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Equisingularity in R2 as Morse stability in infinitesimal calculus
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Abstract: Two seemingly unrelated problems are intimately connected. The first is the
equsingularity problem in R2: For an analytic family ft : (R2, 0) → (R, 0), when should it be
called an “equisingular deformation”? This amounts to finding a suitable trivialization condition
(as strong as possible) and, of course, a criterion. The second is on the Morse stability. We define
R∗, which is R “enriched” with a class of infinitesimals. How to generalize the Morse Stability
Theorem to polynomials over R∗? The space R∗ is much smaller than the space used in Non-
standard Analysis. Our infinitesimals are analytic arcs, represented by fractional power series. In
our Theorem II, (B) is a trivialization condition which can serve as a definition for equisingular
deformation; (A), and (A′) in Addendum 1, are criteria, using the stability of “critical points” and
the “complete initial form”; (C) is the Morse stability (Remark 1.6).
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1. Results. As in the Curve Selection
Lemma, by a parameterized arc at 0 in R2 (resp.
C2) we mean a real analytic map germ �λ : [0, ε) →
R2 (resp. C2), �λ(0) = 0, �λ(s) �≡ 0. We call the image
set, λ := Im(�λ), a (geometric) arc at 0, or the locus
of �λ; call �λ a parametrization of λ.

Take λ �= µ. The distance from P ∈ λ to µ is
a fractional power series in s := OP , dist(P, µ) =
ash + · · · , where a > 0, h ∈ Q+.

We call O(λ, µ) := h the contact order of λ

and µ. Define O(λ, λ) := ∞.
Let S1

∗, or simply S∗, denote the set of arcs at
0 in R2. This is called the enriched unit circle for
the following reason. The tangent half line at 0, l, of
a given λ can be identified with a point of the unit
circle S1. If λ �= l, then 1 < O(λ, l) < ∞. Hence we
can regard λ as an “infinitesimal” at l, and S∗ as S1

“enriched” with infinitesimals.
Let f : (R2, 0) → (R, 0) be analytic. Write

V C
∗ (f) := {ζ ∈ S3

∗ | f(z, w) ≡ 0 on ζ}, where S3
∗

denotes the set of arcs at 0 in C2(= R4), and f(z, w)
is the complexification of f .

For λ∈S∗, write O(λ, V C
∗ (f)) :=max{O(λ, ζ) |

ζ ∈ V C∗ (f)}. Define the f-height of λ by hf (λ) :=
O(λ, V C∗ (f)). Hence hf (λ) = ∞ if f(x, y) ≡ 0 along
λ.

For λ1, λ2 ∈ S∗, define λ1 ∼f λ2 if and only
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if hf(λ1) = hf (λ2) < O(λ1, λ2). (In fact, hf (λ1) <

O(λ1, λ2) implies hf (λ1) = hf (λ2).) The equiva-
lence class of λ is denoted by λf .

We call λf an f-truncated arc, or simply an
f-arc. Write S∗/f := S∗/ ∼f , h(λf ) := hf (λ).

Define the contact order of λf and µf by: if
λf �= µf , O(λf , µf ) := O(λ, µ), λ ∈ λf , µ ∈ µf ;
and O(λf , λf ) := ∞. This is well-defined. Write
O(λf , V C

∗ (f)) := O(λ, V C
∗ (f)).

From now on we assume f(x, y) is mini-regular

in x, that is, regular in x of order m(f), the multi-
plicity of f .

Let R+
∗ (resp. R+

∗/f ) denote those arcs of S∗
(resp. S∗/f ) in y > 0, not tangent to the x-axis, and
R−∗ (resp. R−

∗/f ) denote those in y < 0. Write R∗ :=
R+

∗ ∪R−
∗ , R∗/f := R+

∗/f ∪ R−
∗/f .

Take λf , µf ∈ R+
∗/f , or ∈ R−

∗/f . Define λf �
µf (read:“bar equivalent”) if and only if either λf =
µf , or else h(λf ) = h(µf ) = O(λf , µf ). Call an
equivalence class an f-bar. The one containing λf

is denoted by B(λf ), having height h(B(λf )) :=
h(λf ). (See [3–5].)

If h(λf ) = ∞ then B(λf ) = {λf}, a singleton,
and conversely.

