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Trigonal quotients of modular curves X0(N)

By Yuji Hasegawa∗) and Mahoro Shimura∗∗)

(Communicated by Shigefumi Mori, m. j. a., Feb. 13, 2006)

Abstract: Let W (N) be the group of Atkin-Lehner involutions on the modular curve
X0(N). The purpose of this article is to give complementary result to [7, 8, 9]; namely, we
determine trigonal curves of the form X0(N)/W ′, where W ′ is a subgroup of W (N) such that
2 < |W ′| < |W (N)|.
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Let X0(N) be the modular curve over Q corre-
sponding to the congruence subgroup

Γ0(N) =
{(

a b

c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (mod N)
}

.

It is known [1] that the group AutQ X0(N) of au-
tomorphisms of X0(N) over Q contains the group
W (N) = {wd}d of Atkin-Lehner involutions, where
d runs through the set of positive divisors of N such
that gcd(d, N/d) = 1. The group W (N) is isomor-
phic to (Z/2Z)ω(N), where ω(N) is the number of
distinct prime divisors of N .

Let W ′ be a subgroup of W (N), and con-
sider the quotient curve X0(N)/W ′. When W ′ =
〈wd〉 (resp. W ′ = W (N)), this curve is denoted by
X+d

0 (N) (resp. X∗
0 (N)). Note that X0(N)/W ′ and

the natural map X0(N) → X0(N)/W ′ are also de-
fined over Q, since every Atkin-Lehner involution
is defined over Q. Furthermore, rational points of
X0(N)/W ′ has deep connection with Q-curves. (Re-
call that an elliptic curve E over Q̄ is called a Q-
curve if every Galois conjugate of E is isogeneous
to E.)

A curve X is said to be D-gonal if it admits a
finite morphism of degree D to the projective line
P1. We are interested in D-gonal curves X0(N)/W ′

with small D. It is not difficult to determine all the
pairs (N,W ′) for which X0(N)/W ′ is rational (D =
1) or elliptic (D = 2 and genus one). Moreover, all
the hyperelliptic X0(N)/W ′ (D = 2 and genus = 2)
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are completely determined by [3, 5, 6, 13].
Now let us consider the case D = 3, namely, the

case where X0(N)/W ′ is trigonal. We have already
determined the trigonal curves of type X0(N)/W ′

whenever |W ′| 5 2 or W ′ = W (N) (see [7, 8, 9]). In
this article, we determine the remaining case, i.e. 2 <

|W ′| < 2ω(N) = |W (N)|. Note that the existence of
such a W ′ forces N to have at least 3 distinct prime
divisors. Furthermore, we have a sharp upper bound
for N :

Lemma 1. If X0(N)/W ′ is trigonal for some
W ′ ⊂ W (N), then X∗

0 (N) is D′-gonal with D′ 5 3.
In particular , we have N 5 570.

Proof . Let X be a D-gonal curve and suppose
there is a finite morphism X → Y . Then Y is D′-
gonal with D′ 5 D ([11, Thm. VII.2], [12, Lem. 1.3]).
Now take X∗

0 (N) as Y . By [5, 9] every rational, el-
liptic, hyperelliptic, or trigonal X∗

0 (N) has level N 5
570, so we obtain the desired result.

From now on, we always assume that N 5 570.
In view of [7, 8, 9], it remains to check the trigonality
of X0(N)/W ′ for (N,W ′) such that{

ω(N) = 3 and |W ′| = 4;
ω(N) = 4 and |W ′| = 4, 8.

It is known that every nonhyperelliptic
curve of genus 3 or 4 is necessarily trigonal ([2],
[4, pp. 345–346]). On the other hand, it is easy
to see that any hyperelliptic curve of genus = 3 is
not trigonal. We can explicitly determine all the
X0(N)/W ′ with genus 3 or 4, so by using the result
of [3] we find there are 93 trigonal curves X0(N)/W ′

of genus 3 or 4, as listed in Tables I and II.
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Table I. List of W ′ (g′ = 3)

N p|N W ′

84 2, 3, 7 〈2, 7〉, 〈3, 7〉, 〈12, 28〉
90 2, 3, 5 〈2, 9〉, 〈2, 5〉, 〈18, 10〉
102 2, 3, 17 〈2, 17〉, 〈6, 17〉, 〈6, 34〉
114 2, 3, 19 〈2, 57〉, 〈6, 38〉
120 2, 3, 5 〈3, 5〉
130 2, 5, 13 〈2, 65〉, 〈26, 5〉
132 2, 3, 11 〈44, 3〉, 〈12, 11〉
138 2, 3, 23 〈2, 23〉
140 2, 5, 7 〈20, 7〉, 〈20, 28〉
150 2, 3, 5 〈2, 75〉, 〈50, 3〉
156 2, 3, 13 〈3, 13〉, 〈12, 52〉
174 2, 3, 29 〈3, 29〉, 〈2, 87〉
182 2, 7, 13 〈14, 26〉
190 2, 5, 19 〈2, 95〉, 〈10, 38〉
195 3, 5, 13 〈3, 65〉, 〈15, 39〉
210 2, 3, 5, 7 〈2, 5, 7〉, 〈3, 5, 7〉, 〈2, 3, 35〉,

