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Abstract: Let p be an odd prime, Zp the ring of p-adic integers, and l a prime number
different from p. We have shown in [1] that, if l is a sufficiently large primitive root modulo p2,
then the l-class group of the Zp-extension over the rational field is trivial. We shall modify part
of the proof of the above result and see, in the case p ≤ 7, that the result holds without assuming
l to be sufficiently large.
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Introduction. Let p be an odd prime num-
ber, Zp the ring of p-adic integers, and Q∞ the Zp-
extension over the field Q of rational numbers, i.e.,
the unique abelian extension over Q whose Galois
group over Q is topologically isomorphic to the ad-
ditive group of Zp. Let l be a prime number different
from p. Theorem 3 of [1] states that the l-class group
of Q∞ is trivial if l is a primitive root modulo p2 and
if

l ≥ 3
2 log 2

(p − 1)ϕ(p − 1)(logp + log(log p)).

Here ϕ denotes as usual the Euler function. In this
note, we shall review or improve some preliminary
results of [1] for the proof of the theorem, and as a
consequence we shall see that, when p is 5 or 7, the
theorem holds without the second condition in the
above statement (for the case p = 3, cf. Lemma 10
of [1]).

1. For each integer m ≥ 0, let hm denote the
class number of the subfield of Q∞ with degree pm.
Since p is totally ramified for Q∞/Q, class field the-
ory shows that hu−1 divides hu for every positive in-
teger u. Furthermore, by the definition of the l-class
group of Q∞, we immediately have the following

Lemma 1. The l-class group of Q∞ is triv-
ial if and only if l does not divide hu/hu−1 for any
positive integer u.

Let ν be the number of distinct prime divisors
of (p − 1)/2, let

2000 Mathematics Subject Classification. Primary 11R20;

Secondary 11R23, 11R29.

p − 1
2

= q1 · · ·qν

where q1, . . . , qν are prime-powers > 1 pairwise rel-
atively prime, and let V be the subset of the cyclic
group 〈e2πi/(p−1)〉 consisting of

eπim1/q1 · · ·eπimν /qν

for all ν-tuples (m1, . . . , mν) of integers with 0 ≤
m1 < q1, . . . , 0 ≤ mν < qν. We understand that V =
{1} if p = 3. Denoting by Z the ring of (rational)
integers as usual, let Φ denote the set of maps

z : V → {u ∈ Z | 0 ≤ u ≤ 2l}
such that, for some ξ ∈ V ,

l � z(ξ) or z(ξ) > 0

according as l > 2 or l = 2, and

l | z(ξ′) for all ξ′ ∈ V \ {ξ}.
We then put

M = max
z∈Φ

∣∣∣∣∣∣N
( ∑

ξ∈V

z(ξ)ξ − 1

)∣∣∣∣∣∣ .
Here N denotes the norm map from Q(e2πi/(p−1)) to
Q. For each algebraic number α, we let ‖α‖ denote
the maximum of the absolute values of all conjugates
of α over Q.

Now, let n be any positive integer, which will be
fixed henceforth. Put

ζ = e2πi/pn+1
, t = pn + 1,
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and put

η =
∏
a

ζa − ζ−a

ζta − ζ−ta
=

∏
a

sin(2πa/pn+1)
sin(2πta/pn+1)

,

with a ranging over the positive integers < pn+1/2
such that ap−1 ≡ 1 (mod pn+1). We easily see that
η is a unit in the subfield of Q∞ with degree pn.

Lemma 2. Assume that l is a primitive root
modulo pmin(2,n), namely, a primitive root modulo
pn. If

pn > M or l ≥ log ‖η‖
log 2

,

then l does not divide hn/hn−1.
Proof. This follows from Lemmas 2, 3 and 8 of

[1].
Remark. If p = 3 and if l ≡ 2 or 5 (mod 9),

i.e., l is a primitive root modulo 9, then one has

M = 2l − 2 or M = 3

according as l > 2 or l = 2, Lemma 4 of [1] yields

‖η‖ <
3n+1

π
sin

π

3
=

3n+1
√

3
2π

,

and hence, by Lemmas 1 and 2, the l-class group of
Q∞ is trivial as Lemma 10 of [1] has stated.

