Classification of a family of Hamiltonian-stationary Lagrangian submanifolds in C^{n}

By Bang-Yen Chen
Department of Mathematics, Michigan State University, East Lansing, Michigan 48864-1027, U.S.A.

(Communicated by Heisuke Hironaka, m.J.a., Nov. 13, 2006)

Abstract

A Lagrangian submanifold in the complex Euclidean n-space \mathbf{C}^{n} is called Hamiltonian-stationary if it is a critical point of the area functional restricted to (compactly supported) Hamiltonian variations. In this article, we classify the family of Hamiltonian-stationary Lagrangian submanifolds of \mathbf{C}^{n} which are Lagrangian H-umbilical.

Key words: Hamiltonian-stationary; H-umbilical submanifold; complex extensor.

1. Introduction. Let \mathbf{C}^{n} be the complex Euclidean n-space with complex structure J and Kaehler metric \langle,$\rangle . The Kaehler 2-form \omega$ is defined by $\omega(\cdot, \cdot)=\langle J \cdot, \cdot\rangle$. An immersion $\psi: M \rightarrow \mathbf{C}^{n}$ of an n-manifold M into \mathbf{C}^{n} is called Lagrangian if $\psi^{*} \omega=0$ on M. A vector field X on \mathbf{C}^{n} is called Hamiltonian if $\mathcal{L}_{X} \omega=f \omega$ for some function $f \in C^{\infty}\left(\mathbf{C}^{n}\right)$, where \mathcal{L} is the Lie derivative. Thus, there exists a smooth real-valued function φ on \mathbf{C}^{n} such that $X=J \tilde{\nabla} \varphi$, where $\tilde{\nabla}$ is the gradient in \mathbf{C}^{n}. The diffeomorphisms of the the flux ψ_{t} of X satisfy $\psi_{t} \omega=e^{h_{t}} \omega$. Thus they transform Lagrangian submanifolds into Lagrangian submanifolds.

Oh [15] studied the following variational problem: A normal vector field ξ to a Lagrangian immer$\operatorname{sion} \psi: M^{n} \rightarrow \mathbf{C}^{n}$ is called Hamiltonian if $\xi=J \nabla f$, where f is a smooth function on M^{n} and ∇f is the gradient of f with respect to the induced metric.

If $f \in C_{0}^{\infty}(M)$ and $\psi_{t}: M \rightarrow \mathbf{C}^{n}$ is a variation of ψ with $\psi_{0}=\psi$ and variational vector field ξ, then the first variation of the volume functional is

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{vol}\left(M, \psi_{t}^{*} g\right)=-\int_{M} f \operatorname{div} J H d M
$$

where H is the mean curvature vector of the immersion ψ and div is the divergence operator on M. Critical points of this variational functional are called Hamiltonian-stationary (or Hamiltonianminimal). Lagrangian submanifolds with parallel mean curvature vector are Hamiltonian-stationary.

Hamiltonian-stationary Lagrangian submanifolds in \mathbf{C}^{n} (mostly in \mathbf{C}^{2}) have been studied in [1-7, 10, 12-15], among others.

[^0]In this article, we classify the family of Hamiltonian-stationary Lagrangian submanifolds of \mathbf{C}^{n} which are Lagrangian H-umbilical. A related result is also obtained.
2. Preliminaries. Let $f: M \rightarrow \mathbf{C}^{n}$ be an isometric immersion of a Riemannian n-manifold M into \mathbf{C}^{n}. We denote the Riemannian connections of M and \mathbf{C}^{n} by ∇ and $\tilde{\nabla}$, respectively; and by D the connection on the normal bundle of the submanifold.

The formulas of Gauss and Weingarten are

$$
\begin{align*}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.1}\\
& \tilde{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi \tag{2.2}
\end{align*}
$$

for tangent vector fields X, Y and normal vector field ξ. If we denote the Riemann curvature tensor of ∇ by R, then the equations of Gauss and Codazzi are given respectively by

$$
\begin{align*}
& \langle R(X, Y) Z, W\rangle=\langle h(X, W), h(Y, Z)\rangle \tag{2.3}\\
& \quad-\langle h(X, Z), h(Y, W)\rangle \\
& (\nabla h)(X, Y, Z)=(\nabla h)(Y, X, Z) \tag{2.4}
\end{align*}
$$

where $(\nabla h)(X, Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-$ $h\left(Y, \nabla_{X} Z\right)$.

For a Lagrangian submanifold M of \mathbf{C}^{n}, we also have (cf. [11])

$$
\begin{align*}
& D_{X} J Y=J \nabla_{X} Y \tag{2.5}\\
& \langle h(X, Y), J Z\rangle=\langle h(Y, Z), J X\rangle \tag{2.6}\\
& \quad=\langle h(Z, X), J Y\rangle
\end{align*}
$$

We recall some definitions and results from [9].
By definition, a Lagrangian submanifold without totally geodesic points is called a Lagrangian H-umbilical submanifold if the second fundamental form takes the following simple form (cf. [9]):

$$
\begin{align*}
& h\left(e_{1}, e_{1}\right)=\lambda J e_{1}, h\left(e_{j}, e_{j}\right)=\mu, J e_{1}, j>1 \tag{2.7}\\
& h\left(e_{1}, e_{j}\right)=\mu J e_{j}, h\left(e_{j}, e_{k}\right)=0,2 \leq j \neq k \leq n
\end{align*}
$$

for some functions λ, μ with respect to some suitable orthonormal local frame field $\left\{e_{1}, \ldots, e_{n}\right\}$. Such submanifolds are known to be the simplest Lagrangian submanifolds next to the totally geodesic ones.

