Symmetric crystals and affine Hecke algebras of type B

By Naoya Enomoto and Masaki Kashiwara
Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

(Communicated by Shigefumi Mori, m.J.A., Oct. 12, 2006)

Abstract

The Lascoux-Leclerc-Thibon conjecture, reformulated and solved by S. Ariki, asserts that the K-group of the representations of the affine Hecke algebras of type A is isomorphic to the algebra of functions on the maximal unipotent subgroup of the group associated with a Lie algebra \mathfrak{g} where \mathfrak{g} is $\mathfrak{g l}_{\infty}$ or the affine Lie algebra $A_{\ell}^{(1)}$, and the irreducible representations correspond to the upper global bases. In this note, we formulate analogous conjectures for certain classes of irreducible representations of affine Hecke algebras of type B.

Key words: Crystal bases; affine Hecke algebras; LLT conjecture.

1. Introduction. The purpose of this note is to formulate and explain conjectures on certain classes of irreducible representations of affine Hecke algebras of type B analogous to the Lascoux-LeclercThibon conjecture ([3]), reformulated and solved by S. Ariki, on affine Hecke algebras of type A.

Let us begin by recalling the Lascoux-LeclercThibon conjecture solved by S. Ariki ([1]). Let $\mathrm{H}_{n}^{\mathrm{A}}$ be the affine Hecke algebra of type A of degree n. Let $\mathrm{K}_{n}^{\mathrm{A}}$ be the Grothendieck group of the abelian category of finite-dimensional $\mathrm{H}_{n}^{\mathrm{A}}$-modules, and $\mathrm{K}^{\mathrm{A}}=\oplus_{n \geq 0} \mathrm{~K}_{n}^{\mathrm{A}}$. Then it has a structure of Hopf algebra by the restriction and the induction (cf. §3.3). The set $I=\mathbf{C}^{*}$ may be regarded as a Dynkin diagram with I as the set of vertices and with edges between $a \in I$ and $a p_{1}^{2}$ (see (7)). Here p_{1} is the parameter of the affine Hecke algebra usually denoted by q. Let \mathfrak{g}_{I} be the associated Lie algebra, and \mathfrak{g}_{I}^{-}the unipotent Lie subalgebra. Hence \mathfrak{g}_{I} is isomorphic to a direct sum of copies of $A_{\ell}^{(1)}$ if p_{1}^{2} is a primitive ℓ-th root of unity and to a direct sum of copies of $\mathfrak{g l} l_{\infty}$ if p_{1} has an infinite order. Let U_{I} be the group associated to \mathfrak{g}_{I}^{-}. Then $\mathbf{C} \otimes \mathrm{K}^{\mathrm{A}}$ is isomorphic to the algebra $\mathscr{O}\left(U_{I}\right)$ of regular functions on U_{I}. Let $U_{q}\left(\mathfrak{g}_{I}\right)$ be the associated quantized enveloping algebra. Then $U_{q}^{-}\left(\mathfrak{g}_{I}\right)$ has an upper global basis $\left\{G^{\mathrm{up}}(b)\right\}_{b \in B(\infty)}$. By specializing $\bigoplus \mathbf{C}\left[q, q^{-1}\right] G^{\mathrm{up}}(b)$ at $q=1$, we obtain $\mathscr{O}\left(U_{I}\right)$. Then the LLT-conjecture says that the elements associated to irreducible $\mathrm{H}^{\mathrm{A}}-$ modules corresponds to the image of the upper global basis.

2000 Mathematics Subject Classiffcation. 20G05, 20C08.

In this note, we shall formulate analogous conjectures for affine Hecke algebras of type B. In the type B case, we have to replace $U_{q}^{-}\left(\mathfrak{g}_{I}\right)$ and its upper global basis with a new object, the symmetric crystals (see § 2). It is roughly stated as follows. Let $\mathrm{H}_{n}^{\mathrm{B}}$ be the affine Hecke algebra of type B of degree n. Let $\mathrm{K}_{n}^{\mathrm{B}}$ be the Grothendieck group of the abelian category of finite-dimensional modules over $\mathrm{H}_{n}^{\mathrm{B}}$, and $\mathrm{K}^{\mathrm{B}}=\oplus_{n \geq 0} \mathrm{~K}_{n}^{\mathrm{B}}$. Then K^{B} has a structure of a Hopf bimodule over K^{A}. The group U_{I} has an involution θ induced by the involution $a \mapsto a^{-1}$ of $I=\mathbf{C}^{*}$. Let U_{I}^{θ} be the θ-fixed point set of U_{I}. Then $\mathscr{O}\left(U_{I}^{\theta}\right)$ is a quotient ring of $\mathscr{O}\left(U_{I}\right)$. The action of $\mathscr{O}\left(U_{I}\right) \simeq \mathbf{C} \otimes \mathrm{K}^{\mathrm{A}}$ on $\mathbf{C} \otimes \mathrm{K}^{\mathrm{B}}$, in fact, descends to the action of $\mathscr{O}\left(U_{I}^{\theta}\right)$.

We introduce $V_{\theta}(\lambda)$ (see $\S 2$), a kind of the q analogue of $\mathscr{O}\left(U_{I}^{\theta}\right)$. Our conjecture is then:
(i) $V_{\theta}(\lambda)$ has a crystal basis and a global basis.
(ii) K^{B} is isomorphic to a specialization of $V_{\theta}(\lambda)$ at $q=1$ as an $\mathscr{O}\left(U_{I}\right)$-module, and the irreducible representations correspond to the upper global basis of $V_{\theta}(\lambda)$ at $q=1$.

We exclude the representations of $\mathrm{H}_{n}^{\mathrm{B}}$ such that X_{i} have an eigenvalue ± 1 (see §3).
2. Symmetric crystals. In this section, we shall introduce crystals associated with quantum groups with an involution.
2.1. Quantized universal enveloping algebras. We shall recall the quantized universal enveloping algebra $U_{q}(\mathfrak{g})$. Let I be an index set (for simple roots), and Q the free \mathbf{Z}-module with a basis $\left\{\alpha_{i}\right\}_{i \in I}$. Let $(\cdot, \cdot): Q \times Q \rightarrow \mathbf{Z}$ be a symmetric bi-
linear form such that $\left(\alpha_{i}, \alpha_{i}\right) / 2 \in \mathbf{Z}_{>0}$ for any i and $\left(\alpha_{i}^{\vee}, \alpha_{j}\right) \in \mathbf{Z}_{\leq 0}$ for $i \neq j$ where $\alpha_{i}^{\vee}:=2 \alpha_{i} /\left(\alpha_{i}, \alpha_{i}\right)$. Let q be an indeterminate and set $K:=\mathbf{Q}(q)$. We define its subrings $\mathbf{A}_{0}, \mathbf{A}_{\infty}$ and \mathbf{A} as follows:

$$
\begin{aligned}
& \mathbf{A}_{0}=\{f / g ; f(q), g(q) \in \mathbf{Q}[q], g(0) \neq 0\} \\
& \mathbf{A}_{\infty}=\left\{f / g ; f\left(q^{-1}\right), g\left(q^{-1}\right) \in \mathbf{Q}\left[q^{-1}\right]\right. \\
&\left.\left.g\left(q^{-1}\right)\right|_{q^{-1}=0} \neq 0\right\} \\
& \mathbf{A}=\mathbf{Q}\left[q, q^{-1}\right] .
\end{aligned}
$$