The given coordinates (x, y) yield a coordinate
on each bar of finite height, as follows:

Take B, say in R+
∗/f , h(B) < ∞. Take λ ∈ λf ∈
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B with parametrization �λ(s). Eliminating s (s ≥ 0)
yields a unique fractional power series (as in [7])

x = λ(y) = a1y
n1
d + a2y

n2
d + · · · ,(1)

d ≤ n1 < n2 < · · · , (y ≥ 0).

Here all ai ∈ R. Let λB(y) denote λ(y) with all
terms ye, e ≥ h(B), deleted. Observe that for any
µ ∈ λf ∈ B, µ(y) has the form µ(y) = λB(y) +
uyh(B) + · · · , where u ∈ R is uniquely determined by
λf . We say λf ∈ B has canonical coordinate u,
writing λf := u. We call x = λB(y), which depends
only on B, the canonical representation of B.

Take B, h(B) < ∞, and u = λf ∈ B. Let us
write

f(λB(y) + uyh(B) + · · · , y)

:= IB
f (u)ye + · · · , IB

f (λf ) := IB
f (u) �= 0.

An important observation is that e depends only
on B, not on λf ; IB

f (u) depends only on λf , not on
λ ∈ λf , and is a polynomial (Lemma 1.2 below).
We call Lf(B) := Lf (λf ) := e the Lojasiewicz
exponent of f on B.

Attention/Convention. Not every u ∈ R is
a canonical coordinate. For example, f(x, y) = x2 −
y3 has a bar B of height 3/2, and ±1 are not canon-
ical coordinates; IB

f (u) is not a priori defined at ±1.
Since IB

f is a polynomial, we shall regard it as defined
for all u ∈ R.

In general, the canonical coordinate identifies B

with a copy of R minus the real roots of IB
f . Hence

B̄, the metric space completion, is a copy of R.
If B = {λf}, a singleton, we define IB

f (λf ) :=
0, Lf (λf ) := ∞.

Now, take l(x, y) := x, and consider S∗/l. If
ν(y) = aye + · · · , a �= 0, e ≥ 1, then the l-arc νl can
be identified with (a, e) ∈ (R− {0})×Q+1, Q+1 :=
{r ∈ Q+ | r ≥ 1}. If ν(y) ≡ 0 then h(νl) = ∞;
we write νl := (0,∞). We call V := ((R − {0}) ×
Q+1) ∪ {(0,∞)}(= R±

∗/l) the infinitesimal value

space. The given f , mini-regular in x, induces a
V-valued function

f∗ : R∗/f → V ,

f∗(λf ) :=
(
IB
f (λf ), Lf(λf )

)
∈ V , (λf ∈ B).

Take z ∈ C. We say z is a B-root of f if f has
a Newton-Puiseux root of the form α(y) = λB(y) +
zyh(B) + · · · . The number of such roots is the multi-
plicity of z.

Definition 1.1. Take c := γf ∈ B. If h(B) <

∞ and c (∈ R) is a B-root of fx, say of multiplic-
ity k, we say γf is a (real) critical point of f∗ of
multiplicity m(γf ) := k.

If B = {γf}, and m(B) ≥ 2, we also call γf a
critical point of multiplicity m(B) − 1.

Call f∗(c) := f∗(γf ) ∈ V the critical value at
γf .

If fx has complex B-root(s), but no real B-root,
then we take a generic real number r, put γ(y) :=
λB(y) + ryh(B), and call γf the real critical point in
B with multiplicity m(γf ) := 1. (Convention: For
different such B, we take different generic r.)

The above is the list of all (real) critical points.
(If fx has no B-root, B yields no critical point.) The
number of critical points is finite (Lemma 1.2).

Now, let M be the maximal ideal of R{s},
furnished with the point-wise convergence topology,
that is, the smallest topology so that the projection
maps

πN : M −→ RN ,

a1s + · · · + aNsN + · · · 
→ (a1, . . . , aN ), N ∈ Z+,

are continuous. Furnish S∗, S∗/f with the quotient
topologies by the quotient maps

p∗ : M2 − {0} → S∗, p∗/f : M2 − {0} → S∗/f .

