Primary components of the ideal class group of the Z_{p}-extension over Q for typical inert primes

By Kuniaki Horie
Department of Mathematics, Tokai University
1117, Kitakaname, Hiratsuka, Kanagawa 259-1292
(Communicated by Shigefumi Mori, M. J. A., March 14, 2005)

Abstract

Let p be an odd prime, \mathbf{Z}_{p} the ring of p-adic integers, and l a prime number different from p. We have shown in [1] that, if l is a sufficiently large primitive root modulo p^{2}, then the l-class group of the \mathbf{Z}_{p}-extension over the rational field is trivial. We shall modify part of the proof of the above result and see, in the case $p \leq 7$, that the result holds without assuming l to be sufficiently large.

Key words: $\quad \mathbf{Z}_{p}$-extension; ideal class group.

Introduction. Let p be an odd prime number, \mathbf{Z}_{p} the ring of p-adic integers, and \mathbf{Q}_{∞} the $\mathbf{Z}_{p^{-}}$ extension over the field \mathbf{Q} of rational numbers, i.e., the unique abelian extension over \mathbf{Q} whose Galois group over \mathbf{Q} is topologically isomorphic to the additive group of \mathbf{Z}_{p}. Let l be a prime number different from p. Theorem 3 of [1] states that the l-class group of \mathbf{Q}_{∞} is trivial if l is a primitive root modulo p^{2} and if

$$
l \geq \frac{3}{2 \log 2}(p-1) \varphi(p-1)(\log p+\log (\log p))
$$

Here φ denotes as usual the Euler function. In this note, we shall review or improve some preliminary results of [1] for the proof of the theorem, and as a consequence we shall see that, when p is 5 or 7 , the theorem holds without the second condition in the above statement (for the case $p=3$, cf. Lemma 10 of [1]).

1. For each integer $m \geq 0$, let h_{m} denote the class number of the subfield of \mathbf{Q}_{∞} with degree p^{m}. Since p is totally ramified for $\mathbf{Q}_{\infty} / \mathbf{Q}$, class field theory shows that h_{u-1} divides h_{u} for every positive integer u. Furthermore, by the definition of the l-class group of \mathbf{Q}_{∞}, we immediately have the following

Lemma 1. The l-class group of \mathbf{Q}_{∞} is trivial if and only if l does not divide h_{u} / h_{u-1} for any positive integer u.

Let ν be the number of distinct prime divisors of $(p-1) / 2$, let

[^0]$$
\frac{p-1}{2}=q_{1} \cdots q_{\nu}
$$
where q_{1}, \ldots, q_{ν} are prime-powers >1 pairwise relatively prime, and let V be the subset of the cyclic group $\left\langle e^{2 \pi i /(p-1)}\right\rangle$ consisting of
$$
e^{\pi i m_{1} / q_{1}} \cdots e^{\pi i m_{\nu} / q_{\nu}}
$$
for all ν-tuples $\left(m_{1}, \ldots, m_{\nu}\right)$ of integers with $0 \leq$ $m_{1}<q_{1}, \ldots, 0 \leq m_{\nu}<q_{\nu}$. We understand that $V=$ $\{1\}$ if $p=3$. Denoting by \mathbf{Z} the ring of (rational) integers as usual, let Φ denote the set of maps
$$
z: V \rightarrow\{u \in \mathbf{Z} \mid 0 \leq u \leq 2 l\}
$$
such that, for some $\xi \in V$,
$$
l \nmid z(\xi) \text { or } z(\xi)>0
$$
according as $l>2$ or $l=2$, and
$$
l \mid z\left(\xi^{\prime}\right) \text { for all } \xi^{\prime} \in V \backslash\{\xi\}
$$

We then put

$$
M=\max _{z \in \Phi}\left|\mathfrak{N}\left(\sum_{\xi \in V} z(\xi) \xi-1\right)\right|
$$

Here \mathfrak{N} denotes the norm map from $\mathbf{Q}\left(e^{2 \pi i /(p-1)}\right)$ to
Q. For each algebraic number α, we let $\|\alpha\|$ denote the maximum of the absolute values of all conjugates of α over \mathbf{Q}.

