
No. 8] Proc. Japan Acad., 82, Ser. A (2006) 137

Kummer sandwich theorem of certain elliptic K3 surfaces
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Abstract: It is shown that any elliptic K3 surface with a section and with two II∗-fibres is
sandwiched by a Kummer surface in a very precise way.
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1. Introduction. The aim of this note is to
prove the following result which may be called the
“Kummer sandwich theorem” of any elliptic K3 sur-
face (with a section) with two II∗-fibres by a Kum-
mer surface.

Theorem 1.1. Suppose X is any elliptic K3
surface with a section and with two II∗-fibres. Then
there exist a unique Kummer surface S = Km(C1 ×
C2) of the product of two elliptic curves C1, C2 and
two commuting symplectic involutions σ, τ ∈ Aut(S)
such that (i) the quotient surface S/〈σ〉 is birational
to X, and (ii) the quotient surface S/〈σ, τ〉 is bira-
tional to S itself. In particular, S dominates and is
dominated by X, by the rational maps of degree two:

(1.1) φ : S → X, ψ : X → S.

The last assertion (1.1) expressing the “isoge-
nous” relationship of X,S has been shown in [1] and
[2] in the case of complex singular K3 surfaces (see
the remark in §4). Theorem 1.1 is a refined gener-
alization of this fact. The proof, to be given in §4,
is purely algebraic and works for any algebraically
closed base field k of characteristic �= 2, 3. It makes
use of a recent result (see §3) on the explicit defining
equations of elliptic fibrations on a Kummer surface
[5].

A few words are in order for the motivation to
study those special K3 surfaces treated here. It is
wellknown that in the proof of the Torelli theorem
(injectivity of the period map) by Piateckii-Shapiro-
Shafarevich [8] a special role is played by the Kum-
mer surfaces which are dense in the moduli space of
polarized K3 surfaces. The elliptic K3 surfaces with
two II∗-fibres are first constructed in Inose-Shioda
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[2] (corresponding to the above ψ) and used for prov-
ing the surjectivity of the period map in the case of
singular K3 surfaces, which gives the complete clas-
sification of such surfaces. This construction is ex-
tended by Morrison [6] in a useful way. Another
construction given by Inose [1] (corresponding to the
above φ) has recently been reconsidered by Kuwata
[4] and others (cf. [9, 10]), one reason being that it
leads to elliptic K3 surfaces with high Mordell-Weil
rank. Thus these K3 surfaces, very special as they
may be from the moduli point of view, have various
rich properties, which we think are still worth study-
ing today. Along the same line, an approach to the
notion of isogeny for K3 surfaces has been proposed
in the case of singular K3 surfaces in [1, 2]. The
above theorem illustrates that an elliptic K3 surface
X with two II∗-fibres is “isogenous” to a Kummer
surface S in a very concrete sense. By the way, it
is an open question to decide whether or not the ex-
istence of a dominant rational map of K3 surfaces
X → Y is symmetric with respect to X,Y as in the
case of abelian varieties.

Notation. For the singular fibres of an elliptic
surface, we follow Kodaira’s notation [3]; also we use
freely the results on singular fibres from [3, 11]. For
abbreviation, let us introduce the following classes
of algebraic K3 surfaces (over a base field k) up to
isomorphisms:

(KmP ): the Kummer surfaces Km(C1 ×C2) of
the product of two elliptic curves C1, C2.

(II∗2): the elliptic K3 surfaces with a section
and with two singular fibres of type II∗ (at 0,∞ ∈
P1) plus some other singular fibres.

(II∗I∗2): the elliptic K3 surfaces with a section
and with one singular fibre of type II∗ (at ∞ ∈ P1)
and two of types I∗b1 , I

∗
b2

(or I∗0 , IV
∗) and possibly



138 T. Shioda [Vol. 82(A),

some others.
P1

u : the projective line with the inhomogeneous
coordinate u (the u-line).

L[n]: the lattice L with the pairing multiplied
by n.

TX : the lattice of transcendental cycles on a sur-
face X (over k = C), which carries a natural Hodge
structure (as a sub-Hodge structure of H2(X,Z)).

