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A new solution of the fourth Painlevé equation

with a solvable monodromy
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Abstract: We will study a new special solution of the fourth Painlevé equation, for which
we can calculate the linear monodromy exactly. We will show the relation between Umemura’s
classical solutions and our solutions.
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1. Introduction. The Painlevé equation
can be represented by an isomonodromic deforma-
tion of a linear equation. We call the monodromy
data of the linear equation a linear monodromy
of the Painlevé function. The linear monodromy
cannot be calculated except for special cases. One
exceptional case is Umemura’s classical solutions.
Umemura showed that there exist two kinds of spe-
cial solutions for the Painlevé equations, rational
solutions and the Riccati solutions [14], which are
called classical solutions of the Painlevé equations.
For most of all Umemura’s classical solutions, the
linear monodromy can be calculated, but there exist
some Painlevé functions which are not included in
Umemura’s classical solutions, such that the linear
monodromy can be calculated. In this paper we call
such Painlevé functions monodromy solvable.

It was R. Fuchs who found a monodromy solv-
able solution at first, which is not included in
Umemura’s classical solutions [2]. He calculated
the linear monodromy of so-called Picard’s solutions,
which satisfies the sixth Painlevé equation with a
special parameter. This result was discovered again
recently [8, 9]. Another monodromy solvable solu-
tion is a symmetric solution of the first and second
Painlevé equation which are shown by A. V. Kitaev
[7].

In this paper we construct a monodromy solv-
able solution for the fourth Painlevé equation in ac-
cordance with Kitaev’s method. Umemura’s special
solutions exist only for special values of parameters
but our new special solution exists for any value of
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parameters and the associated linear equation can be
reduced to the Whittaker equation for the special ini-
tial condition. This solution includes the rational so-
lution y = −2t/3 for parameters (α, β) = (0,−2/9).
Our solution also includes one point of the Riccati
solution. In section three we describe the relations
between our new solution and Umemura’s classicial
solutions.

2. Linear problem.
2.1. Isomonodromic deformation equa-

tions. The fourth Painlevé equation

PIV :
d2y

dt2
=

1
2y

(
dy

dt

)2

+
3
2
y3(2.1)

+ 4ty2 + 2(t2 − α)y +
β

y

is given by isomonodromic deformation equations [6]:

∂Y (x, t)
∂x

=A(x, t)Y (x, t),(2.2)

A(x, t)=
(

1 0
0 −1

)
x+
(

t u
2
u (z−θ0 −θ∞) −t

)

+
1
x

(
−z +θ0 −uy

2
2z
uy (z−2θ0) z−θ0

)
,

∂Y (x, t)
∂t

=B(x, t)Y (x, t),(2.3)

B(x, t)=
(

1 0
0 −1

)
x+
(

0 u
2
u (z−θ0−θ∞) 0

)
,

where y, z and u are functions of t, and θ0 and θ∞
are constants

(2.4) α = 2θ∞ − 1, β = −8θ2
0 .
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Setting w = z/y, integrability condition gives

dy

dt
= −4yw + y2 + 2ty + 4θ0,(2.5)

dw

dt
= 2w2 − 2yw − 2tw + (θ0 + θ∞),(2.6)

d logu

dt
= −y − 2t.(2.7)

The system (2.5) and (2.6) is the Hamiltonian system
with the polynomial Hamiltonian H4:

(2.8) H4 = −2yw2+y2w+2tyw+4θ0w−(θ0+θ∞)y.

The function u can be obtained from (2.7) by a
quadrature.

The solutions of (2.5) and (2.6) with initial data
y(0) = 0 and w(0) = 0 are expanded as follows:

y = 4θ0t

∞∑
k=0

akt2k,(2.9)

a0 = 1, a1 =
−2
3

(2θ∞ − 1),

a2 =
1
30

{4(2θ∞ − 1)2 + 3(4θ0)2

+ 8(4θ0) + 4}, . . . ,

w = (θ0 + θ∞)t
∞∑

k=0

bkt2k,(2.10)

b0 = 1, b1 =
2
3
(θ∞ − 3θ0 − 1),

b2 =
4
15

{(θ∞ − 3θ0 − 1)2

+ 4θ0(2θ∞ − 1)}, . . . .

These solutions are invariant for the transforma-
tion acting on (2.5) and (2.6): y → −y, w → −w,
t → −t. We call (2.9) and (2.10) hereafter the sym-
metric solution of PIV . By the Painlevé prop-
erty the symmetric solution are meromorphic over
the complex plane. We will study the behavior of
the symmetric solution at infinity and the connec-
tion problem in the succeeding paper.