Take �λ ∈ M2, and a real-valued function, α,
defined near �λ. We say α is analytic at �λ if α = ϕ ◦
πN , πN a projection, ϕ an analytic function at πN (�λ)
in RN . This defines an analytic structure on M2.
We furnish S∗ and S∗/f with the quotient analytic
structure.

In the following, let I be a sufficiently small
neighborhood of 0 in R. We write “c-” for “contin-
uous”, “a-” for “analytic”, “c/a-” for “continuous
(resp. analytic)”.

Let F (x, y; t) be a given t-parameterized a-
deformation of f(x, y). That is to say, F (x, y; t) is
real analytic in (x, y, t), defined for (x, y) near 0 ∈
R2, t ∈ I, with F (x, y; 0) = f(x, y), F (0, 0; t) ≡ 0.
When t is fixed, we also write F (x, y; t) as ft(x, y).

In S∗ × I define (λ, t) ∼F (λ′, t′) if and only if
t = t′ and λ ∼ft λ′. Denote the quotient space by
S∗ ×F I. Similarly, R±

∗ ×F I := R±
∗ × I/ ∼F .

By a t-parameterized c/a-deformation of λf

we mean a family of ft-arcs, λft , obtained as follows.
Take a parametrization �λ(s) of λf , and a c/a-map:
I → M2, t 
→ �λt, �λ0 = �λ. Then λft := p∗/ft

(�λt).
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This is equivalent to taking a c/a-map: I → S∗ ×F

I, t 
→ (λft , t). A c/a-deformation of a given B

is, by definition, a family {Bt} obtained by taking
any λf ∈ B, a c/a-deformation λft , and then Bt :=
B(λft).

Theorem I. The following three conditions
are equivalent.

(a) Each (real) critical point, γf , of f∗ is sta-

ble along {ft} in the sense that γf admits a c-
deformation γft

, a critical point of (ft)∗, such that
m(γft

), h(γft
), Lft(γft

) are constants. (If γf arises
from the generic number r, we use the same r for
γft

.)
(b) There exists a (t-level preserving) homeomor-

phism

H : (R2 × I, 0 × I) → (R2 × I, 0 × I),

((x, y), t) 
→ (ηt(x, y), t),

which is bi-analytic off the t-axis {0} × I, with the
following five properties:

(b.1) ft(ηt(x, y)) = f(x, y), t ∈ I, (trivializa-
tion of F (x, y; t));

(b.2) Given any bar B, ηt(�α(s)) is analytic in
(�α, s, t), �α ∈ p−1

∗/f (B) (analyticity on each bar); in
particular, ηt is arc-analytic, for any fixed t;

(b.3) O(α, β) = O(ηt(α), ηt(β)) (contact order
preserving); moreover, ηt(αf ) ∈ S∗/ft

is well-defined
(invariance of truncated arcs).

(b.4) The induced mapping ηt : B → Bt extends
to an analytic isomorphism: B̄ → B̄t.

(b.5) If c is a critical point of f∗, then ct = ηt(c)
is one of (ft)∗, m(c) = m(ct).

(c) There exists an isomorphism H∗ : R∗/f ×
I → R∗ ×F I, (αf , t) 
→ (ηt(αf ), t), preserving crit-
ical points and multiplicities. That is to say, H∗ is
a homeomorphism,

(c.1) Given B, Bt := ηt(B) is a bar, h(Bt) =
h(B), m(Bt) = m(B);

(c.2) The restriction of ηt to B extends to an
analytic isomorphism η̄t : B̄ → B̄t;

(c.3) If c is a critical point of f∗, then ct :=
ηt(c) is one of (ft)∗, m(c) = m(ct).

Theorem II. The following three conditions
are equivalent.

(A) The function f∗ is Morse stable along {ft}.
That is, every critical point is stable along {ft}, and
for critical points c ∈ B, c ′ ∈ B′, f∗(c) = f∗(c ′)
implies (ft)∗(ct) = (ft)∗(c ′

t ).

(B) There exists H, as in (b), with an additional
property:

(b.6) If c, c ′ are critical points, f∗(c) = f∗(c ′),
then (ft)∗(ct) = (ft)∗(c ′

t).
(C) There exist an isomorphism H∗ as in (c), and

an isomorphism K∗ : V × I → V × I, such that K∗ ◦
(f∗× id) = Φ◦H∗, where Φ(αft , t) := ((ft)∗(αft), t).