Let $G: N^{n-1} \rightarrow \mathbf{E}^{n}$ be an isometric immersion of a Riemannian $(n-1)$-manifold into the Euclidean n-space \mathbf{E}^{n} and let $F: I \rightarrow \mathbf{C}^{*}$ be a unit speed curve in $\mathbf{C}^{*}=\mathbf{C}-\{0\}$. We may extend $G: N^{n-1} \rightarrow \mathbf{E}^{n}$ to an immersion of $I \times N^{n-1}$ into \mathbf{C}^{n} as

$$
\begin{equation*}
F \otimes G: I \times N^{n-1} \rightarrow \mathbf{C} \otimes \mathbf{E}^{n}=\mathbf{C}^{n} \tag{2.8}
\end{equation*}
$$

where $(F \otimes G)(s, p)=F(s) \otimes G(p)$ for $s \in I, p \in$ N^{n-1}. This extension $F \otimes G$ of G via tensor product is called the complex extensor of G via F (or of the submanifold N^{n-1} via F).

Proposition 1. Let $\iota: S^{n-1} \rightarrow \mathbf{E}^{n}$ be the inclusion of a hypersphere of \mathbf{E}^{m} centered at the origin. Then every complex extensor $\phi=F \otimes \iota$ of ι via a unit speed curve $F: I \rightarrow \mathbf{C}^{*}$ is a Lagrangian H-umbilical submanifold of \mathbf{C}^{n} unless F is contained in a line through the origin (which gives a totally geodesic Lagrangian submanifold).

For $F \otimes \iota$, we choose e_{1} a unit vector field tangent to the first factor and e_{2}, \ldots, e_{n} to the second factor of $I \times S^{n-1}$. Without loss of generality, we may assume ι is the inclusion $\iota_{0}^{n}: S^{n-1}(1) \subset \mathbf{E}^{n}$ of the unit hypersphere centered at the origin of \mathbf{E}^{n}.

If we put $F^{\prime}=e^{i \varphi(s)}$ and $F=r(s) e^{i \theta(s)}$, then the second fundamental form of the complex extensor $F \otimes \iota_{0}^{n}$ satisfies (2.7) with

$$
\begin{equation*}
\lambda=\varphi^{\prime}(s)=\kappa, \quad \mu=\frac{\left\langle F^{\prime}, i F\right\rangle}{\langle F, F\rangle}=\theta^{\prime}(s) \tag{2.9}
\end{equation*}
$$

From (2.9) and Proposition 1 we see that a complex extensor is totally geodesic if and only if $\mu=0$.

There exist many unit speed curves $F=r e^{i \theta}$ whose curvature satisfies $\kappa=m \theta^{\prime}$ with $m \in \mathbf{R}$.

Example 1. If $F=r e^{i \theta}$ with $r=b^{-1} \cos b s$ and $\theta=b s, b>0$, then the curvature of F satisfies $\kappa=2 \theta^{\prime}$. The associated complex extensor is called a Lagrangian pseudo-sphere.

Example 2 (Cardioid). Let $F=r e^{i \theta}$ be the unit speed reparametrization of $G=(1+\cos t) e^{i t}$. Then F satisfies $\kappa(s)=\frac{3}{2} \theta^{\prime}(s)$.

Example 3 (Circle). Let $F=b^{-1} e^{i b s}, b>0$. Then F satisfies $\kappa=\theta^{\prime}=b$.

Example 4 (Logarithmic spiral). Let $F=$ $\left(b s / \sqrt{1+b^{2}}\right) e^{i b^{-1} \ln s}$ with $b>0$. Then F satisfies $\kappa=\theta^{\prime}=b^{-1} s^{-1}$.

Example 5. Let $F=\sqrt{s^{2}+b^{2}} e^{i \tan ^{-1}(s / b)}$, $b>0$. Then the curvature of F satisfies $\kappa=0$.

Example 6. Consider $s=i E\left(\frac{i}{2} \operatorname{arccosh} f ; 2\right)$, where $E(\cdot ; k)$ is the elliptic integral of the second kind with elliptic modulus k. Then $s(f)$ is a realvalued decreasing function for $f \geq 1$. If $f(s)$ is its inverse function, then $F=\sqrt{f} e^{i \theta}$ with $\theta=\int_{0}^{s} f^{-\frac{3}{2}} d s$ is a unit speed curve satisfying $\kappa=-\theta^{\prime}$.
3. Hamiltonian-stationary Lagrangian submanifolds. Let ι_{0}^{n} denote the inclusion of the unit hypersphere centered at the origin and $F=r(s) e^{i \theta(s)}$ a unit speed curve in \mathbf{C}^{*} with $\theta^{\prime} \neq 0$.