Let p be a prime ideal of Q(e2πi/(p−1)) dividing
p. Let I be the set of positive integers a < pn+1

such that there exist elements ξ of V with a ≡ ξ

(mod pn+1), and let F be the family of all maps from
I to the set {0, l}. For each a ∈ I, let Ga denote the
family of maps j : I → Z such that min(l − 2, 1) ≤
j(a) < l and that j(b) = 0 or l for every b ∈ I \ {a}.
Given any integer m, we then let

Pa(m) =

{
(j1, j2) ∈ Ga × F

∣∣∣∣
∑
b∈I

(tj1(b) + j2(b))b ≡ m (mod pn+1)

}
,

Qa(m) =

{
(j1, j2) ∈ F× Ga

∣∣∣∣
∑
b∈I

(tj1(b) + j2(b))b ≡ m (mod pn+1)

}
.

Moreover, in the case l > 2, we put

s1(m) =
∑
a∈I

∑
(j1,j2)∈Pa(m)

(−1)j1(a)+
�

b∈I(j1(b)+j2(b))

j1(a)
,

s2(m) =
∑
a∈I

∑
(j1,j2)∈Qa(m)

(−1)j2(a)+
�

b∈I(j1(b)+j2(b))

j2(a)
;

in the case l = 2, we put

s1(m) =
∑
a∈I

|Pa(m)|, s2(m) =
∑
a∈I

|Qa(m)|.

Note that the rational numbers s1(m), s2(m) are l-
adic integers.

Lemma 3. Assume l to be a primitive root
modulo pn. If there exist integers c and d satisfy-
ing

c ≡ d (mod pn),

s2(c) − s1(c) 
≡ s2(d) − s1(d) (mod l),

then l does not divide hn/hn−1.
Proof. Let x be an indeterminate. We denote

by J(x) the polynomial in Z[x] such that (x − 1)l =
xl − 1 + lJ(x). Namely,

J(x) =
l−1∑
u=1

(−1)u−1

l

(
l

u

)
xu or J(x) = −x + 1

according as l > 2 or l = 2. We also define in Z[x]

L(x) =
∑
a∈I

( ∏
b∈I\{a}

(xlb − 1)(xltb − 1)

)
(
(xla − 1)J(xta) − (xlta − 1)J(xa)

)
.

For any m ∈ Z, the sum of the coefficients of xu

in L(x) for all non-negative integers u with u ≡ m

(mod pn+1) is congruent to s2(m)−s1(m) modulo l;
because

(−1)u−1

l

(
l

u

)
≡ 1

u
(mod l)

for every positive integer u < l and, in the case l = 2,

∑
a∈I

( ∏
b∈I\{a}

(x2b + 1)(x2tb + 1)

)(
(x2a + 1)(xta + 1)

+ (x2ta + 1)(xa + 1)
) − L(x) ∈ 2Z[x].

Hence, in view of the relation
∑p−1

r=0 ζrpn

= 0, we
know that L(ζ) 
≡ 0 (mod l) if and only if there exist
integers c, d satisfying

c ≡ d (mod pn),

s2(c) − s1(c) 
≡ s2(d) − s1(d) (mod l)

(cf. Lemma 6 of [1]). Furthermore, the proof of
Lemma 8 of [1] shows that, if L(ζ) 
≡ 0 (mod l), then
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hn/hn−1 
≡ 0 (mod l). We thus obtain the lemma.

For each integer m, we let

P(m) =
⋃
a∈I

Pa(m), Q(m) =
⋃
a∈I

Qa(m).

Lemma 4. Assume that l is a primitive root
modulo pn, and that there exist integers c and d sat-
isfying

c ≡ d (mod pn),

|P(c) ∪ Q(c)| = 1, P(d) ∪ Q(d) = ∅.
If l = 2, assume as well that g1(I)∪g2(I) contains 1
for the element (g1, g2) of P(c) ∪ Q(c). Then l does
not divide hn/hn−1.

Proof. The hypothesis implies not only that
s1(d) = s2(d) = 0 but that, for some a ∈ I and
every b ∈ I \ {a},

|Pa(c)| + |Qa(c)| = 1, Pb(c) = Qb(c) = ∅,
and hence s2(c) − s1(c) 
≡ 0 (mod l). The lemma
therefore follows from Lemma 3.