Definition 2.1. The quantized universal enveloping algebra $U_{q}(\mathfrak{g})$ is the K-algebra generated by the elements e_{i}, f_{i} and invertible elements $t_{i}(i \in I)$ with the following defining relations.
(i) The t_{i} 's commute with each other.
(ii) $t_{j} e_{i} t_{j}^{-1}=q^{\left(\alpha_{j}, \alpha_{i}\right)} e_{i} \quad$ and $\quad t_{j} f_{i} t_{j}^{-1}=$ $q^{-\left(\alpha_{j}, \alpha_{i}\right)} f_{i} \quad$ for any $i, j \in I$.
(iii) $\left[e_{i}, f_{j}\right]=\delta_{i j} \frac{t_{i}-t_{i}^{-1}}{q_{i}-q_{i}^{-1}}$ for $i, j \in I$. Here $q_{i}:=$ $q^{\left(\alpha_{i}, \alpha_{i}\right) / 2}$.
(iv) (Serre relation) For $i \neq j$,

$$
\begin{aligned}
& \sum_{k=0}^{b}(-1)^{k} e_{i}^{(k)} e_{j} e_{i}^{(b-k)}=0 \\
& \sum_{k=0}^{b}(-1)^{k} f_{i}^{(k)} f_{j} f_{i}^{(b-k)}=0
\end{aligned}
$$

Here $b=1-\left(\alpha_{i}^{\vee}, \alpha_{j}\right)$ and

$$
\begin{aligned}
e_{i}^{(k)} & =e_{i}^{k} /[k]_{i}!, f_{i}^{(k)}=f_{i}^{k} /[k]_{i}! \\
{[k]_{i} } & =\left(q_{i}^{k}-q_{i}^{-k}\right) /\left(q_{i}-q_{i}^{-1}\right) \\
{[k]_{i}!} & =[1]_{i} \cdots[k]_{i}
\end{aligned}
$$

Let us denote by $U_{q}^{-}(\mathfrak{g})$ (resp. $\left.U_{q}^{+}(\mathfrak{g})\right)$ the subalgebra of $U_{q}(\mathfrak{g})$ generated by the f_{i} 's (resp. the e_{i} 's). Let us recall the crystal theory of $U_{q}^{-}(\mathfrak{g})([4])$. Let e_{i}^{\prime} and e_{i}^{*} be the operators on $U_{q}^{-}(\mathfrak{g})$ defined by

$$
\left[e_{i}, a\right]=\frac{\left(e_{i}^{*} a\right) t_{i}-t_{i}^{-1} e_{i}^{\prime} a}{q_{i}-q_{i}^{-1}} \quad\left(a \in U_{q}^{-}(\mathfrak{g})\right)
$$

Then these operators satisfy the following formula similar to derivations:

$$
\begin{aligned}
& e_{i}^{\prime}(a b)=e_{i}^{\prime}(a) b+\left(\operatorname{Ad}\left(t_{i}\right) a\right) e_{i}^{\prime} b \\
& e_{i}^{*}(a b)=a e_{i}^{*} b+\left(e_{i}^{*} a\right)\left(\operatorname{Ad}\left(t_{i}\right) b\right)
\end{aligned}
$$

Then $U_{q}^{-}(\mathfrak{g})$ has a unique symmetric bilinear form (\cdot, \cdot) such that $(1,1)=1$ and

$$
\left(e_{i}^{\prime} a, b\right)=\left(a, f_{i} b\right) \quad \text { for any } a, b \in U_{q}^{-}(\mathfrak{g})
$$

It is non-degenerate and satisfies $\left(e_{i}^{*} a, b\right)=\left(a, b f_{i}\right)$. The left multiplication of f_{j} and e_{i}^{\prime} have the commutation relation

$$
e_{i}^{\prime} f_{j}=q^{-\left(\alpha_{i}, \alpha_{j}\right)} f_{j} e_{i}^{\prime}+\delta_{i j}
$$

and both the e_{i}^{\prime} 's and the f_{i} 's satisfy the Serre relations. Since e_{i}^{\prime} and f_{i} satisfy the q-boson relation, any element $a \in U_{q}^{-}(\mathfrak{g})$ can be written uniquely as

$$
a=\sum_{n \geq 0} f_{i}^{(n)} a_{n} \quad \text { with } e_{i}^{\prime} a_{n}=0
$$

We define the modified root operators by

$$
\begin{align*}
& \tilde{e}_{i} a=\sum_{n \geq 1} f_{i}^{(n-1)} a_{n} \quad \text { and } \\
& \tilde{f}_{i} a=\sum_{n \geq 0} f_{i}^{(n+1)} a_{n} \tag{1}
\end{align*}
$$

Let $L(\infty)$ be the $\underset{\tilde{f}_{0}}{\mathbf{A}_{0} \text {-submodule }}$ of $U_{q}^{-}(\mathfrak{g})$ generated by the $\tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{\ell}} 1$'s $(\ell \geq 0$, $\left.i_{1}, \ldots, i_{\ell} \in I\right)$. Let $B(\infty)$ be the subset $\left\{\tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{\ell}} 1 \bmod q L(\infty) ; \ell \geq 0, i_{1}, \ldots, i_{\ell} \in I\right\}$
of $L(\infty) / q L(\infty)$. Then we have
Theorem 2.2. (i) $\tilde{f}_{i} L(\infty) \subset L(\infty)$ and $\tilde{e}_{i} L(\infty) \subset L(\infty)$,
(ii) $B(\infty)$ is a basis of $L(\infty) / q L(\infty)$,
(iii) $\tilde{f}_{i} B(\infty) \subset B(\infty)$ and $\tilde{e}_{i} B(\infty) \subset B(\infty) \sqcup\{0\}$.
2.2. Global bases. Let - be the automorphism of K sending q to q^{-1}. Then $\overline{\mathbf{A}_{0}}$ coincides with \mathbf{A}_{∞}. Let V be a vector space over K, L_{0} an A-submodule of V, L_{∞} an $\mathbf{A}_{\infty^{-}}$submodule, and $V_{\mathbf{A}}$ an A-submodule. Set $E:=L_{0} \cap L_{\infty} \cap V_{\mathbf{A}}$.