Theorem 1. Let $L: M \rightarrow \mathbf{C}^{n}$ be a Lagrangian H-umbilical submanifold with $n \geq 3$. Then L is Hamiltonian-stationary if and only if, up to dilations, L is congruent to an open portion of a Lagrangian submanifold of the following six types:
(1) A Lagrangian cylinder over a circle:

$$
L\left(s, x_{2}, \ldots, x_{n}\right)=\left(\frac{e^{i a s}}{a}, x_{2}, \ldots, x_{n}\right), a>0
$$

(2) A complex extensor $F \otimes \iota_{0}^{n}$, where F is a unit speed curve whose curvature κ satisfies $\kappa=\theta^{\prime}(s)$.
(3) A complex extensor $F \otimes \iota_{0}^{n}$, where F is a unit speed curve with $\kappa=(1-n) \theta^{\prime}(s)$.
(4) A complex extensor $F \otimes \iota_{0}^{n}$, where F is a unit speed curve with $\kappa=(3-n) \theta^{\prime}(s)$.
(5) A complex extensor $F \otimes \iota_{0}^{3}$, where $F=r e^{i \theta}$ is a unit speed curve with $\kappa=b r^{-4}, b \neq 0$.
(6) A complex extensor $F \otimes \iota_{0}^{n}, n>3$, where $F=r e^{i \theta}$ is a unit speed curve such that the curvature κ satisfies $\kappa \neq m \theta^{\prime}$ for any $m \in \mathbf{R}$ and

$$
\kappa=\left(\frac{3-n}{2}\right) \theta^{\prime}+\frac{1}{2(1-n)} \frac{\kappa^{\prime}}{(\ln r)^{\prime}}
$$

Proof. Assume $L: M \rightarrow \mathbf{C}^{n}$ is Lagrangian H umbilical with $n \geq 3$. Then, L is a Lagrangian submanifold without totally geodesic points such that the second fundamental form satisfies (2.7) for some functions λ and μ with respect to some suitable orthonormal local frame field e_{1}, \ldots, e_{n}.

Let $\omega^{1}, \ldots, \omega^{n}$ denote the dual 1 -forms of e_{1}, \ldots, e_{n} and $\left(\omega_{i}^{j}\right), i, j=1, \ldots, n$, be the connection forms of the Lagrangian submanifold. By applying Codazzi's equation to (2.7), we find

$$
\begin{equation*}
e_{1} \mu=(\lambda-2 \mu) \omega_{1}^{j}\left(e_{j}\right), \quad j>1 \tag{3.1}
\end{equation*}
$$

$$
\begin{align*}
& e_{j} \lambda=(2 \mu-\lambda) \omega_{j}^{1}\left(e_{1}\right), \quad j>1 \tag{3.2}\\
& (\lambda-2 \mu) \omega_{1}^{j}\left(e_{k}\right)=0, \quad 1<j \neq k \leq n \tag{3.3}\\
& e_{j} \mu=3 \mu \omega_{1}^{j}\left(e_{1}\right) \tag{3.4}\\
& \mu \omega_{1}^{j}\left(e_{1}\right)=0, \quad j>1 \tag{3.5}
\end{align*}
$$

It follows from (2.7) that the mean curvature vector H is given by $n H=(\lambda+(n-1) \mu) J e_{1}$. So, the dual 1-form α_{H} of $J H$ satisfies

$$
\begin{equation*}
-n \alpha_{H}=(\lambda+(n-1) \mu) \omega^{1} \tag{3.6}
\end{equation*}
$$

Now, assume that L is Hamiltonian-stationary. Let δ denote the co-differential operator of M. Since the Hamiltonian-stationary condition of the Lagrangian submanifold in \mathbf{C}^{n} is characterized by $\delta \alpha_{H}=0$ (cf. [15]), so after applying δ to (3.6) and using Cartan's structure equations, we obtain

$$
\begin{equation*}
e_{1} \lambda+(n-1) e_{1} \mu=(\lambda+(n-1) \mu) \sum_{j=2}^{n} \omega_{j}^{1}\left(e_{j}\right) \tag{3.7}
\end{equation*}
$$

Case (A): M is of constant sectional curvature. In this case, Theorem 3.1 of [9] implies that either M is an open portion of a Lagrangian pseudo-sphere or M is a flat manifold.

If M is an open portion of a Lagrangian pseudosphere, then we have $\lambda=2 \mu$ which is constant on M. Thus, (3.7) reduces to

$$
\begin{equation*}
\omega_{2}^{1}\left(e_{2}\right)+\cdots+\omega_{n}^{1}\left(e_{n}\right)=0 \quad \text { on } U \tag{3.8}
\end{equation*}
$$

On the other hand, the Lagrangian pseudosphere satisfies $\omega_{j}^{1}\left(e_{j}\right)=b \tan b s$ for $j>1$. Combining this with (3.8) shows that this cannot happen.