〈6, 5, 7〉, 〈10, 14, 3〉, 〈6, 14, 5〉
222 2, 3, 37 〈6, 74〉
231 3, 7, 11 〈3, 77〉
238 2, 7, 17 〈7, 17〉, 〈2, 119〉, 〈14, 34〉

Table II. List of W ′ (g′ = 4)

N p|N W ′

102 2, 3, 17 〈2, 3〉, 〈34, 3〉
114 2, 3, 19 〈2, 3〉, 〈3, 19〉, 〈6, 19〉
120 2, 3, 5 〈8, 3〉, 〈40, 3〉
126 2, 3, 7 〈2, 7〉, 〈18, 7〉
130 2, 5, 13 〈2, 5〉, 〈5, 13〉, 〈10, 13〉
132 2, 3, 11 〈3, 11〉, 〈4, 33〉, 〈12, 44〉
138 2, 3, 23 〈2, 69〉
140 2, 5, 7 〈4, 5〉, 〈5, 7〉, 〈28, 5〉
150 2, 3, 5 〈2, 25〉, 〈3, 25〉, 〈6, 25〉
154 2, 7, 11 〈7, 11〉, 〈2, 77〉, 〈22, 7〉
165 3, 5, 11 〈3, 11〉, 〈5, 11〉
168 2, 3, 7 〈56, 3〉
170 2, 5, 17 〈2, 85〉, 〈34, 5〉
174 2, 3, 29 〈6, 29〉, 〈6, 58〉
182 2, 7, 13 〈2, 91〉, 〈26, 7〉, 〈14, 13〉
186 2, 3, 31 〈62, 3〉
210 2, 3, 5, 7 〈2, 3, 7〉, 〈2, 5, 21〉, 〈2, 15, 7〉,

〈14, 3, 5〉, 〈2, 15, 21〉
220 2, 5, 11 〈5, 11〉, 〈4, 55〉, 〈20, 44〉
222 2, 3, 37 〈2, 111〉
231 3, 7, 11 〈33, 7〉, 〈21, 11〉, 〈21, 33〉
255 3, 5, 17 〈51, 5〉

Table II. (cont.)

N p|N W ′

285 3, 5, 19 〈3, 95〉
286 2, 11, 13 〈2, 143〉
330 2, 3, 5, 11 〈6, 10, 11〉

Here we abbreviate 〈wd1 , wd2 , . . . 〉 to 〈d1, d2, . . . 〉.

In the following, we assume that X0(N)/W ′ is
of genus g′ = 5. Some cases are concluded to be
nontrigonal, by the following two lemmas.

Lemma 2 (See [7, §4] and the references given
there). Let X be a curve of genus g, and let w be
an involution on X. Let ḡ be the genus of X/〈w〉. If
g > 2(ḡ + 1), then X is not trigonal .

Lemma 3 (cf. [13]). Let X̃ be the reduction
of X0(N)/W ′ at a prime p not dividing N . If∣∣∣X̃(Fpn)

∣∣∣ > 3(1 + pn)

for some n, then X0(N)/W ′ is not trigonal .
Remark 1.

(a) For X = X0(N)/W ′ and w = wd (mod W ′) ∈
W (N)/W ′, it is not difficult to compute the
genus of X/〈w〉.

(b) If X/Q is a trigonal curve of genus g = 5, then
X has a Q-rational finite morphism of degree 3
to a rational curve over Q ([12, Thm. 2.1]). If
in addition X has good reduction at a prime p,
then the reduced curve X̃/Fp has a finite mor-
phism of degree d′ 5 3 to a rational curve over
Fp ([12, Lem. 5.1]), so we must have an inequal-
ity

∣∣X̃(Fpn)
∣∣ 5 3(1+pn). From this observation,

together with the fact that X0(N)/W ′ has good
reduction at any prime p not dividing N , we
obtain Lemma 3. One can compute the num-
ber of rational points of X0(N)/W ′ over finite
fields by using trace formulas of Hecke operators
([10, 15]).
Thus we reduce the set of (N,W ′) for which

X0(N)/W ′ is possibly trigonal. Finally, to each
X0(N)/W ′ such that (N,W ′) belongs to this set,
we apply Proposition 2 in [8], which gives a criterion
for trigonality. (Alternatively, one may use Petri’s
theorem ([2]).) See [7, 8] for details.

Our main result is as follows:
Theorem. Let N be a positive integer , and let

W ′ be a subgroup of W (N). Assume that 2 < |W ′| <
2ω(N). Then X0(N)/W ′ is trigonal of genus g′ = 5,
if and only if W ′ is in the following list :
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N p|N W ′ g′

154 2, 7, 11 〈14, 11〉 5
170 2, 5, 17 〈10, 17〉 5
204 2, 3, 13 〈68, 3〉 5
270 2, 3, 5 〈10, 27〉 7
330 2, 3, 5, 11 〈10, 3, 11〉 5

(Notation for W ′ is the same as in Tables I and II.)
The following list gives the plane models of

X0(N)/W ′.