Now, let n be any positive integer, which will be fixed henceforth. Put

$$
\zeta=e^{2 \pi i / p^{n+1}}, \quad t=p^{n}+1
$$

and put

$$
\eta=\prod_{a} \frac{\zeta^{a}-\zeta^{-a}}{\zeta^{t a}-\zeta^{-t a}}=\prod_{a} \frac{\sin \left(2 \pi a / p^{n+1}\right)}{\sin \left(2 \pi t a / p^{n+1}\right)}
$$

with a ranging over the positive integers $<p^{n+1} / 2$ such that $a^{p-1} \equiv 1\left(\bmod p^{n+1}\right)$. We easily see that η is a unit in the subfield of \mathbf{Q}_{∞} with degree p^{n}.

Lemma 2. Assume that l is a primitive root modulo $p^{\min (2, n)}$, namely, a primitive root modulo p^{n}. If

$$
p^{n}>M \quad \text { or } \quad l \geq \frac{\log \|\eta\|}{\log 2}
$$

then l does not divide h_{n} / h_{n-1}.
Proof. This follows from Lemmas 2, 3 and 8 of [1].

Remark. If $p=3$ and if $l \equiv 2$ or $5(\bmod 9)$, i.e., l is a primitive root modulo 9 , then one has

$$
M=2 l-2 \quad \text { or } \quad M=3
$$

according as $l>2$ or $l=2$, Lemma 4 of [1] yields

$$
\|\eta\|<\frac{3^{n+1}}{\pi} \sin \frac{\pi}{3}=\frac{3^{n+1} \sqrt{3}}{2 \pi}
$$

and hence, by Lemmas 1 and 2, the l-class group of \mathbf{Q}_{∞} is trivial as Lemma 10 of [1] has stated.

Let \mathfrak{p} be a prime ideal of $\mathbf{Q}\left(e^{2 \pi i /(p-1)}\right)$ dividing p. Let I be the set of positive integers $a<p^{n+1}$ such that there exist elements ξ of V with $a \equiv \xi$ $\left(\bmod \mathfrak{p}^{n+1}\right)$, and let \mathfrak{F} be the family of all maps from I to the set $\{0, l\}$. For each $a \in I$, let \mathfrak{G}_{a} denote the family of maps $j: I \rightarrow \mathbf{Z}$ such that $\min (l-2,1) \leq$ $j(a)<l$ and that $j(b)=0$ or l for every $b \in I \backslash\{a\}$. Given any integer m, we then let

$$
\begin{aligned}
\mathcal{P}_{a}(m)= & \left\{\left(j_{1}, j_{2}\right) \in \mathfrak{G}_{a} \times \mathfrak{F} \mid\right. \\
& \left.\sum_{b \in I}\left(t j_{1}(b)+j_{2}(b)\right) b \equiv m \quad\left(\bmod p^{n+1}\right)\right\}, \\
\mathcal{Q}_{a}(m)= & \left\{\left(j_{1}, j_{2}\right) \in \mathfrak{F} \times \mathfrak{G}_{a} \mid\right. \\
& \left.\sum_{b \in I}\left(t j_{1}(b)+j_{2}(b)\right) b \equiv m \quad\left(\bmod p^{n+1}\right)\right\} .
\end{aligned}
$$

Moreover, in the case $l>2$, we put
$s_{1}(m)=\sum_{a \in I} \sum_{\left(j_{1}, j_{2}\right) \in \mathcal{P}_{a}(m)} \frac{(-1)^{j_{1}(a)+\sum_{b \in I}\left(j_{1}(b)+j_{2}(b)\right)}}{j_{1}(a)}$,
$s_{2}(m)=\sum_{a \in I} \sum_{\left(j_{1}, j_{2}\right) \in \mathcal{Q}_{a}(m)} \frac{(-1)^{j_{2}(a)+\sum_{b \in I}\left(j_{1}(b)+j_{2}(b)\right)}}{j_{2}(a)} ;$
in the case $l=2$, we put

$$
s_{1}(m)=\sum_{a \in I}\left|\mathcal{P}_{a}(m)\right|, \quad s_{2}(m)=\sum_{a \in I}\left|\mathcal{Q}_{a}(m)\right| .
$$

Note that the rational numbers $s_{1}(m), s_{2}(m)$ are l adic integers.