2. Given any pair κ = (j1, j2) of maps I → Z,
we naturally identify κ with a map I → Z × Z, i.e.,
we put

κ(a) = (j1(a), j2(a)) for each a ∈ I.

We also put

D = l(t + 1)
∑
a∈I

a − 1 = l(pn + 2)
∑
a∈I

a − 1.

Let us consider the case where p = 5 or 7.
Proposition 1. Assume that p = 5 and

that l is a primitive root modulo 25, i.e., l ≡
2, 3, 8, 12, 13, 17, 22, 23 (mod 25). Then the l-class
group of Q∞ is trivial.

Proof. Clearly, we have V = {1, i}. It follows
that

N

( ∑
ξ∈V

z(ξ)ξ − 1

)
= (z(1) − 1)2 + z(i)2

for every map z in Φ. Therefore,

M = 8l2 − 8l + 4 or M = 25

according as l > 2 or l = 2. We let, in Z ×Z,

S = {(1, 2), (1, 3), (2, 2), (2, 3), (3, 13), (4, 13),

(4, 17), (5, 23)}.
Since the inequality 5n ≤ M is equivalent to the
condition that

√
5n − 2

8
+

1
2
≤ l or (n.l) = (2, 2),

(n, l) belongs to S if and only if

5n ≤ M and l <
2

log 2
log

(
5n+1

π
sin

π

5

)
.

On the other hand, Lemma 4 of [1] implies

‖η‖ <

(
5n+1

π
sin

π

5

)2

.

We therefore know form Lemma 2 that l does not
divide hn/hn−1 unless (n, l) belongs to S.

Suppose now that (n, l) belongs to S. In view
of 10682 ≡ −1 (mod 56), let a0 be the integer such
that

0 < a0 < 5n+1, a0 ≡ 1068 (mod 5n+1),

and take as p the prime ideal of Q(i) generated by 5
and a0 − i. We then have

I = {1, a0}, D = l(a0 + 1)(5n + 2) − 1.

In the case n ≥ 2,

P(D) = P(D + 2 · 5n) = Q(D + 2 · 5n) = ∅,
and Q(D) consists only of the map θ : I → Z×Z for
which

θ(1) = (l, l − 1), θ(a0) = (l, l).

In the case (n, l) = (1, 3),

P(23) = {ψ}, Q(23) = {θ1, θ2}, P(28) = ∅,
Q(28) = {θ3},

with the maps ψ, θ1, θ2, θ3 of I into Z × Z defined
by

ψ(1) = (0, 3), ψ(a0) = (2, 3), θ1(1) = (3, 2),

θ1(a0) = (3, 3), θ2(1) = (3, 1), θ2(a0) = (0, 3),

θ3(1) = (3, 0), θ3(a0) = (3, 2);

hence one sees that

s2(23) − s1(23) = 0, s2(28) − s1(28) =
1
2
.

In the case (n, l) = (1, 2),

P(15) = Q(10) = ∅, Q(15) = {θ},
P(10) = {ψ1, ψ2},

with the maps θ, ψ1, ψ2 of I into Z× Z defined by

θ(1) = (2, 1), θ(a0) = (2, 2), ψ1(1) = (1, 2),

ψ1(a0) = (2, 2), ψ2(1) = (0, 2), ψ2(a0) = (1, 0),
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so that

s2(15) − s1(15) = 1, s2(10) − s1(10) = −2.

Hence the proof is completed by Lemmas 1, 3 and 4.

Proposition 2. Assume that p = 7 and
that l is a primitive root modulo 49, namely,
l ≡ 3, 5, 10, 12, 17, 24, 26, 33, 38, 40, 45, 47 (mod 49).
Then the l-class group of Q∞ is trivial.