If M is flat, it follows from (2.7) and equation of Gauss that $\mu=0$ identically. Since $\lambda \neq 0$, it follows from (3.1) and $\mu=0$ that $\omega_{j}^{1}\left(e_{j}\right)=0, j=2, \ldots, n$. Combining this with (3.3) and (3.7) gives

$$
\begin{equation*}
e_{1} \lambda=\omega_{j}^{1}\left(e_{k}\right)=0, \quad 2 \leq j, k \leq n \tag{3.9}
\end{equation*}
$$

Also, it follows from (3.2) that

$$
\begin{equation*}
e_{j}(\ln \lambda)=\omega_{1}^{j}\left(e_{1}\right), \quad j=2, \ldots, n \tag{3.10}
\end{equation*}
$$

Let \mathcal{D} and \mathcal{D}^{\perp} denote the distributions on M spanned by $\left\{e_{1}\right\}$ and $\left\{e_{2}, \ldots, e_{n}\right\}$, respectively. Then \mathcal{D} is integrable, since it is 1-dimensional. Also, it follows from (3.9) that \mathcal{D}^{\perp} is integrable with totally geodesic leaves. Moreover, it follows from (2.7) with $\mu=0$ that the leaves of \mathcal{D}^{\perp} are totally geodesic in \mathbf{C}^{n} as well. Because \mathcal{D} and \mathcal{D}^{\perp} are both integrable, there exist local coordinates $\left\{s, x_{2}, \ldots, x_{n}\right\}$ such that $\partial / \partial s$
spans \mathcal{D} and $\left\{\partial / \partial x_{2}, \ldots, \partial / \partial x_{n}\right\}$ spans \mathcal{D}^{\perp}. Since \mathcal{D} is 1-dimensional, we may choose s in such way that $\partial / \partial s=\lambda^{-1} e_{1}$.

From $e_{1} \lambda=0$, we have $\lambda=\lambda\left(x_{2}, \ldots, x_{n}\right)$. With respect to $\left\{s, x_{2}, \ldots, x_{n}\right\},(2.7)$ becomes
$h\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial s}\right)=J \frac{\partial}{\partial s}, h\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial x_{j}}\right)=h\left(\frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{k}}\right)=0$
for $j, k=2, \ldots, n$. Let N^{n-1} be an integral submanifold of \mathcal{D}^{\perp}. Then N^{n-1} is totally geodesic in \mathbf{C}^{n}. Thus, N^{n-1} is an open portion of a Euclidean $(n-1)$-space \mathbf{E}^{n-1}. Hence, M is isometric to an open portion of the warped product manifold $\lambda^{-1} I \times \mathbf{E}^{n-1}$ with warped product metric:

$$
\begin{equation*}
g=\lambda^{-2} d s^{2}+d x_{2}^{2}+d x_{3}^{2}+\cdots+d x_{n}^{2} \tag{3.12}
\end{equation*}
$$

where I is an open interval on which λ^{-1} is defined.
Put $\lambda_{j}=\frac{\partial \lambda}{\partial x_{j}}, \lambda_{j k}=\frac{\partial^{2} \lambda}{\partial x_{j} \partial x_{k}}$ for $j, k=2, \ldots, n$. From (3.12) we find

$$
\begin{align*}
& \nabla_{\frac{\partial}{\partial s}} \frac{\partial}{\partial s}=\sum_{k=2}^{n} \frac{\lambda_{k}}{\lambda} \frac{\partial}{\partial x_{k}}, \quad \nabla_{\frac{\partial}{\partial s}} \frac{\partial}{\partial x_{j}}=-\frac{\lambda_{j}}{\lambda} \frac{\partial}{\partial s}, \tag{3.13}\\
& \nabla_{\frac{\partial}{\partial x_{j}}} \frac{\partial}{\partial x_{k}}=0,
\end{align*}
$$

for $2 \leq j, k \leq n$. By applying (3.13) we find

$$
R\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial x_{j}}\right) \frac{\partial}{\partial s}=-\sum_{k=2}^{n} \frac{\lambda_{j k}}{\lambda} \frac{\partial}{\partial x_{k}}, \quad j=2, \ldots, n
$$

Since M is flat, this implies that $\lambda_{j k}=0$ for $j, k=$ $2, \ldots, n$. Therefore, we have

$$
\begin{equation*}
\lambda=a+\alpha_{2} x_{2}+\cdots+\alpha_{n} x_{n} \tag{3.14}
\end{equation*}
$$

for some $a, \alpha_{2}, \ldots, \alpha_{n} \in \mathbf{R}$. From (3.11), (3.13), (3.14) and the formula of Gauss, we obtain

$$
\begin{align*}
& L_{s s}=\sum_{k=2}^{n} \frac{\alpha_{k}}{\lambda} L_{x_{k}}+i L_{s}, \quad L_{s x_{j}}=-\frac{\alpha_{j}}{\lambda} L_{s} \tag{3.15}\\
& L_{x_{j} x_{k}}=0, \quad j, k>1
\end{align*}
$$