Lemma 3. Assume l to be a primitive root modulo p^{n}. If there exist integers c and d satisfying

$$
\begin{aligned}
& c \equiv d \quad\left(\bmod p^{n}\right) \\
& s_{2}(c)-s_{1}(c) \not \equiv s_{2}(d)-s_{1}(d) \quad(\bmod l)
\end{aligned}
$$

then l does not divide h_{n} / h_{n-1}.
Proof. Let x be an indeterminate. We denote by $J(x)$ the polynomial in $\mathbf{Z}[x]$ such that $(x-1)^{l}=$ $x^{l}-1+l J(x)$. Namely,

$$
J(x)=\sum_{u=1}^{l-1} \frac{(-1)^{u-1}}{l}\binom{l}{u} x^{u} \quad \text { or } \quad J(x)=-x+1
$$

according as $l>2$ or $l=2$. We also define in $\mathbf{Z}[x]$

$$
\begin{aligned}
L(x)= & \sum_{a \in I}\left(\prod_{b \in I \backslash\{a\}}\left(x^{l b}-1\right)\left(x^{l t b}-1\right)\right) \\
& \left(\left(x^{l a}-1\right) J\left(x^{t a}\right)-\left(x^{l t a}-1\right) J\left(x^{a}\right)\right) .
\end{aligned}
$$

For any $m \in \mathbf{Z}$, the sum of the coefficients of x^{u} in $L(x)$ for all non-negative integers u with $u \equiv m$ $\left(\bmod p^{n+1}\right)$ is congruent to $s_{2}(m)-s_{1}(m)$ modulo l; because

$$
\frac{(-1)^{u-1}}{l}\binom{l}{u} \equiv \frac{1}{u} \quad(\bmod l)
$$

for every positive integer $u<l$ and, in the case $l=2$,

$$
\begin{aligned}
& \sum_{a \in I}\left(\prod_{b \in I \backslash\{a\}}\left(x^{2 b}+1\right)\left(x^{2 t b}+1\right)\right)\left(\left(x^{2 a}+1\right)\left(x^{t a}+1\right)\right. \\
& \left.\quad+\left(x^{2 t a}+1\right)\left(x^{a}+1\right)\right)-L(x) \in 2 \mathbf{Z}[x] .
\end{aligned}
$$

Hence, in view of the relation $\sum_{r=0}^{p-1} \zeta^{r p^{n}}=0$, we know that $L(\zeta) \not \equiv 0(\bmod l)$ if and only if there exist integers c, d satisfying

$$
\begin{aligned}
& c \equiv d \quad\left(\bmod p^{n}\right) \\
& s_{2}(c)-s_{1}(c) \not \equiv s_{2}(d)-s_{1}(d) \quad(\bmod l)
\end{aligned}
$$

(cf. Lemma 6 of [1]). Furthermore, the proof of Lemma 8 of $[1]$ shows that, if $L(\zeta) \not \equiv 0(\bmod l)$, then
$h_{n} / h_{n-1} \not \equiv 0(\bmod l)$. We thus obtain the lemma.
For each integer m, we let

$$
\mathcal{P}(m)=\bigcup_{a \in I} \mathcal{P}_{a}(m), \quad \mathcal{Q}(m)=\bigcup_{a \in I} \mathcal{Q}_{a}(m) .
$$

Lemma 4. Assume that l is a primitive root modulo p^{n}, and that there exist integers c and d satisfying

$$
\begin{aligned}
& c \equiv d\left(\bmod p^{n}\right) \\
& |\mathcal{P}(c) \cup \mathcal{Q}(c)|=1, \quad \mathcal{P}(d) \cup \mathcal{Q}(d)=\emptyset
\end{aligned}
$$

If $l=2$, assume as well that $g_{1}(I) \cup g_{2}(I)$ contains 1 for the element $\left(g_{1}, g_{2}\right)$ of $\mathcal{P}(c) \cup \mathcal{Q}(c)$. Then l does not divide h_{n} / h_{n-1}.