Proof. Let us set ρ = eπi/3 for simplicity. As
V = {1, ρ, ρ2}, we find that

N

( ∑
ξ∈V

z(ξ)ξ − 1

)

= (z(1) + z(ρ) − 1)2 − (z(ρ) + z(ρ2))(z(1)

+ z(ρ) − 1) + (z(ρ) + z(ρ2))2

for every z in Φ. When the right hand side of the
above takes its maximum, one of z(1), z(ρ), z(ρ2)
belongs to {1, 2l−1} and the others belong to {0, 2l}.
Thus we obtain

M = (4l − 2)2 − 4l(4l − 2) + (4l)2 = 16l2 − 8l + 4.

We now let

S = {(1, 3), (2, 3), (2, 5), (3, 5), (3, 17), (4, 17)}.
It follows that (n, l) belongs to S ∪ {(1, 5)} if and
only if

7n ≤ M, l <
3

log 2
log

(
7n+1

π
sin

π

7

)
.

In the case n = 1, we also have

‖η‖ =
sin(12π/49) sin(17π/49) sin(20π/49)
sin(2π/49) sin(11π/49) sin(13π/49)

< 24.

Hence Lemma 2, together with Lemma 4 of [1], shows
that l does not divide hn/hn−1 unless (n, l) belongs
to S.

Next, suppose (n, l) to be in S. Let a0 be
the positive integer < 7n+1 such that a0 ≡ 1354
(mod 7n+1), hence, a2

0 − a0 + 1 ≡ 0 (mod 7n+1).
Take as p the prime ideal of Q(ρ) generated by 7
and a0 − ρ, so that

I = {1, a0, a0 − 1}, D = 2la0(7n + 2) − 1.

If (n, l) equals (4, 17), (3, 5) or (2, 3), then we have

|P(D + 3 · 7n)| = 1, Q(D + 3 · 7n) = ∅,

P(D + 5 · 7n) = Q(D + 5 · 7n) = ∅.
In the case (n, l) = (3, 17) and the case (n, l) = (2, 5),
we see respectively that

|P(2548)| =1, Q(2548) = P(3920) = Q(3920) = ∅
and that

|P(129)| = 1, Q(129) = P(227) = Q(227) = ∅.
In the case (n, l) = (1, 3), we obtain

P(7) = {ψ1, ψ2, ψ3, ψ4, ψ5}, Q(7) = {θ1, θ2, θ3},
P(21) = {ψ6}, Q(21) = {θ4, θ5},

where ψ1, . . . , ψ6, θ1, . . . , θ5 are the maps I → Z×Z
such that

ψ1(1) = (1, 3), ψ1(a0) = (3, 3), ψ1(a0 − 1) = (0, 3),
ψ2(1) = (0, 3), ψ2(a0) = (3, 0), ψ2(a0 − 1) = (1, 0),
ψ3(1) = (3, 3), ψ3(a0) = (1, 0), ψ3(a0 − 1) = (3, 3),
ψ4(1) = (3, 0), ψ4(a0) = (2, 0), ψ4(a0 − 1) = (3, 3),
ψ5(1) = (3, 0), ψ5(a0) = (1, 3), ψ5(a0 − 1) = (3, 0),
θ1(1) = (3, 2), θ1(a0) = (3, 3), θ1(a0 − 1) = (3, 3),
θ2(1) = (3, 0), θ2(a0) = (3, 1), θ2(a0 − 1) = (0, 3),
θ3(1) = (0, 0), θ3(a0) = (3, 2), θ3(a0 − 1) = (3, 0),
ψ6(1) = (3, 3), ψ6(a0) = (3, 3), ψ6(a0 − 1) = (2, 0),
θ4(1) = (3, 1), θ4(a0) = (3, 3), θ4(a0 − 1) = (0, 3),
θ5(1) = (3, 2), θ5(a0) = (0, 3), θ5(a0 − 1) = (0, 0).

Therefore, in this case,

s2(7) − s1(7) = −5
2
, s2(21) − s1(21) = 1.

Thus Lemmas 1, 3 and 4 complete the proof of the
proposition.

We would continue our discussion, not assuming
p ≤ 7. It is possible to do so to some extent with the
help of a computer.

Acknowledgement. The author thanks the
referee who read the paper carefully and made sev-
eral helpful comments.

Reference

[ 1 ] K. Horie, Ideal class groups of Iwasawa-theoretical
abelian extensions over the rational field, J. Lon-
don Math. Soc. (2) 66 (2002), no. 2, 257–275.