Lemma 1.2. Let {z1, . . . , zq} be the set of B-
roots of f (zi ∈ C), h(B) < ∞. Then

IB
f (u) = a

q∏
i=1

(u − zi)mi ,

0 �= a ∈ R, a constant, mi the multiplicity of zi.

In particular, IB
f (u) is a polynomial with real coeffi-

cients.
If c := γf ∈ B is a critical point of f∗, then

d
duIB

f (c) = 0 �= IB
f (c), and conversely. The mul-

tiplicity of c (as a critical point of the polynomial
IB
f (u)) equals m(γf ).

The number of critical points of f∗ in R+
∗/f

(resp. R−
∗/f ) is bounded by m(f) − 1.

Definition 1.3. The degree of IB
f (u) is called

the multiplicity of B, denoted by m(B).
We say B is a polar bar if IB

f (u) has at least
two distinct roots (in C), or B is a singleton with
m(B) ≥ 2. Call I(f) := {(B, IB

f ) | B polar} the
complete initial form of f .

Corollary 1.4. Each critical point belongs to
a polar bar; each polar bar contains at least one crit-
ical point.

We recall Morse Theory. Take an a-family of
real polynomials pt(x) = a0(t)xd+· · ·+ad(t), a0(0) �=
0, t ∈ I, as an a-deformation of p(x) := p0(x). Let
c0 ∈ R be a critical point of p(x), of multiplicity
m(c0). We say c0 is stable along {pt}, if it admits
a c-deformation ct, d

dxpt(ct) = 0, m(ct) = m(c0).
(A c-deformation ct, if exists, is necessarily an a-
deformation.)

Definition 1.5. We say p(x) is Morse and

zero stable along {pt} if:
(i) Every (real) critical point of p0(x) is stable

along {pt};
(ii) For critical points c0, c ′

0, p0(c0) = p0(c ′
0)

implies pt(ct) = pt(c ′
t).

(iii) If p0(c0) = d
dxp0(c0) = 0, then pt(ct) =

d
dxpt(ct) = 0.

Remark 1.6. Theorem II generalizes in spirit
a version of the Morse Stability Theorem : If p(x)
is Morse and zero stable along {pt} then there exist
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analytic isomorphisms H, K : R × I → R × I, such
that K◦(p×id) = Φ◦H , K(0, t) ≡ 0, where Φ(x, t) :=
(pt(x), t).

That (a)⇒ (c) reduces to the following. Given
x = fi(t), 1 ≤ i ≤ N , analytic, fi(t) �= fj(t), for
i �= j, t ∈ I. There exists an analytic isomorphism
H : R × I → R × I, (x, t) 
→ (ηt(x), t), ηt(fi(t)) =
const, 1 ≤ i ≤ N . (Proved by Cartan’s Theorem A,
or Interpolation.)

We say I(f) is Morse and zero stable along
{ft} if each polar B admits a c-deformation Bt, a po-
lar bar of ft, such that two of h(Bt), m(Bt), Lft(Bt)
are constants (we can then show all three are), and
{IB

f } is Morse and zero stable along {IBt

ft
}, for each

B.
Addendum 1. (B) is also equivalent to (A′):

I(f) is Morse and zero stable along {ft}.
2. Relative Newton polygons. Take λ,

say in R+∗ , with λ(y). Let us change variables: X :=
x − λ(y), Y := y,

F(X, Y ) := f(X + λ(Y ), Y ) :=
∑

aijX
iY j/d,

i, j ≥ 0, i + j > 0.

In the first quadrant of a coordinate plane we
plot a dot at (i, j/d) for each aij �= 0, called a (New-
ton) dot. The Newton polygon of F in the usual
sense is called the Newton Polygon of f relative to
λ, denoted by P(f, λ). (See [4].) Write m0 := m(f).
Let the vertices be

V0 = (m0, 0), . . . , Vk = (mk, qk),

qi ∈ Q+, mi > mi+1, qi < qi+1.

The (Newton) edges are: Ei = Vi−1Vi, with an-
gle θi, tan θi := qi−qi−1

mi−1−mi
, π/4 ≤ θi < π/2; a vertical

one, Ek+1, sitting at Vk, θk+1 = π/2; a horizontal
one, E0, which is unimportant.