Proof. The hypothesis implies not only that $s_{1}(d)=s_{2}(d)=0$ but that, for some $a \in I$ and every $b \in I \backslash\{a\}$,

$$
\left|\mathcal{P}_{a}(c)\right|+\left|\mathcal{Q}_{a}(c)\right|=1, \quad \mathcal{P}_{b}(c)=\mathcal{Q}_{b}(c)=\emptyset
$$

and hence $s_{2}(c)-s_{1}(c) \not \equiv 0(\bmod l)$. The lemma therefore follows from Lemma 3.
2. Given any pair $\kappa=\left(j_{1}, j_{2}\right)$ of maps $I \rightarrow \mathbf{Z}$, we naturally identify κ with a map $I \rightarrow \mathbf{Z} \times \mathbf{Z}$, i.e., we put

$$
\kappa(a)=\left(j_{1}(a), j_{2}(a)\right) \quad \text { for each } a \in I
$$

We also put

$$
D=l(t+1) \sum_{a \in I} a-1=l\left(p^{n}+2\right) \sum_{a \in I} a-1
$$

Let us consider the case where $p=5$ or 7 .
Proposition 1. Assume that $p=5$ and that l is a primitive root modulo 25 , i.e., $l \equiv$ $2,3,8,12,13,17,22,23(\bmod 25)$. Then the l-class group of \mathbf{Q}_{∞} is trivial.

Proof. Clearly, we have $V=\{1, i\}$. It follows that

$$
\mathfrak{N}\left(\sum_{\xi \in V} z(\xi) \xi-1\right)=(z(1)-1)^{2}+z(i)^{2}
$$

for every map z in Φ. Therefore,

$$
M=8 l^{2}-8 l+4 \quad \text { or } \quad M=25
$$

according as $l>2$ or $l=2$. We let, in $\mathbf{Z} \times \mathbf{Z}$,

$$
\begin{aligned}
S=\{ & (1,2),(1,3),(2,2),(2,3),(3,13),(4,13) \\
& (4,17),(5,23)\}
\end{aligned}
$$

Since the inequality $5^{n} \leq M$ is equivalent to the condition that

$$
\sqrt{\frac{5^{n}-2}{8}}+\frac{1}{2} \leq l \quad \text { or } \quad(n . l)=(2,2)
$$

(n, l) belongs to S if and only if

$$
5^{n} \leq M \quad \text { and } \quad l<\frac{2}{\log 2} \log \left(\frac{5^{n+1}}{\pi} \sin \frac{\pi}{5}\right)
$$

On the other hand, Lemma 4 of [1] implies

$$
\|\eta\|<\left(\frac{5^{n+1}}{\pi} \sin \frac{\pi}{5}\right)^{2}
$$

We therefore know form Lemma 2 that l does not divide h_{n} / h_{n-1} unless (n, l) belongs to S.

Suppose now that (n, l) belongs to S. In view of $1068^{2} \equiv-1\left(\bmod 5^{6}\right)$, let a_{0} be the integer such that

$$
0<a_{0}<5^{n+1}, \quad a_{0} \equiv 1068 \quad\left(\bmod 5^{n+1}\right)
$$

and take as \mathfrak{p} the prime ideal of $\mathbf{Q}(i)$ generated by 5 and $a_{0}-i$. We then have

$$
I=\left\{1, a_{0}\right\}, \quad D=l\left(a_{0}+1\right)\left(5^{n}+2\right)-1
$$

In the case $n \geq 2$,

$$
\mathcal{P}(D)=\mathcal{P}\left(D+2 \cdot 5^{n}\right)=\mathcal{Q}\left(D+2 \cdot 5^{n}\right)=\emptyset
$$

and $\mathcal{Q}(D)$ consists only of the map $\theta: I \rightarrow \mathbf{Z} \times \mathbf{Z}$ for which

$$
\theta(1)=(l, l-1), \quad \theta\left(a_{0}\right)=(l, l)
$$

In the case $(n, l)=(1,3)$,

$$
\begin{aligned}
& \mathcal{P}(23)=\{\psi\}, \quad \mathcal{Q}(23)=\left\{\theta_{1}, \theta_{2}\right\}, \quad \mathcal{P}(28)=\emptyset \\
& \mathcal{Q}(28)=\left\{\theta_{3}\right\}
\end{aligned}
$$

with the maps $\psi, \theta_{1}, \theta_{2}, \theta_{3}$ of I into $\mathbf{Z} \times \mathbf{Z}$ defined by

$$
\begin{aligned}
& \psi(1)=(0,3), \quad \psi\left(a_{0}\right)=(2,3), \quad \theta_{1}(1)=(3,2) \\
& \theta_{1}\left(a_{0}\right)=(3,3), \quad \theta_{2}(1)=(3,1), \quad \theta_{2}\left(a_{0}\right)=(0,3) \\
& \theta_{3}(1)=(3,0), \quad \theta_{3}\left(a_{0}\right)=(3,2)
\end{aligned}
$$

