi_m: G \to G_m$ defined by

$$\psi_m(g) = \rho_m(\rho^{-1}(g)) \quad \forall g \in G, \ m \in \mathbf{N}.$$

Then $\psi_m(g) \to g$ as $m \to \infty$ for each $g \in G$. It follows from Lemma 2.6 that G is discrete.

Acknowledgements. This research was partly supported by NSFs No. 10571048, No. 10231040 of China and No. 05JJ10001 of Hunan Province, the Program for NCET (No. 04-0783) and China Postdoctoral Science Foundation.

References

- W. Abikoff and A. Haas, Nondiscrete groups of hyperbolic motions, Bull. London Math. Soc. 22 (1990), no. 3, 233–238.
- W. Cao and X. Wang, Geometric characterizations for subgroups of PU(1, n; C), Northeast. Math. J. 21 (2005), no. 1, 45–53.
- [3] S. S. Chen and L. Greenberg, Hyperbolic spaces, in Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 49–87.
- B. Dai, A. Fang and B. Nai, Discreteness criteria for subgroups in complex hyperbolic space, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 10, 168–172.
- [5] A. Fang and B. Nai, On the discreteness and convergence in *n*-dimensional Möbius groups, J. London Math. Soc. (2) 61 (2000), no. 3, 761–773.
- [6] F. W. Gehring and G. J. Martin, Discrete quasiconformal groups. I, Proc. London Math. Soc. (3) 55 (1987), no. 2, 331–358.
- W. M. Goldman, Complex hyperbolic geometry, Oxford Univ. Press, New York, 1999.
- [8] W. M. Goldman and J. R. Parker, Dirichlet polyhedra for dihedral groups acting on complex hyperbolic space, J. Geom. Anal. 2 (1992), no. 6, 517–554.

- [9] T. Jørgensen, On discrete groups of Möbius transformations, Amer. J. Math. 98 (1976), no. 3, 739–749.
- T. Jørgensen and P. Klein, Algebraic convergence of finitely generated Kleinian groups, Quart. J. Math. Oxford Ser. (2) 33 (1982), no. 131, 325– 332.
- [11] S. Kamiya, Notes on elements of U(1, n; C), Hiroshima Math. J. 21 (1991), no. 1, 23–45.
- [12] S. Kamiya, Notes on some classical series associated with discrete subgroups of U(1, n; C) on $\partial B^n \times \partial B^n \times \partial B^n$, Proc. Japan Acad. Ser. A Math. Sci. **68** (1992), no. 6, 137–139.
- [13] S. Kamiya, Chordal and matrix norms of unitary transformations, First Korean-Japanese Colloquium on Finite or infinite dimensional complex analysis (eds. J. Kajiwara, H. Kazama and K. H. Shon), 1993, 121–125.
- S. Kamiya, On discrete subgroups of PU(1,2; C) with Heisenberg translations, J. London Math. Soc. (2) 62 (2000), no. 3, 827–842.
- [15] G. J. Martin, On discrete Möbius groups in all dimensions: a generalization of Jørgensen's inequality, Acta Math. 163 (1989), no. 3-4, 253–289.
- [16] G. J. Martin, On discrete isometry groups of negative curvature, Pacific J. Math. 160 (1993), no. 1, 109–127.
- [17] J. R. Parker, On Ford isometric spheres in complex hyperbolic space, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 3, 501–512.
- [18] J. R. Parker, Uniform discreteness and Heisenberg translations, Math. Z. 225 (1997), no. 3, 485–505.
- [19] X. Wang and W. Yang, Discreteness criterions for subgroups in SL(2, C), Math. Proc. Cambridge Philos. Soc. **124** (1998), no. 1, 51–55.
- [20] X. Wang and W. Yang, Discreteness criteria of Möbius groups of high dimensions and convergence theorems of Kleinian groups, Adv. Math. 159 (2001), no. 1, 68–82.
- [21] X. Wang, L. Li and W. Cao, Discreteness criteria for Möbius groups on Rⁿ, Israel J of Math. 150 (2005), 357–368.
- [22] X. Wang, Dense subgroups of *n*-dimensional Möbius groups, Math. Z. **243** (2003), no. 4, 643–651.