Solving the last equation in (3.15) yields

$$
\begin{equation*}
L=\sum_{j=2}^{n} P_{j}(s) x_{j}+D(s) \tag{3.16}
\end{equation*}
$$

for some \mathbf{C}^{n}-valued functions P_{2}, \ldots, P_{n}, D.
By applying (3.14), (3.15) and (3.16), we find

$$
\begin{equation*}
\alpha_{j} P_{j}^{\prime}(s)=0 \tag{3.17}
\end{equation*}
$$

$$
\begin{align*}
& \alpha_{j} P_{k}^{\prime}(s)+\alpha_{k} P_{j}^{\prime}(s)=0, \quad 2 \leq j \neq k \leq n, \tag{3.18}\\
& a P_{j}^{\prime}(s)+\alpha_{j} D^{\prime}(s)=0, \quad j, k=2, \ldots, n . \tag{3.19}
\end{align*}
$$

If $\alpha_{2}, \ldots, \alpha_{n}$ are not all zero, say $\alpha_{2} \neq 0$. Then, (3.17) gives $P_{2}^{\prime}=0$. Thus, by (3.18) and (3.19), we have $P_{3}^{\prime}=\cdots=P_{n}^{\prime}=D^{\prime}=0$ as well. Hence, P_{2}, \ldots, P_{n} and D are constant vectors, which is impossible in views of (3.16). Therefore, we must have $\alpha_{2}=\cdots=\alpha_{n}=0$ and $\lambda=a \neq 0$. So, from (3.19) we know that P_{2}, \ldots, P_{n} are orthonormal constant vectors in \mathbf{C}^{n}. Consequently, (3.16) becomes

$$
\begin{equation*}
L=D\left(x_{1}\right)+c_{2} x_{2}+\cdots+c_{n} x_{n} \tag{3.20}
\end{equation*}
$$

for $c_{2}, \ldots, c_{n} \in \mathbf{C}^{n}$. Substituting this into the first equation of (3.15) yields $D\left(x_{1}\right)=c_{1} e^{i x_{1}}$. Hence, L is a Lagrangian cylinder over a circle. Thus, after choosing suitable initial conditions, we get case (1).

Case (B): M contains no open subset of constant curvature. By Theorem 4.1 of ${ }^{9)}, M$ is congruent to a complex extensor $\phi=F \otimes \iota_{0}^{n}$ of ι_{0}^{n}. Thus, M is a Lagrangian H-umbilical submanifold satisfying (2.7) with $\lambda \neq 2 \mu$ and $\mu \neq 0$.

For the complex extensor $F \otimes \iota_{0}^{n}$, we have

$$
\begin{equation*}
\frac{\partial \phi}{\partial s}=F^{\prime}(s) \otimes \iota_{0}^{n}, e_{j} \phi=F \otimes e_{j}, j>1 . \tag{3.21}
\end{equation*}
$$

Thus, the metric g of ϕ is given by

$$
\begin{equation*}
g=d s^{2}+f(s) g_{1} \tag{3.22}
\end{equation*}
$$

where $f=\langle F, F\rangle$ and g_{1} is the standard metric of the unit n-sphere. As before, we choose $\left\{e_{1}, \ldots, e_{n}\right\}$ with $e_{1}=\partial / \partial s$ so that we have (2.7) with

$$
\begin{equation*}
\lambda=\varphi^{\prime}(s), \mu=\frac{\left\langle F^{\prime}, i F\right\rangle}{f}, F^{\prime}(s)=e^{i \varphi(s)} \tag{3.23}
\end{equation*}
$$

Moreover, it follows from (3.22) that

$$
\begin{equation*}
\omega_{2}^{1}\left(e_{2}\right)=\cdots=\omega_{n}^{1}\left(e_{n}\right)=-\frac{f^{\prime}}{2 f} . \tag{3.24}
\end{equation*}
$$

Since $F(s)$ is unit speed, we have

$$
\begin{equation*}
F^{\prime \prime}=i \kappa F^{\prime}, \quad F=\left\langle F, F^{\prime}\right\rangle F^{\prime}-\left\langle F^{\prime}, i F\right\rangle i F^{\prime}, \tag{3.25}
\end{equation*}
$$

where κ is the curvature of F. It follows from (3.23) and the first equation of (3.25) that

$$
\begin{equation*}
\lambda=\kappa . \tag{3.26}
\end{equation*}
$$

From the second equation in (3.25) we find

$$
\begin{equation*}
4\left\langle F, i F^{\prime}\right\rangle^{2}=4 f-f^{\prime 2} \geq 0 \tag{3.27}
\end{equation*}
$$

Thus, after replacing s by $-s$ if necessary, we have

$$
\begin{equation*}
\left\langle F^{\prime}, i F\right\rangle=\frac{1}{2} \sqrt{4 f-f^{\prime 2}} . \tag{3.28}
\end{equation*}
$$

If $4 f=f^{2}$ holds on an open interval I_{0}, then $\left\langle F, i F^{\prime}\right\rangle=0$ on I_{0}. Hence, $F(s)$ is parallel to $F^{\prime}(s)$ for $s \in I_{0}$, which implies that $F: I_{0} \rightarrow \mathbf{C}^{*}$ is an open part of a line through the origin. So, according to Lemma 2.1, the complex extensor ϕ has totally geodesic points which is a contraction.