2.2. Transformation of the linear equa-
tion. By putting t = 0, y = 0, and w = 0 in equa-
tion (2.2), we have

(2.11)

d

dx

(
y1

y2

)
=

(
x + θ0

x
u

−2(θ0+θ∞)
u −x − θ0

x

)(
y1

y2

)
.

By the transformation x2 = ξ and yi = ξ
−1
4 vi, (i =

1, 2), we have the Whittaker equations:

(2.12)
d2v1

dξ2
+
[−1

4
+

k

ξ
+

1
4
− m2

ξ2

]
v1 = 0,

(2.13)

d2v2

dξ2
+
[−1

4
+

k + 1
2

ξ
+

1
4 − (m + 1

2 )2

ξ2

]
v2 = 0,

(2.14) k =
2θ∞ − 1

4
, m =

2θ0 − 1
4

.

The above discussion proves the following:
Theorem 1. The symmetric solution (2.9)

and (2.10) of the fourth Painlevé equation is mon-
odromy solvable. For (2.9) and (2.10), (2.2) is re-
duced to the Whittaker equation when t = 0. The
solution of (2.11) is given by(

y1

y2

)
(2.15)

=

(
Lk,m(x) Lk,−m(x)

−2k−2m−1
u(2m+1) Lk+ 1

2 ,m+ 1
2
(x) −4m

u Lk+ 1
2 ,−m− 1

2
(x)

)
,

where

Lk,m(x)(2.16)

= x2m+ 1
2 e−

x2
2 1F1

(
m − k +

1
2
, 2m + 1; x2

)

(2.17)

= x2m+ 1
2 e−

x2
2

∞∑
n=0

Γ(2m + 1)Γ
(
m− k + 1

2
+ n

)
x2n

Γ(2m + 1 + n)Γ
(
m − k + 1

2

)
n!

.

2.3. The linear monodromy. The equa-
tion (2.2) has a regular singular point x = 0 and
an irregular singular point x = ∞ with the Poincaré
rank 2. We will define the linear monodromy
{M0, Γ, G1, G2, G3, G4, e2πiT0} of (2.2) [3, 6].

1) At the regular sigularity x = 0, the local
behavior of Y (x) is given by

(2.18) Y (0)(x) = (1 + O(x))xT0 ,

where

(2.19) T0 =
(

θ0 0
0 −θ0

)
.

The local monodromy of Y (0)(x) around x = 0 is

(2.20) M0 = e2πiT0.

2) At the irregular singularity x = ∞, a formal
solution is given by

Y (∞) =
(

1 +
Y1

x
+ · · ·

)
eT (x),(2.21)
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T (x) =
(

1 0
0 −1

)
x2

2
+
(

t 0
0 −t

)
x(2.22)

+
(

θ∞ 0
0 −θ∞

)
log

1
x

,

Y1 =
1
2

( −HIV u

2(z − θ0 − θ∞)u HIV

)
,(2.23)

where

HIV =
2
y
z2 −

(
y + 2t +

4
y
θ0

)
z(2.24)

+ (θ0 + θ∞)(y + 2t).

Since x = ∞ is an irregular singularity, the actual
asymptotic behavior of Y (x) changes the form in the
Stokes region of the complex x-plane:

(2.25)

Sj =
{

x
∣∣∣ π

2
(j − 1)− ε < arg x <

π

2
j + ε, |x|> R,

}
,

(j = 1, 2, 3, 4, 5),

where ε is sufficiently small and R is sufficiently large.
We denote Y (j) is a holomorphic solution in Sj .
According to the Stokes phenomenon, if

Y (j) ∼ Y (∞)(x) as x → ∞ in Sj ,(2.26)

then

Y (j+1) = Y (j)Gj and Y (5) = Y (1)e2πiT0 ,(2.27)

where the matrices Gj, (1 ≤ j ≤ 4) are called the
Stokes matrices and e2πiT0 is a formal monodromy
around x = ∞.

3) Connection matrix Γ
Since both Y (0) and Y (1) satisfy (2.2), they are re-
lated by the connection matrix:

(2.28) Y (1) = Y (0)Γ.

4) We have

(2.29) Γ−1M0ΓG1G2G3G4e
2iπT0 = I2.