hence one sees that

$$
s_{2}(23)-s_{1}(23)=0, \quad s_{2}(28)-s_{1}(28)=\frac{1}{2}
$$

In the case $(n, l)=(1,2)$,

$$
\begin{aligned}
& \mathcal{P}(15)=\mathcal{Q}(10)=\emptyset, \quad \mathcal{Q}(15)=\{\theta\} \\
& \mathcal{P}(10)=\left\{\psi_{1}, \psi_{2}\right\}
\end{aligned}
$$

with the maps $\theta, \psi_{1}, \psi_{2}$ of I into $\mathbf{Z} \times \mathbf{Z}$ defined by

$$
\begin{aligned}
& \theta(1)=(2,1), \quad \theta\left(a_{0}\right)=(2,2), \quad \psi_{1}(1)=(1,2) \\
& \psi_{1}\left(a_{0}\right)=(2,2), \quad \psi_{2}(1)=(0,2), \quad \psi_{2}\left(a_{0}\right)=(1,0)
\end{aligned}
$$

so that

$$
s_{2}(15)-s_{1}(15)=1, \quad s_{2}(10)-s_{1}(10)=-2
$$

Hence the proof is completed by Lemmas 1, 3 and 4.
Proposition 2. Assume that $p=7$ and that l is a primitive root modulo 49, namely, $l \equiv 3,5,10,12,17,24,26,33,38,40,45,47(\bmod 49)$. Then the l-class group of \mathbf{Q}_{∞} is trivial.

Proof. Let us set $\rho=e^{\pi i / 3}$ for simplicity. As $V=\left\{1, \rho, \rho^{2}\right\}$, we find that

$$
\begin{aligned}
& \mathfrak{N}\left(\sum_{\xi \in V} z(\xi) \xi-1\right) \\
& =(z(1)+z(\rho)-1)^{2}-\left(z(\rho)+z\left(\rho^{2}\right)\right)(z(1) \\
& \quad+z(\rho)-1)+\left(z(\rho)+z\left(\rho^{2}\right)\right)^{2}
\end{aligned}
$$

for every z in Φ. When the right hand side of the above takes its maximum, one of $z(1), z(\rho), z\left(\rho^{2}\right)$ belongs to $\{1,2 l-1\}$ and the others belong to $\{0,2 l\}$. Thus we obtain

$$
M=(4 l-2)^{2}-4 l(4 l-2)+(4 l)^{2}=16 l^{2}-8 l+4
$$

We now let

$$
S=\{(1,3),(2,3),(2,5),(3,5),(3,17),(4,17)\} .
$$

It follows that (n, l) belongs to $S \cup\{(1,5)\}$ if and only if

$$
7^{n} \leq M, \quad l<\frac{3}{\log 2} \log \left(\frac{7^{n+1}}{\pi} \sin \frac{\pi}{7}\right) .
$$

In the case $n=1$, we also have

$$
\|\eta\|=\frac{\sin (12 \pi / 49) \sin (17 \pi / 49) \sin (20 \pi / 49)}{\sin (2 \pi / 49) \sin (11 \pi / 49) \sin (13 \pi / 49)}<2^{4}
$$

Hence Lemma 2, together with Lemma 4 of [1], shows that l does not divide h_{n} / h_{n-1} unless (n, l) belongs to S.

Next, suppose (n, l) to be in S. Let a_{0} be the positive integer $<7^{n+1}$ such that $a_{0} \equiv 1354$ $\left(\bmod 7^{n+1}\right)$, hence, $a_{0}^{2}-a_{0}+1 \equiv 0\left(\bmod 7^{n+1}\right)$. Take as \mathfrak{p} the prime ideal of $\mathbf{Q}(\rho)$ generated by 7 and $a_{0}-\rho$, so that

$$
I=\left\{1, a_{0}, a_{0}-1\right\}, \quad D=2 l a_{0}\left(7^{n}+2\right)-1
$$