If mk ≥ 1 then f ≡ 0 on λ. If mk ≥ 2, f is
singular on λ. If λ ∼f λ′ then P(f, λ) = P(f, λ′),
hence P(f, λf ) is well-defined.

Notation: L(Ei) := Vi−1V ′
i , V ′

i := (0, qi−1 +
mi−1 tan θi), i.e. Ei extended to the y-axis.

Fundamental Lemma. Suppose each polar
bar B admits a c-deformation Bt such that h(Bt)
and m(Bt) are independent of t. Then each λf ∈
R∗/f admits an a-deformation λft ∈ R∗/ft

such that
P(ft, λft) is independent of t. The induced deforma-
tion Bt := B(λft) of B0 := B(λf ), and hence the
a-deformation x = λBt(y) of the canonical represen-
tation x = λB0(y), are uniquely defined; that is, if

we take any ηf ∈ B(λf ), and a c-deformation ηft

with P(ft, ηft
) = P(f, λf ), then B(ηft

) = B(λft).
Given B, B′. The contact order O(Bt, B

′
t), de-

fined below, is independent of t.
For B �= B′, define O(B, B′) := O(λf , λ′

f ),
λf ∈ B, λ′

f ∈ B′; and O(B, B) := ∞.
The Lemma is proved by a succession of Tschirn-

hausen transforms at the vertices, beginning at V0,
which represents am0X

m in F(X, Y ), m := m(f).
Let us define P by

F (X + λ(Y ), Y ; t) := F(X, Y ) + P(X, Y ; t),(2)

P(X, Y ; t) :=
∑

pij(t)X iY j/d,

where pij(t) are analytic, pij(0) = 0. Take a root of
∂m−1

∂Xm−1 [am0X
m + P(X, Y ; t)] = 0,

X = ρt(Y ) :=
∑

bj(t)Y j/d, bj(0) = 0,

bj(t) analytic. (Implicit Function Theorem.)

Thus, λ(y) + ρt(y) is an a-deformation of λ(y). Let
X1 := X − ρt(Y ), Y1 := Y . Then

F (X1 + λ(Y1) + ρt(Y1), Y1; t)

:= F(X1, Y1) + P(1)(X1, Y1; t),

where P(1) :=
∑

p
(1)
ij (t)X i

1Y
j/d
1 , p

(1)
ij (0) = 0, and

p
(1)
m−1,j(t) ≡ 0 (Tschirnhausen).

For brevity, we shall write the coordinates
(X1, Y1, t) simply as (X, Y, t), abusing notations.
That is, we now have pm−1,j(t) ≡ 0 in (2).

We claim that P in fact has no dot below L(E1).
This is proved by contradiction.

Suppose it has. Take a generic number s ∈ R.
Let ζ(y) := λ(y) + sye, e := tan θ1, and

F (X̃ + ζ(Ỹ ), Ỹ ; t) := F(X̃, Ỹ )+ P̃ , P̃(X̃, Ỹ ; 0) ≡ 0.

Since s is generic, P(f, ζf ) has only one edge,
which is L(E1), and B(ζf ) is polar. Below L(E1), P̃
has at least one dot (when t �= 0), but still no dot of
the form (m − 1, q).

A c-deformation Bt of B(ζf ) would either cre-
ate new dot(s) of the form (m−1, q) below L(E1), or
else not change the existing dot(s) of P̃ below L(E1).
(This is the spirit of the Tschirnhausen transforma-
tion.) Thus, as t �= 0, h(Bt) or m(Bt), or both,
will drop. This contradicts to the hypothesis of the
Fundamental Lemma.

This argument can be repeated recursively at
V1, V2, etc., to clear all dots under P(f, λf ). More
precisely, suppose in (2), P has no dots below L(Ei),
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0 ≤ i ≤ r. By the Newton-Puiseux Theorem, there
exists a root ρt of ∂mr−1

∂Xmr−1 [aXmrY qr + P ] = 0 with
Oy(ρt) ≥ tan θr+1, where aXmrY qr is the term for
Vr . A Tschirnhausen transform will then eliminate
all dots of P of the form (mr − 1, q). As before, all
dots below L(Er+1) also disappear.