Definition 2.3 ([4]). We say that $\left(L_{0}, L_{\infty}\right.$, $\left.V_{\mathbf{A}}\right)$ is balanced if each of L_{0}, L_{∞} and $V_{\mathbf{A}}$ generates V as a K-vector space, and if one of the following equivalent conditions is satisfied.
(i) $E \rightarrow L_{0} / q L_{0}$ is an isomorphism,
(ii) $E \rightarrow L_{\infty} / q^{-1} L_{\infty}$ is an isomorphism,
(iii) $\left(L_{0} \cap V_{\mathbf{A}}\right) \oplus\left(q^{-1} L_{\infty} \cap V_{\mathbf{A}}\right) \rightarrow V_{\mathbf{A}}$ is an isomorphism.
(iv) $\mathbf{A}_{0} \otimes_{\mathbf{Q}} E \rightarrow L_{0}, \mathbf{A}_{\infty} \otimes_{\mathbf{Q}} E \rightarrow L_{\infty}, \mathbf{A} \otimes_{\mathbf{Q}} E \rightarrow$ $V_{\mathbf{A}}$ and $K \otimes_{\mathbf{Q}} E \rightarrow V$ are isomorphisms.
Let - be the ring automorphism of $U_{q}(\mathfrak{g})$ send$\operatorname{ing} q, t_{i}, e_{i}, f_{i}$ to $q^{-1}, t_{i}^{-1}, e_{i}, f_{i}$.

Let $U_{q}(\mathfrak{g})_{\mathbf{A}}$ be the A-subalgebra of $U_{q}(\mathfrak{g})$ generated by $e_{i}^{(n)}, f_{i}^{(n)}$ and t_{i}. Similarly we define $U_{q}^{-}(\mathfrak{g})_{\mathbf{A}}$.

Theorem 2.4. $\left(L(\infty), L(\infty)^{-}, U_{q}^{-}(\mathfrak{g})_{\mathbf{A}}\right)$ is balanced.

Let
$G: L(\infty) / q L(\infty) \xrightarrow{\sim} E:=L(\infty) \cap L(\infty)^{-} \cap U_{q}^{-}(\mathfrak{g})_{\mathbf{A}}$
be the inverse of $E \xrightarrow{\sim} L(\infty) / q L(\infty)$. Then $\{G(b) ; b \in B(\infty)\}$ forms a basis of $U_{q}^{-}(\mathfrak{g})$. We call it a (lower) global basis. It is first introduced by G. Lusztig ([5]) under the name of "canonical basis" for the A,D,E cases.
2.3. Symmetry. Let θ be an automorphism of I such that $\theta^{2}=$ id and $\left(\alpha_{\theta(i)}, \alpha_{\theta(j)}\right)=$ $\left(\alpha_{i}, \alpha_{j}\right)$. Hence it extends to an automorphism of the root lattice Q by $\theta\left(\alpha_{i}\right)=\alpha_{\theta(i)}$, and induces an automorphism of $U_{q}(\mathfrak{g})$.

Let $\mathcal{B}_{\theta}(\mathfrak{g})$ be the K-algebra generated by E_{i}, F_{i}, and invertible elements $T_{i}(i \in I)$ satisfying the followin gdefining relations:
(i) the T_{i} 's commute with each other,
(ii) $T_{\theta(i)}=T_{i}$ for any i,
(iii) $T_{i} E_{j} T_{i}^{-1}=q^{\left(\alpha_{i}+\alpha_{\theta(i)}, \alpha_{j}\right)} E_{j}$ and $T_{i} F_{j} T_{i}^{-1}$ $=q^{\left(\alpha_{i}+\alpha_{\theta(i)},-\alpha_{j}\right)} F_{j}$ for $i, j \in I$,
(iv) $E_{i} F_{j}=q^{-\left(\alpha_{i}, \alpha_{j}\right)} F_{j} E_{i}+\left(\delta_{i, j}+\delta_{\theta(i), j} T_{i}\right)$ for i, $j \in I$,
(v) the E_{i} 's and the F_{i} 's satisfy the Serre relations. Hence $\mathcal{B}_{\theta}(\mathfrak{g}) \simeq U_{q}^{-}(\mathfrak{g}) \otimes K\left[T_{i}^{ \pm 1} ; i \in I\right] \otimes U_{q}^{+}(\mathfrak{g})$. We set $E_{i}^{(n)}=E_{i}^{n} /[n]_{i}!$ and $F_{i}^{(n)}=F_{i}^{n} /[n]_{i}!$.

Let $\lambda \in P_{+}:=\left\{\lambda \in \operatorname{Hom}(Q, \mathbf{Q}) ;\left\langle\alpha_{i}^{\vee}, \lambda\right\rangle \in \mathbf{Z}_{\geq 0}\right.$ for any $i \in I\}$ be a dominant integral weight such that $\theta(\lambda)=\lambda$.

Proposition 2.5. (i) There exists a $\mathcal{B}_{\theta}(\mathfrak{g})$ module $V_{\theta}(\lambda)$ generated by a vector ϕ_{λ} such that
(a) $E_{i} \phi_{\lambda}=0$ for any $i \in I$,
(b) $T_{i} \phi_{\lambda}=q^{\left(\alpha_{i}, \lambda\right)} \phi_{\lambda}$ for any $i \in I$,
(c) $\left\{u \in V_{\theta}(\lambda) ; E_{i} u=0\right.$ for any $\left.i \in I\right\}$ $=K \phi_{\lambda}$.

Moreover such a $V_{\theta}(\lambda)$ is irreducible and unique up to an isomorphism.
(ii) there exists a unique symmetric bilinear form (\cdot, \cdot) on $V_{\theta}(\lambda)$ such that $\left(\phi_{\lambda}, \phi_{\lambda}\right)=1$ and $\left(E_{i} u, v\right)=\left(u, F_{i} v\right)$ for any $i \in I$ and $u, v \in$ $V_{\theta}(\lambda)$, and it is non-degenerate.
The pair $\left(\mathcal{B}_{\theta}(\mathfrak{g}), V_{\theta}(\lambda)\right)$ is an analogue of $\left(\mathcal{B}, U_{q}^{-}(\mathfrak{g})\right)$. Such a $V_{\theta}(\lambda)$ is constructed as follows. Let $U_{q}^{-}(\mathfrak{g}) \phi_{\lambda}^{\prime}$ and $U_{q}^{-}(\mathfrak{g}) \phi_{\lambda}^{\prime \prime}$ be a copy of a free $U_{q}^{-}(\mathfrak{g})$-module. We give the structure of a $\mathcal{B}_{\theta}(\mathfrak{g})$-module on them as follows: for any $i \in I$ and $a \in U_{q}^{-}(\mathfrak{g})$