From the first equation in (3.25), we find $f^{\prime \prime}=$ $2-2 \kappa\left\langle F^{\prime}, i F\right\rangle$. Combining this with (3.28) yields

$$
\begin{equation*}
\kappa(s)=\frac{2-f^{\prime \prime}(s)}{\sqrt{4 f(s)-f^{\prime 2}(s)}} \tag{3.29}
\end{equation*}
$$

Hence, (3.23), (3.26), (3.28) and (3.29) give

$$
\begin{equation*}
\kappa=\lambda=\frac{2-f^{\prime \prime}}{\sqrt{4 f-f^{\prime 2}}}, \quad \mu=\theta^{\prime}=\frac{\sqrt{4 f-f^{\prime 2}}}{2 f} \tag{3.30}
\end{equation*}
$$

Due to $f^{\prime}=2\left\langle F, F^{\prime}\right\rangle$ and (3.28), the second equation in (3.25) can be written as

$$
\begin{equation*}
F^{\prime}(s)=\frac{f^{\prime}(s)+i \sqrt{4 f(s)-f^{\prime 2}(s)}}{2 f(s)} F(s) . \tag{3.31}
\end{equation*}
$$

Assume f is defined on a open interval $I \ni 0$. After solving (3.31) and using $\left|F^{\prime}\right|=1$, we know that, up to rotations about the origin, F is given by

$$
\begin{equation*}
F=\sqrt{f} \exp \left(\frac{i}{2} \int_{0}^{s} \frac{\sqrt{4 f-f^{\prime 2}}}{f} d s\right) \tag{3.32}
\end{equation*}
$$

Since $\mu \neq 0$ and $\lambda \neq 2 \mu$, (3.3) and (3.5) give
(3.33) $\quad \omega_{1}^{j}\left(e_{1}\right)=0, \quad \omega_{j}^{1}\left(e_{j}\right)=\frac{e_{1} \mu}{2 \mu-\lambda}, \quad \omega_{j}^{1}\left(e_{k}\right)=0$
for $2 \leq j \neq k \leq n$. By substituting the second equation of (3.33) into (3.7) we find

$$
\begin{equation*}
(2 \mu-\lambda) \lambda^{\prime}=(n-1)(2 \lambda+(n-3) \mu) \mu^{\prime} . \tag{3.34}
\end{equation*}
$$

So, by combining (3.30) and (3.34) we obtain

$$
\begin{equation*}
2\left(4 f-f^{\prime 2}\right)\left(f \psi^{\prime}+(n-2) f^{\prime} \psi\right)+f^{\prime} \psi^{2}=0, \tag{3.35}
\end{equation*}
$$ where

$$
\begin{equation*}
\psi=2 f f^{\prime \prime}+(n-3) f^{\prime 2}+4(2-n) f \tag{3.36}
\end{equation*}
$$

Since $f^{\prime}=2\langle F, F\rangle$ and $f^{\prime \prime}=2+2 \kappa\left\langle F, i F^{\prime}\right\rangle$, the function ψ can be written as

$$
\begin{equation*}
\psi=4\left(\kappa f-(n-3)\left\langle F, i F^{\prime}\right\rangle\right)\left\langle F, i F^{\prime}\right\rangle . \tag{3.37}
\end{equation*}
$$

Case (B.i): f is a polynomial in s. A direct computation shows that the only polynomials which
satisfy (3.35) are of degree 0 or 2 . If f is of degree 2 , the leading coefficient must be one. For those polynomials the function ψ in (3.36) is constant.

If f is of degree zero, we may put $f=b^{-2}$ for some $b>0$. So, from (3.30) we find $\kappa=\theta^{\prime}=b$, which gives case (2) of the theorem.

If $f=s^{2}+b s+c$, then after applying a suitable translation in s, we get $f=s^{2}+a$ for some real number a. Thus, by (3.29) we get $\kappa=0$. Moreover, it is easy to verify that under $f=s^{2}+a$, (3.32) holds if and only if either $n=3$ or $a=0$. The later case cannot occurs, since the Lagrangian H umbilical submanifold has no totally geodesic points. Therefore, we obtain case (4) with $n=3$.

Case (B.ii): f is not a polynomial in s. The function ψ given by (3.36) is non-constant. Moreover, (3.24) and (3.33) yields $e_{1} \mu \neq 0$.

Case (B.ii.a): $\lambda=m \mu \neq 0$ for some $m \in \mathbf{R}$. Since $e_{1} \mu \neq 0$, after substituting $\lambda=m \mu$ into (3.34), we find $(n+m-3)(n+m-1)=0$, which gives cases (3) and (4).