2. The defining equation for X ∈ (II∗2).
Let X be an elliptic K3 surface over the T -line P1

T

belonging to (II∗2).

Proposition 2.1. Every X ∈ (II∗2) has the
defining Weierstrass equation

(2.1) Xα,β : y2 = x3 − 3αx+ (T +
1
T

− 2β)

for some constants α, β. The pair (α3, β2) is
uniquely determined by X.

Proof. We can write the Weierstrass equation
of an elliptic K3 surface (with a section) X as

y2 = x3 +Ax+B

with polynomial coefficients A,B ∈ k[T ], degA ≤
8, degB ≤ 12. By [3] or [11], a necessary condi-
tion for this to have a fibre of type II∗ at T = 0 is
that A = T 4A1, B = T 5B1 for some A1, B1 ∈ k[T ]
and B1(0) �= 0. Considering the same condition at
T = ∞, we have A1 ∈ k and degB1 = 2. Then
by replacing T by a constant multiple, we can as-
sume B1 = b0(T 2 +1)+ b1T . Next, by replacing x, y
by suitable constant multiples, we can make b0 = 1.
Thus we have

y2 = x3 +A1T
4x+ T 5(T 2 + 1 + b1T ).

Dividing the both sides by T 6 and letting α = −A1/3
and β = −b1/2, we obtain the equation in the desired
form (2.1). Conversely it is easy to check that this
equation defines an elliptic K3 surface with two II∗-
fibres.

After choosing the coordinates T, x, y as above,
the remaining freedom for them is

T → T±1, x→ ωx, y → ±y (ω3 = 1).

This implies the uniqueness of α, β as asserted.
3. Elliptic pencils on a Kummer surface.

Let S = Km(C1 × C2) be the Kummer surface of
the product of two elliptic curves C1, C2. Let j1, j2

denote their j-invariants. (The j-invariant is classi-
cally normalized so that j = 1 for the elliptic curve
y2 = x3 − x instead of j = 1728.) In the sequel, we
write such an S as

S = Sj1,j2 .

Proposition 3.1. The Kummer surface S =
Sj1,j2 admits an elliptic fibration f : S → P1

t which
has two singular fibres of type IV ∗ (Inose’s pencil).
Its defining equation is given by

(3.1) y2 = x3 − 3αx+ (t2 +
1
t2

− 2β)

where

(3.2) α = 3
√
j1j2, β =

√
(1 − j1)(1 − j2)

with the choice of the cube root or square root being
arbitrary. As a function on the surface S, the elliptic
parameter t is equal, up to a constant, to the ratio
y2/y1 of the y-coordinates of Weierstrass equations
of C1, C2.

Proof. For the proof, see [1, 9, 10] or [5, §2].

Proposition 3.2. The Kummer surface S =
Sj1,j2 admits another elliptic fibration f ′ : S → P1

u

belonging to the class (II∗I∗2), i.e. it has (at least)
three singular fibres II∗, I∗b1 , I

∗
b2

, or II∗, I∗0 , IV
∗. If

we normalize the position of these fibres (in this or-
der) at the 3 points u = ∞, u = ±2 of the base curve
P1

u, the defining equation is given by

(3.3) y2 = x3 − 3α(u2 − 4)2x+ (u− 2β)(u2 − 4)3

where α, β are determined by (3.2).

Proof. For the proof, see [2] for the first as-
sertion. The second follows from [5, §5] by a simple
coordinate change.

Remark. The elliptic fibrations f (or f ′) on S
is known to be unique up to automorphisms of S, at
least if k = C and C1, C2 are not isogenous to each
other. See Oguiso [7].

4. Proof of Theorem 1.1. Take any K3
surface X in the class (II∗2). By Propositions 2.1,
we can assume that X = Xα,β , i.e. it is defined
by the equation (2.1) for some constants α, β ∈ k.
Choose two elements j1, j2 ∈ k such that

(4.1) j1j2 = α3, j1 + j2 = 1 + α3 − β2.