$$
\left\{\begin{array}{l}
T_{i}\left(a \phi_{\lambda}^{\prime}\right)=q^{\left(\alpha_{i}, \lambda\right)}\left(\operatorname{Ad}\left(t_{i} t_{\theta(i)}\right) a\right) \phi_{\lambda}^{\prime} \tag{2}\\
E_{i}\left(a \phi_{\lambda}^{\prime}\right)=\left(e_{i}^{\prime} a+q^{\left(\alpha_{i}, \lambda\right)} \operatorname{Ad}\left(t_{i}\right)\left(e_{\theta(i)}^{*} a\right)\right) \phi_{\lambda}^{\prime} \\
F_{i}\left(a \phi_{\lambda}^{\prime}\right)=\left(f_{i} a\right) \phi_{\lambda}^{\prime}
\end{array}\right.
$$

and
(3) $\left\{\begin{aligned} T_{i}\left(a \phi_{\lambda}^{\prime \prime}\right) & =q^{\left(\alpha_{i}, \lambda\right)}\left(\operatorname{Ad}\left(t_{i} t_{\theta(i)}\right) a\right) \phi_{\lambda}^{\prime \prime}, \\ E_{i}\left(a \phi_{\lambda}^{\prime \prime}\right) & =\left(e_{i}^{\prime} a\right) \phi_{\lambda}^{\prime \prime}, \\ F_{i}\left(a \phi_{\lambda}^{\prime \prime}\right) & =\left(f_{i} a+q^{\left(\alpha_{i}, \lambda\right)}\left(\operatorname{Ad}\left(t_{i}\right) a\right) f_{\theta(i)}\right) \phi_{\lambda}^{\prime \prime} .\end{aligned}\right.$

Then there exists a unique $\mathcal{B}_{\theta}(\mathfrak{g})$-linear morphism $\psi: U_{q}^{-}(\mathfrak{g}) \phi_{\lambda}^{\prime} \rightarrow U_{q}^{-}(\mathfrak{g}) \phi_{\lambda}^{\prime \prime}$ sending ϕ_{λ}^{\prime} to $\phi_{\lambda}^{\prime \prime}$. Its image $\psi\left(U_{q}^{-}(\mathfrak{g}) \phi_{\lambda}^{\prime}\right)$ is $V_{\theta}(\lambda)$.

Hereafter we assume further that
(4) there is no $i \in I$ such that $\theta(i)=i$.

We conjecture that $V_{\theta}(\lambda)$ has a crystal basis. This means the following. We define the modified root operators similarly to (1):

$$
\tilde{E}_{i}(u)=\sum_{n \geq 1} F_{i}^{(n-1)} u_{n} \text { and } \tilde{F}_{i}(u)=\sum_{n \geq 0} F_{i}^{(n+1)} u_{n}
$$

when writing $u=\sum_{n \geq 0} F_{i}^{(n)} u_{n}$ with $E_{i} u_{n}=0$. Let $L_{\theta}(\lambda)$ be the ${\underset{\tilde{F}}{0}}^{\mathbf{A}_{0}}$-submodule of $V_{\theta}(\lambda)$ generated by $\tilde{F}_{i_{1}} \cdots \tilde{F}_{i_{\ell}} \phi_{\lambda} \quad(\ell \geq 0$ and $\left.i_{1}, \ldots, i_{\ell} \in I\right)$, and let $B_{\theta}(\lambda)$ be the subset $\left\{\tilde{F}_{i_{1}} \cdots \tilde{F}_{i_{\ell}} \phi_{\lambda} \bmod q L_{\theta}(\lambda) ; \ell \geq 0, i_{1}, \ldots, i_{\ell} \in I\right\}$ of $L_{\theta}(\lambda) / q L_{\theta}(\lambda)$.

Conjecture 2.6. (i) $\tilde{F}_{i} L_{\theta}(\lambda) \subset L_{\theta}(\lambda)$ and $\tilde{E}_{i} L_{\theta}(\lambda) \subset L_{\theta}(\lambda)$,
(ii) $B_{\theta}(\lambda)$ is a basis of $L_{\theta}(\lambda) / q L_{\theta}(\lambda)$,
(iii) $\tilde{F}_{i} B_{\theta}(\lambda) \subset B_{\theta}(\lambda)$, and $\tilde{E}_{i} B_{\theta}(\lambda) \subset B_{\theta}(\lambda) \sqcup\{0\}$.

Moreover we conjecture that $V_{\theta}(\lambda)$ has a global crystal basis. Namely, let - be the bar-operator of $V_{\theta}(\lambda)$ given by $-: a \phi_{\lambda} \rightarrow \bar{a} \phi_{\lambda}\left(a \in U_{q}^{-}(\mathfrak{g})\right)$ (such an operator exists).

Conjecture 2.7. $\left(L_{\theta}(\lambda), L_{\theta}(\lambda)^{-}, U_{q}^{-}(\mathfrak{g})_{\mathbf{A}} \phi_{\lambda}\right)$ is balanced.

Assume that this conjecture is true. Let $G^{\text {low }}: L_{\theta}(\lambda) / q L_{\theta}(\lambda) \xrightarrow{\sim} E:=L_{\theta}(\lambda) \cap L_{\theta}(\lambda)^{-} \cap$ $U_{q}^{-}(\mathfrak{g})_{\mathbf{A}} \phi_{\lambda}$ be the inverse of $E \xrightarrow{\sim} L_{\theta}(\lambda) / q L_{\theta}(\lambda)$. Then $\left\{G^{\text {low }}(b) ; b \in B_{\theta}(\lambda)\right\}$ forms a basis of $V_{\theta}(\lambda)$. We call this basis the lower global basis of $V_{\theta}(\lambda)$. Let $\left\{G^{\text {up }}(b) ; b \in B_{\theta}(\lambda)\right\}$ be the dual basis to $\left\{G^{\text {low }}(b) ; b \in B_{\theta}(\lambda)\right\}$ with respect to the inner product of $V_{\theta}(\lambda)$. We call it the upper global basis of $V_{\theta}(\lambda)$.

We can prove the conjectures in the $\mathfrak{g l}_{\infty}$-case:

Theorem 2.8. Let I be the set $\mathbf{Z}_{\text {odd }}$ of odd integers. Define

$$
\left(\alpha_{i}, \alpha_{j}\right)= \begin{cases}2 & \text { if } i=j \\ -1 & \text { if } i=j \pm 2 \\ 0 & \text { otherwise }\end{cases}
$$

and $\theta(i)=-i$. Then, for $\lambda=0, V_{\theta}(\lambda)$ has a crystal basis and a global basis.
Note that $\left\{a \in U_{q}^{-}(\mathfrak{g}) ; a \phi_{\lambda}=0\right\}=\sum_{i} U_{q}^{-}(\mathfrak{g})\left(f_{i}-\right.$ $\left.f_{\theta(i)}\right)$ in this case.

The proof is by using a kind of PBW basis, similarly to [5]. The details will appear elsewhere.

The following diagram is the part of the crystal graph of $B_{\theta}(\lambda)$ that concerns only the 1-arrows and the (-1)-arrows.