Plane model of X0(N)/W ′

X0(154)/〈14, 11〉:
(t2 + 1)s3 + t(t− 1)s2 + t(2t− 1)(t− 2)s
− t(t− 1)(t2 − 3t + 1) = 0

X0(170)/〈10, 17〉:
(t2 − t + 1)s3 + (t2 − t + 3)s2

+ (2t3 + 3t + 3)s− (t4 − 2t3 − 4t− 1) = 0
X0(204)/〈68, 3〉:

(t2 − 2t− 2)s3 + (3t3 − 8t2 − 2t + 1)s2

+ 2(t4 − 3t3 − t− 1)s− 4t2 = 0
X0(270)/〈10, 27〉:

(t + 1)(t2 − t + 1)s3 + 3t(t3 − t + 1)s2

+ 3t2(t− 1)(t2 + t− 1)s
− (3t4 + 6t3 + 1) = 0

X0(330)/〈10, 3, 11〉:
(t2 + t + 1)s3 − (t3 + 2t2 + 4t + 2)s2

+ (t4 + 2t2 + 3t + 2)s
− (t3 − t2 + t + 1) = 0

We refer to [8, §3] for the method of computing
plane models (cf. [14]).

Remark 2. Let N be a positive integer, and
let W ′ be a subgroup of W (N). We see from the
theorem above and the results of [7, 8, 9] that there
are eighteen pairs of (N,W ′) for which X0(N)/W ′

is a trigonal curve of genus = 5. Here we summarize
the results for |W ′| 5 2 and W ′ = W (N).

If |W ′| = 1 then X0(N)/W ′ is just the curve
X0(N), and every trigonal curve X0(N) has genus
< 5 ([7]).

If |W ′| = 2, then X0(N)/W ′ = X+d
0 (N) for

some 1 < d|N such that (d, N/d) = 1. In this case
there are 8 pairs of (N, d) for which X0(N)/〈wd〉 is
trigonal of genus = 5 ([8]); i.e. (N, d) = (122, 122),
(146, 146), (147, 3), (181, 181), (227, 227) for genus 5,
(N, d) = (117, 13), (164, 164) for genus 6, and
(N, d) = (162, 162) for genus 7.

Finally, there are 5 values of N for which
X∗

0 (N) = X0(N)/W (N) is trigonal of genus = 5
([9]); i.e. N = 253, 302, 323, 555 for genus 5 and N =
351 for genus 6.

Acknowledgments. The first author was
supported in part by Grant-in-Aid for Young Sci-
entists (B) no. 16740002, the Ministry of Education,
Culture, Sports, Science and Technology of Japan.
The second author was supported in part by “The
Research on Security and Reliability in Electronic
Society,” Chuo University 21st Century COE Pro-
gram.

References

[ 1 ] A. O. L. Atkin and J. Lehner, Hecke operators on
Γ0(m), Math. Ann. 185 (1970), 134–160.

[ 2 ] E. Arbarello, M. Cornalba, P. A. Griffith, and
J. Harris, Geometry of algebraic curves. Vol. I,
Springer, New York, 1985.

[ 3 ] M. Furumoto and Y. Hasegawa, Hyperelliptic quo-
tients of modular curves X0(N), Tokyo J. Math.
22 (1999), no. 1, 105–125.

[ 4 ] R. Hartshorne, Algebraic geometry, Springer, New
York, 1977.

[ 5 ] Y. Hasegawa, Hyperelliptic modular curves
X∗

0 (N), Acta Arith. 81 (1997), no. 4, 369–385.
[ 6 ] Y. Hasegawa and K. Hashimoto, Hyperelliptic

modular curves X∗
0 (N) with square-free levels,

Acta Arith. 77 (1996), no. 2, 179–193.
[ 7 ] Y. Hasegawa and M. Shimura, Trigonal modular

curves, Acta Arith. 88 (1999), no. 2, 129–140.
[ 8 ] Y. Hasegawa and M. Shimura, Trigonal modular

curves X+d
0 (N), Proc. Japan Acad. Ser. A Math.

Sci. 75 (1999), no. 9, 172–175.
[ 9 ] Y. Hasegawa and M. Shimura, Trigonal modular

curves X∗
0 (N), Proc. Japan Acad. Ser. A Math.

Sci. 76 (2000), no. 6, 83–86.
[ 10 ] H. Hijikata, Explicit formula of the traces of Hecke

operators for Γ0(N), J. Math. Soc. Japan 26
(1974), 56–82.

[ 11 ] M. Newman, Conjugacy, genus, and class numbers,
Math. Ann. 196 (1972), 198–217.

[ 12 ] K. V. Nguyen and M.-H. Saito, D-gonality of mod-
ular curves and bounding torsions. (Preprint).

[ 13 ] A. P. Ogg, Hyperelliptic modular curves, Bull. Soc.
Math. France 102 (1974), 449–462.

[ 14 ] M. Shimura, Defining equations of modular
curves X0(N), Tokyo J. Math. 18 (1995), no. 2,
443–456.

[ 15 ] M. Yamauchi, On the traces of Hecke operators for
a normalizer of Γ0(N), J. Math. Kyoto Univ. 13
(1973), 403–411.