The (unordered) pair {j1, j2} is uniquely determined
by X . Let C1 (or C2) be the elliptic curve with the
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j-invariant j1 (or j2), and let S = Sj1,j2 = Km(C1 ×
C2).

Then, by comparing Propositions 2.1 and 3.1,
we have a rational map of degree two from S to X
defined by

φ : S → X, (x, y, t) �→ (x, y, T ), T = t2.

Next we consider the group G = 〈σ, τ〉 of sym-
plectic automorphisms of S generated by the involu-
tions:

σ : (x, y, t) �→ (x, y,−t), τ : (x, y, t) �→ (x,−y, 1/t).

The above map φ is birationally equivalent to the
quotient map S → S/〈σ〉. Hence the quotient S/G
is birational to Y := X/〈τ̄〉, where τ̄ is the involution
of X induced by τ :

τ̄ : (x, y, T ) �→ (x,−y, 1/T ).

The invariant subfield of k(x, y, T ) under this in-
volution is generated by the 3 elements x, s :=
T + 1

T , z := y(T − 1
T ) which satisfy the relation

z2 = y2(T − 1
T

)2 = (x3 − 3αx+ (s− 2β))(s2 − 4).

Hence, by letting

ξ := x(s2−4) = x(T− 1
T

)2, η := z(s2−4) = y(T− 1
T

)3,

the function field of the quotient Y is equal to k(Y ) =
k(s, ξ, η) with the relation

η2 = ξ3 − 3αξ(s2 − 4)2 + (s− 2β)(s2 − 4)3.

Now comparing the last equation with (3.3) in
Proposition 3.2, we see that Y is birationally equiv-
alent to S. Therefore the map

ψ : (x, y, T ) �→ (ξ, η, s)

defines a rational map of degree two from X to S,
which is the quotient map of X by the involution τ̄ .

This completes the proof of Theorem 1.1.
Remark. For comparison, we outline the

(transcendental) proof of the claim (1.1) in [1, 2] (k =
C). Take any Kummer surface S ∈ (KmP ). (i) Via
the double cover construction ψ : X → S, we obtain
X ∈ (II∗2) such that TS

∼= TX [2] for the lattices of
transcendental cycles. (ii) On the other hand, via
the double quotient construction φ : S → Y using

the Inose’s pencil on S, we obtain Y ∈ (II∗2) such
that TS

∼= TY [2]. (iii)Thus we have X,Y ∈ (II∗2)
and a rational map X → S → Y of degree 4, such
that TX

∼= TY . Then the Torelli theorem implies that
X and Y are isomorphic K3 surfaces. (In [1] and [2],
the case of “singular” K3 surfaces is treated.) Thus
we have the rational map S → Y ∼= X → S of degree
4 as in (1.1).

At any rate, this argument has predicted the
explicit defining equation of the elliptic fibration on
S ∈ (KmP ) stated in Prop.3.2 (verified in [5]), and
suggested the Kummer sandwich theorem.

5. Some consequences. In the above
proof, a bijective correspondence is given between
the (unordered) pairs {j1, j2} and the pairs (α3, β2)
related by (3.3) or (4.1), i.e.

j1j2 = α3, j1 + j2 = 1 + α3 − β2.

Then the following is immediate.
Proposition 5.1. The correspondence Sj1,j2

�→ Xα,β gives a bijection from (KmP ) to (II∗2).

Proposition 5.2. The correspondence S =
Sj1,j2 �→ (S, f ′) defines a bijection from (KmP ) to
(II∗I∗2).

Proof. Take any Z ∈ (II∗I∗2). Taking the base
change, we obtain X ∈ (II∗2) with an involution σ

such that X/〈σ〉 ∼ Z. It is clear that Z is the unique
quotient of X belonging to II∗I∗2. It follows from
Prop.5.1 that Z ∼= Sj1,j2 for some j1, j2. This proves
that the correspondence (KmP ) to (II∗2) is surjec-
tive. The injectivity is obvious in this situation.

Corollary 5.3. Every Z ∈ (II∗I∗2) is a Kum-
mer surface.

In the complex case k = C, the above Corollary
was stated without proof in [2, §2].
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