Generally, we cannot calculate Gi and Γ. By the
isomonodromy condition, the linear monodromy is
invariant for any t. For the symmetric solution of
the fourth Painlevé equation we can calculate the
linear monodromy, because (2.2) is reduced to the
Whittaker equation when t = 0.

Theorem 2. For the symmetric solution (2.9)
and (2.10) of the fourth Painlevé equation, the linear
monodromy is

M0 =
(

e2iπθ0 0
0 e2iπ(1−θ0)

)
(2.30)

=
( −e4miπ 0

0 −e−4miπ

)
,

Γ =




Γ(−2m)

Γ( 1
2−m−k)

Γ(−2m)e−iπ(k+m+ 1
2 )

Γ( 1
2−m+k)

Γ(2m)

Γ( 1
2+m−k)

Γ(2m)e−iπ(k−m+ 1
2 )

Γ( 1
2+m+k)


 ,(2.31)

G1 =


 1 0

2πeiπ(−1
2 +2k)

Γ( 1
2−m−k)Γ( 1

2+m−k) 1


 ,(2.32)

G2 =


 1 2πeiπ(−1

2 −4k)

Γ(1
2−m+k)Γ(1

2 +m+k)
0 1


 ,(2.33)

G3 =


 1 0

2πe
iπ(−1

2 +6k)

Γ( 1
2−m−k)Γ( 1

2+m−k) 1


 ,(2.34)

G4 =


 1 2πe

iπ(−1
2 −8k)

Γ(1
2−m+k)Γ(1

2 +m+k)
0 1


 ,(2.35)

e2iπT0 =
(

e2iπ(1−θ∞) 0
0 e2iπθ∞

)
(2.36)

=
( −e−4kiπ 0

0 −e4kiπ

)
.

For special parameters, we have

Corollary 3. We set 2θ∞−1 = α0−α2, 2θ0 =
−α1 and α0 + α1 + α2 = 1.

1) In case of α0 = 0, we have m + k = −1/2
and G2 = G4 = I2.

2) In case of α2 = 0, we have m − k = −1/2
and G1 = G3 = I2.

3) In case of α0 = 0 and α2 = 0, we have G1 =
G2 = G3 = G4 = I2.

3. Comparison with classical solutions.
Umemura studied special solutions of the Painlevé
equations [14]. Umemura’s classical solutions are ei-
ther rational solution or the Riccati solution [10, 11,
15]. We show that the symmetric solution of the
fourth Painlevé equation includes rational solutions
and one point of the Riccati solution of Umemura’s
classical solutions.

1) The Riccati solution. We set p = y+2t−
2w. Then the system (2.5) and (2.6) is equivalent to
the following system:
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dy

dt
= 2yp − y2 − 2ty + 4θ0,(3.1)

dp

dt
= 2yp − p2 + 2tp + 2(θ0 − θ∞ + 1).(3.2)

If α2 = 0, θ0 − θ∞ + 1 = 0. p = 0 is a special
solution and y satisfies the Riccati equation

(3.3)
dy

dt
= −y2 − 2ty + 4θ0,

which is solved by the Weber function. In this case,
the linear monodromy is upper triangular matrices
by Corollary 3 (2).

If y(0) = 0 in (3.1), the Riccati solution is a
symmetric solution. We remark that the Riccati so-
lutions have the same linear monodromy.

2) Rational solutions.
2-1) If α0 = α2 = 0, θ0 = −1/2. The Riccati

equation is

(3.4)
dy

dt
= y2 + 2ty − 2,

which has a rational solution y = −2t.
This solution is reduced to the Hermite polyno-

mial. (y, w) = (−2t, 0) is a symmetric solution of the
fourth Painlevé equation. In this case, every Stokes
matrix is a unit matrix by Corollary 3 (3).

2-2) If α0 = α1 = α2 = 1/3, the fourth
Painlevé equation has an rational solution:

(3.5) y =
−2t

3
, w =

t

3
,

which is a symmetric solution of the fourth Painlevé
equation. Since we have (k, m) = (0,−1/3), (2.15)
is reduced to the Airy function.

4. Conclusion. 1) The symmetric solution
of the fourth Painlevé equation exists for any pa-
rameter α and β.

2) There exist rational solutions and the Riccati
solutions for the fourth Painlevé equation for special
parameters. Only for such special parameters, the
symmetric solution coincides with Umemura’s clas-
sical solution. In this sense, the symmetric solution
is a new special solution beyond Umemura’s class.