Here is the part of the crystal graph of $B_{\theta}(\lambda)$ that concerns only the n-arrows and the $(-n)$-arrows for an odd integer $n \geq 3$:

$$
\phi_{\lambda} \stackrel{n}{-n} \circ \frac{n}{-n} \circ \stackrel{n}{-n} \circ \stackrel{n}{\Rightarrow} \circ \frac{n}{-n} \circ \cdots
$$

3. Affine Hecke algebra of type B.

3.1. Definition. For $p_{0}, p_{1} \in \mathbf{C}^{*}$ and $n \in$ $\mathbf{Z}_{\geq 0}$, the affine Hecke algebra $\mathrm{H}_{n}^{\mathrm{B}}$ of type B_{n} is the C-algebra generated by $T_{i}(0 \leq i<n)$ and invertible elements $X_{i}(1 \leq i \leq n)$ satisfying the defining relations:
(i) the X_{i} 's commute with each other,
(ii) the T_{i} 's satisfy the braid relation: $T_{0} T_{1} T_{0} T_{1}=$ $T_{1} T_{0} T_{1} T_{0}, T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1}(1 \leq i<n-$ 1), $T_{i} T_{j}=T_{j} T_{i}(|i-j|>1)$,
(iii) $\left(T_{0}-p_{0}\right)\left(T_{0}+p_{0}^{-1}\right)=0$ and $\left(T_{i}-p_{1}\right)\left(T_{i}+p_{1}^{-1}\right)=$ $0(1 \leq i<n)$,
(iv) $T_{0} X_{1}^{-1} T_{0}=X_{1}, T_{i} X_{i} T_{i}=X_{i+1}(1 \leq i<n)$, and $T_{i} X_{j}=X_{j} T_{i}$ if $j \neq i, i+1$.

We assume that $p_{0}, p_{1} \in \mathbf{C}^{*}$ satisfy

$$
\begin{equation*}
p_{0}^{2} \neq 1, p_{1}^{2} \neq 1 \tag{5}
\end{equation*}
$$

Let us denote by $\mathbf{P o l}_{n}$ the Laurent polynomial ring $\mathbf{C}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}\right]$, and by $\widetilde{\mathbf{P o l}}_{n}$ its quotient field $\mathbf{C}\left(X_{1}, \ldots, X_{n}\right)$. Then $\mathrm{H}_{n}^{\mathrm{B}}$ is isomorphic to the tensor product of $\mathbf{P o l}_{n}$ and the subalgebra generated by the T_{i} 's that is isomorphic to the Hecke algebra of type B_{n}. We have
$T_{i} a=\left(s_{i} a\right) T_{i}+\left(p_{i}-p_{i}^{-1}\right) \frac{a-s_{i} a}{1-X^{-\alpha_{i}^{\vee}}} \quad$ for $a \in \mathbf{P}_{\mathrm{ol}_{n}}$. Here $p_{i}=p_{1}(1<i<n)$, and $X^{-\alpha_{i}^{\vee}}=X_{1}^{-2}$ $(i=0)$ and $X^{-\alpha_{i}^{\vee}}=X_{i} X_{i+1}^{-1}(1 \leq i<n)$. The s_{i} 's are the Weyl group action on $\mathbf{P o l}_{n}$: $\left(s_{i} a\right)\left(X_{1}, \ldots, X_{n}\right)=a\left(X_{1}^{-1}, X_{2}, \ldots, X_{n}\right)$ for $i=0$ and $\left(s_{i} a\right)\left(X_{1}, \ldots, X_{n}\right)=$ $a\left(X_{1}, \ldots, X_{i+1}, X_{i}, \ldots, X_{n}\right)$ for $1 \leq i<n$.

Note that $\mathrm{H}_{n}^{\mathrm{B}}=\mathbf{C}$ for $n=0$.
3.2. Intertwiner. The algebra $\mathrm{H}_{n}^{\mathrm{B}}$ acts faithfully on $\mathrm{H}_{n}^{\mathrm{B}} / \sum_{i} \mathrm{H}_{n}^{\mathrm{B}}\left(T_{i}-p_{i}\right) \simeq \mathbf{P o l}_{n}$. Set $\varphi_{i}=\left(1-X^{-\alpha_{i}^{\vee}}\right) T_{i}-\left(p_{i}-p_{i}^{-1}\right) \in \mathrm{H}_{n}^{\mathrm{B}}$ and $\tilde{\varphi}_{i}=$ $\left(p_{i}^{-1}-p_{i} X^{-\alpha_{i}^{\vee}}\right)^{-1} \varphi_{i} \in \widetilde{\mathbf{P o l}}_{n} \otimes_{\mathbf{P o l}_{n}} \mathrm{H}_{n}^{\mathrm{B}}$. Then the action of $\tilde{\varphi}_{i}$ on $\mathbf{P o l}{ }_{n}$ coincides with s_{i}. They are called intertwiners.
3.3. Affine Hecke algebra of type A. We will review the LLT conjecture, reformulated and solved by S. Ariki, on the affine Hecke algebras of type A.

The affine Hecke algebra $\mathrm{H}_{n}^{\mathrm{A}}$ of type A_{n} is isomorphic to the subalgebra of $\mathrm{H}_{n}^{\mathrm{B}}$ generated by T_{i} $(1 \leq i<n)$ and $X_{i}^{ \pm 1}(1 \leq i \leq n)$. For a finitedimensional $\mathrm{H}_{n}^{\mathrm{A}}$-module M let us decompose

$$
\begin{equation*}
M=\bigoplus_{a \in\left(\mathbf{C}^{*}\right)^{n}} M_{a} \tag{6}
\end{equation*}
$$

where $M_{a}=\left\{u \in M ;\left(X_{i}-a_{i}\right)^{N} u=0\right.$ for any i and $N \gg 0\}$ for $a=\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbf{C}^{*}\right)^{n}$. For a subset $I \subset \mathbf{C}^{*}$, we say that M is of type I if all the eigenvalues of X_{i} belong to I. The group \mathbf{Z} acts on \mathbf{C}^{*} by $\mathbf{Z} \ni n: a \mapsto a p_{1}^{2 n}$.

Lemma 3.1. Let I and J be \mathbf{Z}-invariant subsets in \mathbf{C}^{*} such that $I \cap J=\emptyset$.
(i) If M is an irreducible $\mathrm{H}_{m}^{\mathrm{A}}$-module of type I and N is an irreducible $\mathrm{H}_{n}^{\mathrm{A}}$-module of type J, then $\operatorname{Ind}_{\mathrm{H}_{m}^{\mathrm{A}} \otimes \mathrm{H}_{n}^{\mathrm{A}}}^{\mathrm{H}_{\mathrm{A}}^{\mathrm{A}}}(M \otimes N)$ is irreducible of type $I \cup J$.
(ii) Conversely if L is an irreducible $\mathrm{H}_{n}^{\mathrm{A}}$-module of type $I \cup J$, then there exist $m(0 \leq m \leq n)$, an irreducible $\mathrm{H}_{m}^{\mathrm{A}}$-module M of type I and an irreducible $\mathrm{H}_{n-m}^{\mathrm{A}}$-module N of type J such that L is isomorphic to $\operatorname{Ind}_{\mathrm{H}_{m}^{\mathrm{A}} \otimes \mathrm{H}_{n-m}^{\mathrm{A}}}^{\mathrm{H}^{\mathrm{A}}}(M \otimes N)$.