Case (B.ii.b): $\lambda \neq c \mu$ for any $c \in \mathbf{R}$. By applying (3.27), and (3.37), we obtain from (3.35) that

$$
\begin{equation*}
2 f^{2} \kappa^{\prime}=(1-n) f^{\prime}\left(2 f \kappa+(3-n)\left\langle F, i F^{\prime}\right\rangle\right) \tag{3.38}
\end{equation*}
$$

From $\left|F^{\prime}\right|=1$ we have $r^{2} \theta^{\prime 2}+r^{\prime 2}=1$. Without loss of generality, we may assume that $\theta^{\prime}=r^{-1} \sqrt{1-r^{\prime 2}}$. Thus, from $F=r(s) e^{i \theta(s)}$ and (3.38), we obtain

$$
r \kappa^{\prime}+(n-1)\left(2 \kappa+(n-3) \theta^{\prime}\right) r^{\prime}=0
$$

which gives case (5) for $n=3$ and case (6) for $n>3$.
The converse can be verify by direct computation.
4. Complex extensors with parallel mean curvature vector.

Theorem 2. A complex extensor $F \otimes \iota_{0}^{n}$ of ι_{0}^{n} via a unit speed curve F in \mathbf{C}^{*} has parallel mean curvature vector if and only if either (1) the complex extensor is a minimal Lagrangian submanifold, or (2) F is a circle centered at the origin.

Proof. We already know that the complex extensor $F \otimes \iota_{0}^{n}$ is a non-totally geodesic Lagrangian submanifold whose second fundamental form satisfies (2.7) for some functions λ and μ with respect to some suitable orthonormal local frame field e_{1}, \ldots, e_{n}.

Since the mean curvature vector H is given by

$$
\begin{equation*}
H=\frac{1}{n}(\lambda+(n-1) \mu) J e_{1} \tag{4.1}
\end{equation*}
$$

the complex extensor ϕ has parallel mean curvature vector if and only if L is minimal or $\lambda+(n-1) \mu$ is a nonzero constant and $\nabla e_{1}=0$.

Now, assume that $F \otimes \iota_{0}^{n}$ is non-minimal. Then from $\nabla e_{1}=0$ we have $\omega_{1}^{j}\left(e_{k}\right)=0$ for $j, k=1, \ldots, n$. Combining this with (3.1) shows that μ is constant.

On the other hand, since $\mu=\frac{1}{2 f} \sqrt{4 f-f^{\prime 2}}$, after differentiating μ, we find

$$
\begin{equation*}
\left(f f^{\prime \prime}-f^{\prime 2}+2 f\right) f^{\prime}=0 \tag{4.2}
\end{equation*}
$$

If $f^{\prime}=0, f$ is a positive constant. Thus, F is a circle centered at the origin; hence the complex extensor $F \otimes \iota_{0}^{n}$ has parallel mean curvature vector.

When $f f^{\prime \prime}-f^{\prime 2}+2 f=0$ holds, then after applying a suitable translation in s and replacing s by $-s$ if necessary, we obtain

$$
f=s^{2}, f=\frac{4}{b^{2}} \sinh ^{2}\left(\frac{b s}{2}\right), \text { or } f=\frac{4}{b^{2}} \sin ^{2}\left(\frac{b s}{2}\right)
$$

according to $c=0, c=b^{2}>0$, or $c=-b^{2}<0$.
If $f=s^{2}$, we have $4 f=f^{\prime 2}$. So, the complex extensor is totally geodesic, which is a contradiction.

If $f=\frac{4}{b^{2}} \sinh ^{2}\left(\frac{b s}{2}\right)$ holds, we get $4 f<f^{\prime 2}$. This is impossible due to (3.27).

If $f=\frac{4}{b^{2}} \sin ^{2}\left(\frac{b s}{2}\right)$, then we have $\sqrt{4 f-f^{\prime 2}}=$ $\frac{4}{b} \sin ^{2}\left(\frac{b s}{2}\right)$. Thus (3.30) gives $\lambda=2 \mu$. So, $F \otimes \iota_{0}^{n}$ is a Lagrangian pseudo-sphere. This is impossible, since $\nabla e_{1} \neq 0$ for Lagrangian pseudo-spheres.

5. Remarks.

Remark 1. If a unit speed curve F satisfies $\kappa=m \theta^{\prime}(s)$ for some $m \in \mathbf{R}$, then $f=\langle F, F\rangle$ satisfies

$$
\begin{equation*}
2 f f^{\prime \prime}-m f^{\prime 2}+4(m-1) f=0 \tag{5.1}
\end{equation*}
$$

After solving this differential equation for f^{\prime} we get

$$
\begin{equation*}
4 f-f^{\prime 2}=\alpha f^{m} \tag{5.2}
\end{equation*}
$$

for some $\alpha>0$. Whenever $4 f-f^{\prime 2}>0$, we may put $\alpha=4 b^{2}, b>0$. Thus, if $s(f)$ is an anti-derivative of

$$
\frac{1}{2 \sqrt{f-b^{2} f^{m}}}
$$

the inverse function f of s satisfies (5.1). Thus, by (3.32), we know that $F=\sqrt{f} e^{i \theta}$ with $\theta=$ $\int_{0}^{s} b f^{\frac{m}{2}-1} d s$ is a unit speed curve satisfying $\kappa=m \theta^{\prime}$.