We have seen the only way to clear dots be-
low P(f, λf ) is by the Tschirnhausen transforms. If
P(f, ηft

) = P(f, λf ), we must have O(λft , ηft
) ≥

h(B0). The uniqueness follows.
Define a partial ordering “>” by: B > B̂ if and

only if h(B) > h(B̂) = O(λf , µf ), λf ∈ B, µf ∈ B̂.
Let B̂ be the largest bar so that B ≥ B̂, B′ ≥ B̂. We
write λB(y) = λB̂(y) + aye + · · · , λB′(y) = λB̂(y) +
bye+· · · , e := h(B̂). The uniqueness of B̂t completes
the proof.

3. Vector fields. Assume (a). We use a vec-
tor field �v to prove (b). The other implications are
not hard.

Take a critical point γf , say in B, γ(y) =
λB(y)+cyh(B). Let Bt be the deformation of B. Let
ct be the a-deformation of c, d

duIBt

ft
(ct) = 0, m(ct) =

m(c). (If c is generic, take ct = c.)
Let γt(y) := λBt(y) + cty

h(Bt). Then γt is a
critical point of ft in Bt.

Now, let γ
(i)
f , 1 ≤ i ≤ N , denote all the critical

points of f , for all (polar) B. For brevity, write
γ(i) := γ

(i)
f , with deformations γ

(i)
t , just defined.

We can assume F (x, 0; t) = ±xm, and hence
∂F
∂t (x, 0; t) ≡ 0. As F (x, 0; t) = a(t)xm + · · · , a(0) �=
0, a substitution u = m

√
|a(t)| · x + · · · will bring

F (x, 0, t) to this form.
We can also assume γ(i) ∈ R+

∗/f for 1 ≤ i ≤ r,
and γ(i) ∈ R−

∗/f for r + 1 ≤ i ≤ N .
For each γ(i) ∈ R+

∗/f , we now construct a vector
field �v+

i (x, y, t), defined for y ≥ 0.
Write γt := γ

(i)
t . Let X := x − γt(y), Y := y.

Then F(X, Y ; T ) := F (X + γt(Y ), Y ; T ) is analytic
in (X, Y 1/d, T ). As in [1, 6], define �v +

i (x, y, t) :=
�V (x − γt(y), y, t), y ≥ 0, where

�V (X, Y, t) :=
XFXFt

(XFX)2 + (Y FY )2
· X ∂

∂X
(3)

+
Y FY Ft

(XFX)2 + (Y FY )2
· Y ∂

∂Y
− ∂

∂t
.

In general, given αi, x = αi(y), say in R+
∗ , 1 ≤

i ≤ r. Let q(x, y) :=
∏r

k=1(x − αk(y))2,

qi(x, y) := q(x, y)/(x − αi(y))2,

pi(x, y) := qi(x, y)/[q1(x, y) + · · · + qr(x, y)].

We call {p1, . . . , pr} a partition of unity for
{α1, . . . , αr}.

Now, take {pi} for {γ(1)
t , · · ·γ(r)

t }. Define
�v +(x, y, t) :=

∑r
i=1 pi(x, y, t)�v +

i (x, y, t).

Similarly, γ
(i)
f , r + 1 ≤ i ≤ N , yield �v −(x, y, t),

y ≤ 0. We can then glue �v ±(x, y, t) together along
the x-axis, since �v ±(x, 0, t) ≡ − ∂

∂t . This is our vector
field �v(x, y, t), which, by (3), is clearly tangent to the
level surfaces of F (x, y; t), proving (b.1).

4. Sketch of Proof.
Lemma 4.1. Let W (X, Y ) be a weighted form

of degree d, w(X) = h, w(Y ) = 1. Take u0, not a
multiple root of W (X, 1). If W (u0, 1) �= 0 or u0 �= 0
then, with X = uvh, Y = v,

|XWX | + |Y WY | = unit · | v |d, for u near u0.

For, by Euler’s Theorem, if X − u0Y
h divides

WX and WY , then u0 is a multiple root.
To show (b.2), etc., take α, say in R+

∗ . Take k,
O(γ(k), α) = max{O(γ(j), α) | 1 ≤ j ≤ r}.