Hence in order to study the irreducible modules over the affine Hecke algebras of type A, it is enough to treat the irreducible modules of type I for an orbit I with respect to the \mathbf{Z}-action on \mathbf{C}^{*}. Let $\mathrm{K}_{I, n}^{\mathrm{A}}$ be the Grothendieck group of the abelian category of finite-dimensional $\mathrm{H}_{n}^{\mathrm{A}}$-modules of type I. We set $\mathrm{K}_{I}^{\mathrm{A}}=\bigoplus_{n \geq 0} \mathrm{~K}_{I, n}^{\mathrm{A}}$. Then $\mathrm{K}_{I}^{\mathrm{A}}$ has a structure of Hopf algebra where the product and the coproduct

$$
\begin{aligned}
& \mu: \mathrm{K}_{I, m}^{\mathrm{A}} \otimes \mathrm{~K}_{I, n}^{\mathrm{A}} \rightarrow \mathrm{~K}_{I, m+n}^{\mathrm{A}} \\
& \Delta: \mathrm{K}_{I, n}^{\mathrm{A}} \rightarrow \bigoplus_{i+j=n} \\
& \mathrm{~K}_{I, i}^{\mathrm{A}} \otimes \mathrm{~K}_{I, j}^{\mathrm{A}}
\end{aligned}
$$

are given by $M \otimes N \mapsto \operatorname{Ind}_{\mathrm{H}_{m}^{\mathrm{A}} \otimes \mathrm{H}_{n}^{\mathrm{A}}}^{\mathrm{H}_{\mathrm{A}}^{\mathrm{A}}}(M \otimes N)$ and by $M \mapsto \operatorname{Res}_{H_{i}^{\mathrm{A}} \otimes \mathrm{H}_{j}^{\mathrm{A}}}^{\mathrm{H}_{\mathrm{A}}^{\mathrm{A}}} M$. Let \mathfrak{g}_{I} be the Lie algebra associated to the Dynkin diagram with I as the set of vertices and with edges between a and $a p_{1}^{2}(a \in I)$. It means
(7) $\left(\alpha_{i}, \alpha_{j}\right)=2 \delta_{i, j}-\delta_{i, p_{1}^{2} j}-\delta_{p_{1}^{2} i, j} \quad$ for $i, j \in I$.

Let U_{I} be the unipotent group associated with the Lie subalgebra \mathfrak{g}_{I}^{-}of \mathfrak{g}_{I} generated by the f_{i} 's. Then we have

Lemma 3.2. Let I be a Z-invariant set. Then $\mathbf{C} \otimes \mathrm{K}_{I}^{\mathrm{A}}$ is isomorphic to the algebra $\mathscr{O}\left(U_{I}\right)$ of the regular functions on U_{I} as a Hopf algebra.
Here, for $a \in I, f_{a}$ corresponds to the onedimensional $\mathrm{H}_{1}^{\mathrm{A}}$-module \mathbf{C}_{a} on which X_{1} acts by a. Let $\left\{G^{\mathrm{up}}(b)\right\}_{b \in B(\infty)}$ be the upper global basis of $U_{q}^{-}(\mathfrak{g})$. Then $\left(\bigoplus \mathbf{C}\left[q, q^{-1}\right] G^{\text {up }}(b)\right) /((q-$ 1) $\left.\bigoplus \mathbf{C}\left[q, q^{-1}\right] G^{\mathrm{up}}(b)\right)$ is isomorphic to $\mathscr{O}\left(U_{I}\right)$. The following theorem is conjectured for Hecke algebras of type A by Lascoux-Leclerc-Thibon ([3]) and reformulated and proved by S. Ariki ([1]) for affine Hecke algebras of type A.

Theorem 3.3. The elements of K^{A} associated to irreducible H^{A}-modules correspond to the upper global basis $G^{\mathrm{up}}(b)$ by the isomorphism above.

Hence the irreducible modules are parametrized by $B(\infty)$. Grojnowski ([2]) constructed the operators \tilde{e}_{a} and \tilde{f}_{a} on $B(\infty)$ in terms of irreducible modules. The operator \tilde{e}_{a} sends an irreducible $\mathrm{H}_{n}^{\mathrm{A}}$ module M to a unique irreducible submodule of the $\mathrm{H}_{n-1}^{\mathrm{A}}$-module $\left\{u \in M ;\left(X_{n}-a\right) u=0\right\}$. The operator \tilde{f}_{a} sends an irreducible $\mathrm{H}_{n}^{\mathrm{A}}$ module M to a unique irreducible quotient of the $\mathrm{H}_{n+1}^{\mathrm{A}}$-module $\operatorname{Ind}_{\mathrm{H}_{n}^{\mathrm{A}} \otimes \mathrm{H}_{1}^{\mathrm{A}}}^{\mathrm{H}^{\mathrm{A}}}\left(M \otimes \mathbf{C}_{a}\right)$.
3.4. Representations of affine Hecke algebras of type B. For $n, m \geq 0$,
set
$D:=\mathbf{F}_{n, m}:=\quad \mathbf{C}\left[X_{1}^{ \pm 1}, \ldots, X_{n+m}^{ \pm 1}, D^{-1}\right] \quad$ where
$\prod_{1 \leq i \leq n<j \leq n+m}\left(X_{i}-p_{1}^{2} X_{j}\right)\left(X_{i}-p_{1}^{-2} X_{j}\right)\left(X_{i}-\right.$ $\left.p_{1}^{2} X_{j}^{-1}\right)\left(X_{i}-p_{1}^{-2} X_{j}^{-1}\right)\left(X_{i}-X_{j}\right)$. Then we can embed $\mathrm{H}_{m}^{\mathrm{B}}$ into $\mathrm{H}_{n+m}^{\mathrm{B}} \otimes_{\mathbf{P o l}_{n+m}} \mathbf{F}_{n, m}$ by

$$
\begin{aligned}
& T_{0} \mapsto \tilde{\varphi}_{n} \cdots \tilde{\varphi}_{1} T_{0} \tilde{\varphi}_{1} \cdots \tilde{\varphi}_{n} \\
& T_{i} \mapsto T_{i+n}(1 \leq i<m), \quad X_{i} \mapsto X_{i+n}(1 \leq i \leq m)
\end{aligned}
$$

Its image commute with $\mathrm{H}_{n}^{\mathrm{B}} \subset \mathrm{H}_{n+m}^{\mathrm{B}}$. Hence $\mathrm{H}_{n+m}^{\mathrm{B}} \otimes \mathbf{P o l}_{n+m} \mathbf{F}_{n, m}$ is a right $\mathrm{H}_{n}^{\mathrm{B}} \otimes \mathrm{H}_{m}^{\mathrm{B}}$-module.