Remark 2. Put $y_{1}=f, y_{2}=f^{\prime}$ and $y_{3}=f^{\prime \prime}$. Then equation (3.35) is equivalent to the system:
$y_{1}^{\prime}=y_{2}, \quad y_{2}^{\prime}=y_{3}$,
$y_{3}^{\prime}=\frac{y_{2}}{4 y_{1}^{2}\left(4 y_{1}-y_{2}^{2}\right)}\left\{4\left(4(n-2) n+\left(n^{2}-4 n+3\right) y_{2}^{4}\right.\right.$
$\left.\left.-y_{3}\left(4 n-8+y_{3}\right)\right) y_{1}^{2}-4(n-1)\left(2 n-4-y_{3}\right) y_{1} y_{2}^{2}\right\}$.

Fig. 1. $\kappa=-5 \theta^{\prime}, \theta(0)=0, r(0)=1, \varphi(0)=\frac{\pi}{2}$.

Fig. 2. $\quad \kappa=6 r^{-4}, \theta(0)=0, r(0)=1, \varphi(0)=\frac{\pi}{2}$.

It follows from Picard's theorem that, for a given initial conditions: $y_{1}\left(s_{0}\right)=y_{1}^{0}, y_{2}\left(s_{0}\right)=y_{2}^{0}, y_{3}\left(s_{0}\right)=y_{3}^{0}$ at s_{0} with $y_{1}^{0}>0$ and $4 y_{1}^{0}>y_{2}^{0}$, the initial value problem has a unique solution in some open interval containing s_{0}. So, (3.35) admits infinitely many positive solutions f with $4 f>f^{\prime 2}$. Each f gives rise to a unit speed curve F whose curvature satisfies

$$
r \kappa^{\prime}+(n-1)\left(2 \kappa+(n-3) \theta^{\prime}\right) r^{\prime}=0
$$

So, there are infinitely many Hamiltonian-stationary Lagrangian submanifolds of type (6) of Theorem 1.

Acknowledgement. The curves $F=r e^{i \theta}$ related with Theorem 1 given above were produced by Prof. Yoshihiko Tazawa of Tokyo Denki University.

References

[1] R. Aiyama, Lagrangian surfaces with circle symmetry in the complex two-space, Michigan Math. J. 52 (2004), no. 3, 491-506.
[2] A. Amarzaya and Y. Ohnita, Hamiltonian stability of certain minimal Lagrangian submanifolds in complex projective spaces, Tohoku Math. J. (2) 55 (2003), no. 4, 583-610.
[3] H. Anciaux, Construction of many Hamiltonian stationary Lagrangian surfaces in Euclidean four-space, Calc. Var. Partial Differential Equations 17 (2003), no. 2, 105-120.
[4] H. Anciaux, I. Castro and P. Romon, Lagrangian submanifolds foliated by $(n-1)$-spheres in $\mathbf{R}^{2 n}$, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 4, 1197-1214.
[5] I. Castro and B.-Y. Chen, Lagrangian surfaces in complex Euclidean plane via spherical and

Fig. 3. $\kappa=8 r^{-4}, \theta(0)=0, r(0)=1, \varphi(0)=\frac{\pi}{2}$.

Fig. 4. $\kappa=9 r^{-4}, \theta(0)=0, r(0)=1, \varphi(0)=\frac{\pi}{2}$.
hyperbolic curves, Tohoku Math. J. 58 (2006), 565-579.
[6] I. Castro and F. Urbano, Examples of unstable Hamiltonian-minimal Lagrangian tori in \mathbf{C}^{2}, Compositio Math. 111 (1998), no. 1, 1-14.
[7] I. Castro, H. Li and F. Urbano, Hamiltonianstationary Lagrangian submanifolds in complex space forms, Pacific J. Math. (to appear).
[8] B.-Y. Chen, Geometry of submanifolds, Dekker, New York, 1973.
[9] B.-Y. Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J. (2) 49 (1997), no. 2, 277-297.
[10] B.-Y. Chen, Construction of Lagrangian surfaces in complex Euclidean plane with Legendre curves, Kodai Math. J. 29 (2006), no. 1, 84-112.
[11] B.-Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257-266.
[12] F. Hélein and P. Romon, Hamiltonian stationary Lagrangian surfaces in \mathbf{C}^{2}, Comm. Anal. Geom. 10 (2002), no. 1, 79-126.
[13] F. Hélein and P. Romon, Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions, Comment. Math. Helv. 75 (2000), no. 4, 668-680.
[14] A. E. Mironov, On Hamiltonian-minimal and minimal Lagrangian submanifolds in \mathbf{C}^{n} and $\mathbf{C P}^{n}$, Dokl. Akad. Nauk 396 (2004), no. 2, 159-161.
[15] Y.-G. Oh, Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds, Invent. Math. 101 (1990), no. 2, 501-519.

[^0]: 2000 Mathematics Subject Classiffcation. Primary 53D12; Secondary 53C40.