If (n, l) equals $(4,17),(3,5)$ or $(2,3)$, then we have

$$
\left|\mathcal{P}\left(D+3 \cdot 7^{n}\right)\right|=1, \quad \mathcal{Q}\left(D+3 \cdot 7^{n}\right)=\emptyset
$$

$$
\mathcal{P}\left(D+5 \cdot 7^{n}\right)=\mathcal{Q}\left(D+5 \cdot 7^{n}\right)=\emptyset .
$$

In the case $(n, l)=(3,17)$ and the case $(n, l)=(2,5)$, we see respectively that

$$
|\mathcal{P}(2548)|=1, \quad \mathcal{Q}(2548)=\mathcal{P}(3920)=\mathcal{Q}(3920)=\emptyset
$$

and that

$$
|\mathcal{P}(129)|=1, \quad \mathcal{Q}(129)=\mathcal{P}(227)=\mathcal{Q}(227)=\emptyset
$$

In the case $(n, l)=(1,3)$, we obtain

$$
\begin{aligned}
& \mathcal{P}(7)=\left\{\psi_{1}, \psi_{2}, \psi_{3}, \psi_{4}, \psi_{5}\right\}, \quad \mathcal{Q}(7)=\left\{\theta_{1}, \theta_{2}, \theta_{3}\right\}, \\
& \mathcal{P}(21)=\left\{\psi_{6}\right\}, \quad \mathcal{Q}(21)=\left\{\theta_{4}, \theta_{5}\right\},
\end{aligned}
$$

where $\psi_{1}, \ldots, \psi_{6}, \theta_{1}, \ldots, \theta_{5}$ are the maps $I \rightarrow \mathbf{Z} \times \mathbf{Z}$ such that

$$
\begin{aligned}
\psi_{1}(1) & =(1,3), \psi_{1}\left(a_{0}\right)=(3,3), \psi_{1}\left(a_{0}-1\right)=(0,3), \\
\psi_{2}(1) & =(0,3), \psi_{2}\left(a_{0}\right)=(3,0), \psi_{2}\left(a_{0}-1\right)=(1,0), \\
\psi_{3}(1) & =(3,3), \psi_{3}\left(a_{0}\right)=(1,0), \psi_{3}\left(a_{0}-1\right)=(3,3), \\
\psi_{4}(1) & =(3,0), \psi_{4}\left(a_{0}\right)=(2,0), \psi_{4}\left(a_{0}-1\right)=(3,3), \\
\psi_{5}(1) & =(3,0), \psi_{5}\left(a_{0}\right)=(1,3), \psi_{5}\left(a_{0}-1\right)=(3,0), \\
\theta_{1}(1) & =(3,2), \theta_{1}\left(a_{0}\right)=(3,3), \theta_{1}\left(a_{0}-1\right)=(3,3), \\
\theta_{2}(1) & =(3,0), \theta_{2}\left(a_{0}\right)=(3,1), \theta_{2}\left(a_{0}-1\right)=(0,3), \\
\theta_{3}(1) & =(0,0), \theta_{3}\left(a_{0}\right)=(3,2), \theta_{3}\left(a_{0}-1\right)=(3,0), \\
\psi_{6}(1) & =(3,3), \psi_{6}\left(a_{0}\right)=(3,3), \psi_{6}\left(a_{0}-1\right)=(2,0), \\
\theta_{4}(1) & =(3,1), \theta_{4}\left(a_{0}\right)=(3,3), \theta_{4}\left(a_{0}-1\right)=(0,3), \\
\theta_{5}(1) & =(3,2), \theta_{5}\left(a_{0}\right)=(0,3), \theta_{5}\left(a_{0}-1\right)=(0,0) .
\end{aligned}
$$

Therefore, in this case,

$$
s_{2}(7)-s_{1}(7)=-\frac{5}{2}, \quad s_{2}(21)-s_{1}(21)=1
$$

Thus Lemmas 1, 3 and 4 complete the proof of the proposition.

We would continue our discussion, not assuming $p \leq 7$. It is possible to do so to some extent with the help of a computer.

Acknowledgement. The author thanks the referee who read the paper carefully and made several helpful comments.

Reference

[1] K. Horie, Ideal class groups of Iwasawa-theoretical abelian extensions over the rational field, J. London Math. Soc. (2) 66 (2002), no. 2, 257-275.

[^0]: 2000 Mathematics Subject Classification. Primary 11R20; Secondary 11R23, 11R29.