Lemma 3.4. $\mathrm{H}_{n+m_{\mathrm{H}_{n}^{\mathrm{A}}}^{\mathrm{A}} \otimes \mathrm{H}_{m}^{\mathrm{A}}}^{\otimes}\left(\mathrm{H}_{n}^{\mathrm{B}} \otimes \mathrm{H}_{m}^{\mathrm{B}}\right) \otimes$ Pol $_{n+m}$ $\mathbf{F}_{n, m} \xrightarrow{\sim} \mathrm{H}_{n+m}^{\mathrm{B}} \otimes_{\mathbf{P o l}_{n+m}} \mathbf{F}_{n, m}$.

For a finite-dimensional $\mathrm{H}_{n}^{\mathrm{B}}$-module M, we decompose M as in (6). The semidirect product group $\mathbf{Z}_{2} \times \mathbf{Z}=\{1,-1\} \times \mathbf{Z}$ acts on \mathbf{C}^{*} by $(\epsilon, n): a \mapsto a^{\epsilon} p_{1}^{2 n}$.

Let I and J be $\mathbf{Z}_{2} \times \mathbf{Z}$-invariant subsets of \mathbf{C}^{*} such that $I \cap J=\emptyset$. Then for an $\mathrm{H}_{n}^{\mathrm{B}}$-module N of type I and $\mathrm{H}_{m}^{\mathrm{B}}$-module M of type J, the action of $\mathbf{P o l}_{n+m}$ on $N \otimes M$ extends to an action of $\mathbf{F}_{n, m}$. We set
$N \diamond M:=\left(\mathrm{H}_{n+m}^{\mathrm{B}} \otimes_{\mathbf{P o l}_{n+m}} \mathbf{F}_{n, m}\right) \quad \otimes \quad(N \otimes M)$.
$\left(\mathrm{H}_{n}^{\mathrm{B}} \otimes \mathrm{H}_{m}^{\mathrm{B}}\right) \otimes_{\mathbf{P o l}_{n+m}} \mathbf{F}_{n, m}$.
By the lemma above, $N \diamond M$ is isomorphic to $\operatorname{Ind}_{\mathrm{H}_{n}^{\mathrm{A}} \otimes \mathrm{H}_{m}^{\mathrm{A}}}^{\mathrm{H}^{\mathrm{A}}}(N \otimes M)$ as an $\mathrm{H}_{n+m}^{\mathrm{A}}$-module.

Lemma 3.5. (i) Let N be an irreducible $\mathrm{H}_{n}^{\mathrm{B}}$ module of type I and M an irreducible $\mathrm{H}_{m}^{\mathrm{B}}$ module of type J. Then $N \diamond M$ is an irreducible $\mathrm{H}_{n+m}^{\mathrm{B}}$-module of type $I \cup J$.
(ii) Conversely if L is an irreducible $\mathrm{H}_{n}^{\mathrm{B}}$-module of type $I \cup J$, then there exist an integer $m(0 \leq$ $m \leq n$), an irreducible $\mathrm{H}_{m}^{\mathrm{B}}$-module N of type I and an irreducible $\mathrm{H}_{n-m}^{\mathrm{B}}$-module M of type J such that $L \simeq N \diamond M$.
(iii) Assume that a $\mathbf{Z}_{2} \times \mathbf{Z}$-orbit I decomposes into $I=I_{+} \sqcup I_{-}$where $I_{ \pm}$are \mathbf{Z}-orbits and $I_{-}=$ $\left(I_{+}\right)^{-1}$. Assume that $\pm 1, \pm p \notin I$. Then for any irreducible $\mathrm{H}_{n}^{\mathrm{B}}$-module L of type I, there exists an irreducible $\mathrm{H}_{n}^{\mathrm{A}}$-module M such that $L \simeq \operatorname{Ind}_{\mathrm{H}_{n}^{\mathrm{A}}}^{\mathrm{H}_{\mathrm{B}}^{\mathrm{B}}} M$.
Hence in order to study H^{B}-modules, it is enough to study irreducible modules of type I for a $\mathbf{Z}_{2} \times \mathbf{Z}$-orbit I in \mathbf{C}^{*} such that I is a \mathbf{Z}-orbit or I contains one of $\pm 1, \pm p$.

In this note, we don't treat the case when I contains 1 or -1 .

For a $\mathbf{Z}_{2} \times \mathbf{Z}$-invariant subset I of \mathbf{C}^{*}, we define $\mathrm{K}_{I, n}^{\mathrm{B}}$ and $\mathrm{K}_{I}^{\mathrm{B}}$ similarly to the case of A-type. Then
$\mathrm{K}_{I}^{\mathrm{B}}$ is a (right) Hopf $\mathrm{K}_{I}^{\mathrm{A}}$-bimodule by the multiplication and the coproduct

$$
\begin{aligned}
& \mu: \mathrm{K}_{I, n}^{\mathrm{B}} \times \mathrm{K}_{I, m}^{\mathrm{A}} \rightarrow \mathrm{~K}_{I, n+m}^{\mathrm{B}} \text { and } \\
& \Delta: \mathrm{K}_{I, n}^{\mathrm{B}} \rightarrow \bigoplus_{i+j=n} \mathrm{~K}_{I, i}^{\mathrm{B}} \otimes \mathrm{~K}_{I, j}^{\mathrm{A}}
\end{aligned}
$$

given by $L \otimes M \mapsto \operatorname{Ind}_{\mathrm{H}_{n}^{\mathrm{B}} \otimes \mathrm{H}_{m}^{\mathrm{A}}}^{\mathrm{H}_{n+m}^{\mathrm{B}}}(L \otimes M)$ and $L \mapsto$ $\operatorname{Res}_{H_{i}^{\mathrm{B}} \otimes \mathrm{H}_{j}^{\mathrm{A}}}^{\mathrm{H}^{\mathrm{B}}} L$. Let θ be the automorphism of I given by $a \mapsto a^{-1}$. Then it induces an automorphism of U_{I}. Let U_{I}^{θ} be the θ-fixed point sets of U_{I}. Then the action of $\mathscr{O}\left(U_{I}\right) \simeq \mathbf{C} \otimes \mathrm{K}_{I}^{\mathrm{A}}$ on $\mathrm{K}_{I}^{\mathrm{B}}$ descends to an action of $\mathscr{O}\left(U_{I}^{\theta}\right)$, as it follows from the following lemma.