3) Two of four Stokes matrices (G1 and G3 or
G2 and G4) become unit matrices when α0 or α2 =
0, and every Stokes matrix becomes a unit matrix
when α0 = α2 = 0.

Especially when α2 = 0, the linear monodromy
become upper triangular matrices.

When α0 = α1 = α2 = 1/3 and y = −2t/3,
the solution of the associated linear equation can be
solved by the Airy function.

5. Appendix. In this section, the Stokes
matrices are derived [4].

1) Two fundamental solutions Xk,m(x) and
X−k,m(xe

−iπ
2 ) in the Stokes region Sj are expressed

in the linear combination of Lk,m(x) and Lk,−m(x).
For r, s, t ∈ Z,

(5.1)

Xk,m(xeriπ) =
Γ(−2m)eriπθ0Lk,m(x)

Γ
(

1
2
− m − k

)
+

Γ(2m)eriπ(1−θ0)Lk,−m(x)
Γ
(

1
2

+ m − k
) ,

(5.2)

Xk,m(xesiπ) =
Γ(−2m)esiπθ0Lk,m(x)

Γ
(

1
2 − m − k

)
+

Γ(2m)esiπ(1−θ0)Lk,−m(x)
Γ
(

1
2 + m− k

) ,

(5.3)

X−k,m(xetiπ− iπ
2 ) =

Γ(−2m)eiπθ0(t−1
2 )Lk,m(x)

Γ
(

1
2 − m + k

)
+

Γ(2m)eiπ(t− 1
2 )(1−θ0)Lk,−m(x)

Γ
(

1
2 + m + k

)
hold.

Eliminating Lk,m, Lk,−m, and putting s = 0,
t = 0 and x → xe−riπ, then we have

Xk,m(x) ∼ Cre
−x2

2 xθ∞−1 + Dre
x2
2 x−θ∞ ,(5.4) (

r − 1
4

)
π < arg x <

(
r +

3
4

)
π,

(r = 0, 1, 2, . . .).

Similary, we have

X−k,m(xe
−iπ
2 ) ∼ Ere

−x2

2 xθ∞−1 + Fre
x2
2 x−θ∞ ,

(5.5)

(
r − 1

4

)
π < arg x <

(
r +

3
4

)
π,

(r = 0, 1, 2, . . .),

where

Cr=er(1−θ∞)iπe
riπ
2

[
sin2(r+1)mπ

sin2mπ
+e−2kiπ sin2rmπ

sin2mπ

]
,

(5.6)

Dr=e(r+ 1
2 )θ∞iπ −2πe

π
2 i(r+1)e−kiπe−

iπ
4 sin2rmπ

Γ
(

1
2
−m−k

)
Γ
(

1
2
+m−k

)
sin2mπ

,

(5.7)
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Er=e[r(1−θ∞)− θ∞
2 ]iπ

(5.8)

e
π
2 ire−

iπ
4 e−kiπ2π sin2rmπ

Γ
(

1
2
−m+k

)
Γ
(

1
2
+m+k

)
sin2mπ

,

Fr=−erθ∞ iπe
π
2 ir

[
sin2(r−1)mπ

sin2mπ
+e−2kiπ sin2rmπ

sin2mπ

]
.

(5.9)

2) Stokes matrices Gj

For rπ < arg x <
(
r + 1

2

)
π, (r ∈ Z), we write the

coefficient matrix of (5.4), (5.5) as

(5.10)
(

Cr Er

Dr Fr

)
.

For
(
r + 1

2

)
π < arg x < (r + 1)π, we have

(5.11)
(

Cr Er

Dr+1 Fr+1

)
,

(5.12) G2r+1

(
Cr Er

Dr+1 Fr+1

)
=
(

Cr Er

Dr Fr

)
,

where

(5.13) G2r+1 =
(

1 0
T2r+1 1

)
,

(5.14) T2r+1 =
Dr − Dr+1

Cr
=

Fr − Fr+1

Er
.

Substituting (5.6) and (5.7), we have

T2r+1 =
2πeiπ( −1

2 +(4r+2)k)

Γ
(

1
2 + m − k

)
Γ
(

1
2 − m − k

) ,(5.15)

(r = 0, 1, 2, . . .).

In similar way, we have

(5.16) G2r =
(

1 T2r

0 1

)
,

T2r =
2πeiπ( −1

2 −4rk)

Γ
(

1
2 + m + k

)
Γ
(

1
2 − m + k

) ,(5.17)

(r = 1, 2, . . .).
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