Lemma 3.6. For an irreducible $\mathrm{H}_{n}^{\mathrm{B}}$-module L and an irreducible $\mathrm{H}_{m}^{\mathrm{A}}$-module M, we have $\mu(L \otimes$ $M)=\mu\left(L \otimes M^{\theta}\right)$, where M^{θ} is the $\mathrm{H}_{m}^{\mathrm{A}}$-module induced from M by the automorphism of $\mathrm{H}_{m}^{\mathrm{A}}$ given by $X_{i} \mapsto X_{m+1-i}^{-1}, T_{i} \mapsto T_{m-i}$.

Now we take the case

$$
I=\left\{p_{1}^{n} ; n \in \mathbf{Z}_{\text {odd }}\right\}
$$

Assume that any of ± 1 and $\pm p_{0}$ is not contained in I. Let us define an automorphism θ of I by $a \mapsto a^{-1}$. The set I may be regarded as the set of vertices of a Dynkin diagram by (7). Let \mathfrak{g}_{I} be the associated Lie algebra (\mathfrak{g}_{I} is isomorphic to $\mathfrak{g l}_{\infty}$ if p_{1} has an infinite order, and isomorphic to $A_{\ell}^{(1)}$ if p_{1}^{2} is a primitive ℓ th root of unity). Let $V_{\theta}(\lambda)$ be as in Proposition 2.5 with $\lambda=0$.

Conjecture 3.7. (i) $V_{\theta}(\lambda)$ has a crystal basis and a global basis.
(ii) $\mathbf{C} \otimes \mathrm{K}_{I}^{\mathrm{B}}$ is isomorphic to a specialization of $V_{\theta}(\lambda)$ at $q=1$ as an $\mathscr{O}\left(U_{I}\right)$-module, and the elements of $\mathrm{K}_{I}^{\mathrm{B}}$ associated with irreducible representations corresponds to the upper global basis of $V_{\theta}(\lambda)$ at $q=1$.
Note that (i) is nothing but Theorem 2.8 when p_{1} is not a root of unity.

Let us take the case

$$
I=\left\{p_{0} p_{1}^{2 n} ; n \in \mathbf{Z}\right\} \cup\left\{p_{0}^{-1} p_{1}^{2 n} ; n \in \mathbf{Z}\right\}
$$

Assume that there exists no integer n such that $p_{0}^{2}=$ $p_{1}^{4 n}$. It includes the case where $p_{0}=p_{1}$ and $p_{1}^{2 n} \neq 1$ for any $n \in \mathbf{Z}_{\text {odd }}$. Let θ be the automorphism of I given by $\theta: a \mapsto a^{-1}$. Then θ has no fixed points. We regard I as the set of vertices of a Dynkin diagram by (7). Let \mathfrak{g}_{I} be the associated Lie algebra. It is isomorphic to either $\mathfrak{g l}_{\infty} \oplus \mathfrak{g l}_{\infty}, \mathfrak{g l}_{\infty}, A_{\ell}^{(1)} \oplus A_{\ell}^{(1)}$ or $A_{\ell}^{(1)}$. Set $\lambda=\Lambda_{p_{0}}+\Lambda_{p_{0}^{-1}}$ (i.e. $\left.\left(\alpha_{i}, \lambda\right)=\delta_{i, p_{0}}+\delta_{i, p_{0}^{-1}}\right)$.

Conjecture 3.8. (i) $V_{\theta}(\lambda)$ has a crystal basis and a global basis.
(ii) $\mathbf{C} \otimes \mathrm{K}_{I}^{\mathrm{B}}$ is isomorphic to a specialization of $V_{\theta}(\lambda)$ at $q=1$ as an $\mathscr{O}\left(U_{I}\right)$-module, and the elements of $\mathrm{K}_{I}^{\mathrm{B}}$ associated with irreducible representations corresponds to the upper global basis of $V_{\theta}(\lambda)$ at $q=1$.
In the both cases, we conjecture that, for an irreducible $\mathrm{H}_{n}^{\mathrm{B}}$-module M corresponding to an upper global basis $G^{\mathrm{up}}(b), \operatorname{dim} M_{a}$ coincides with the value of $\left(\phi_{\lambda}, E_{a_{1}} \cdots E_{a_{n}} G^{\text {up }}(b)\right)$ at $q=1$ for $a=$ $\left(a_{1}, \ldots, a_{n}\right) \in I^{n}$.

Miemietz ([6]) introduced the operators \tilde{e}_{i} and \tilde{f}_{i} on the set of isomorphic classes of irreducible modules, similarly to the A type case, and studied their properties. We conjecture that they coincide with the operators \tilde{E}_{i} and \tilde{F}_{i} on $B_{\theta}(\lambda)$.

Remark 3.9. For an $\mathrm{H}_{n}^{\mathrm{B}}$-module N, we have

$$
\begin{aligned}
& \operatorname{Res}_{H_{n+1}^{\mathrm{A}}}^{\mathrm{H}_{n+1}^{\mathrm{B}}}\left(\operatorname{Ind}_{\mathrm{H}_{n}^{\mathrm{B}} \otimes \mathrm{H}_{1}^{\mathrm{A}}}^{\mathrm{H}^{\mathrm{A}}}\left(N \otimes \mathbf{C}_{a}\right)\right) \\
& \quad=\operatorname{Ind}_{\mathrm{H}_{n}^{\mathrm{A}} \otimes \mathrm{H}_{1}^{\mathrm{A}}}^{\mathrm{H}_{n+1}^{\mathrm{A}}}\left(N \otimes \mathbf{C}_{a}\right)+\operatorname{Ind}_{\mathrm{H}_{1}^{\mathrm{A}} \otimes \mathrm{H}_{n}^{\mathrm{A}}}^{\mathrm{H}_{n+1}^{\mathrm{A}}}\left(\mathbf{C}_{a^{-1}} \otimes N\right) .
\end{aligned}
$$

In the right-hand-side, the first term corresponds to the left multiplication of f_{a} and the last term corresponds to the right multiplication of $f_{a^{-1}}$. This leads the last formula in (3), which is the starting point of our study.

Acknowledgments. The authors thank Dr. Syu Kato for helpful discussions. The second author is partially supported by Grant-in-Aid for Scientific Research (B) 18340007, Japan Society for the Promotion of Science.

References

[1] S. Ariki, On the decomposition numbers of the Hecke algebra of $G(m, 1, n)$, J. Math. Kyoto Univ. 36 (1996), no. 4, 789-808.
[2] I. Grojnowski, Affine $\mathfrak{s l}_{p}$ controls the representation theory of the symmetric group and related Hecke algebras, arXive:math.RT/9907129.
[3] A. Lascoux, Bernard Leclerc and Jean-Yves Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), no. 1, 205-263.
[4] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991) 465-516.
[5] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447-498.
[6] V. Miemietz, On representations of affine Hecke algebras of type B, Algebr. Represent. Theory. (to appear).