We can assume α is not a multiple root of f ,
e := O(γ(k), αf ) < ∞. (If α is, then γ(k) = αf ,
h(B) = ∞. This case is easy.)

Write B := B(αf ) if B(αf ) ≤ B(γ(k)), and
B := B(γ(k)) if B(αf ) > B(γ(k)).

Thus α(y) = λB(y) + aye + · · · , d
duIB

f (a) �= 0.
Let us consider the mapping

τ : (u, v, t) 
→ (x, y, t) := (λBt(v) + uve, v, t),

u ∈ R, 0 ≤ v < ε, t ∈ I,

Bt the deformation of B, and the liftings �ν+
j :=

(dτ)−1(pj�v
+
j ), �ν+ :=

∑r
j=1 �ν+

j .

Key Lemma. The lifted vector fields �ν+
j , and

hence �ν+, are analytic at (u, v, t), if u is not a mul-
tiple root of IBt

ft
. Moreover, �ν+(u, 0, t) is analytic

for all u ∈ R; that is, limv→0+ �ν+(u, v, t) has only
removable singularities on the u-axis.

We analyze each �ν+
i , using (3). For brevity,

write B := B(γ(i)), Bt := B(γ(i)
t ).

First, consider the case B = B. This case ex-
poses the main ideas.

Now IB
f and P(f, γ(i)) are related as follows.

Let W (X, Y ) =
∑

i,j aijX
iY j/d be the (unique)

weighted form such that W (u, 1) = IB
f (u + c),

w(X) = h(B), w(Y ) = 1, where c is the canoni-
cal coordinate of γ(i). The Newton dots on the high-
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est compact edge of P(f, γ(i)) represent the non-zero
terms of W (X, Y ); the highest vertex is (0, Lf (B)).

Thus d
duW (0, 1) = d

duIB
f (c) = 0, W (0, 1) �= 0.

The weighted degree of W (X, Y ) is Lf (B).
Hence, by Lemma 4.1, the substitution X =

x − λB(y) − cyh(B) = (u − c)vh(B), Y = v, yields
Ov(|XFX | + |Y FY |) = Lf (B), if u − c is not a mul-
tiple root of W (u, 1).

The Newton Polygon is independent of t:
P(f, γ(i)) = P(ft, γ

(i)
t ). All Newton dots of F , and

hence those of FT , are contained in P(f, γ(i)). Hence
Ov(FT ((u − c)vh(B), v; T )) ≥ Lf(B).

By the Chain Rule, we have X ∂
∂X = (u − c) ∂

∂u ,
Y ∂

∂Y = v ∂
∂v − h(B)(u − c) ∂

∂u .
It follows that (dτ)−1(�v+

i ) and �νi are analytic at
(u, v, t), if u is not a multiple root of IBt

ft
.

Next, suppose B < B. Again we show
(dτ)−1(�v+

i ) has the required property.
Write γ(i)(y) := λB(y) + c ′yh(B) + · · · . Let

W (X, Y ) denote the weighted form such that
W (u, 1) = IB

f (u + c ′), w(X) = h(B), w(Y ) = 1.
If W (X, Y ) has more than one terms, they are

dots on a compact edge of P(f, γ(i)), not the highest
one. If W (X, Y ) has only one term, it is a vertex,
say (m̄, q̄), m̄ ≥ 2.

In either case, u = 0 is a multiple root of
W (u, 1). All Newton dots of FT are contained in
P(f, γ(i)). The rest of the argument is the same as
above.

Finally, suppose B �≤ B. Here pi plays a vital
role in analyzing �ν+

i .
Let B̄ denote the largest bar such that B > B̄ ≤

B.
Let U := x − λBt(y), V := y. The identity pi =

pkqi/qk, and the Chain Rule yield

pi · X
∂

∂X
= pk

(U + ε)2

(U + δ)2
(U + δ)

∂

∂U
,

pi · Y
∂

∂Y
= pk · (U + ε)2

(U + δ)2

[
V

∂

∂V
− V δ′(V )

∂

∂U

]
,

where δ := δ(y, t) := λBt(y) − γ
(i)
t (y), ε := λBt(y) −

γ
(k)
t (y), Oy(δ) = h(B̄) < h(B) ≤ Oy(ε).

The substitution U = uvh(B), V = v lifts both
to analytic vector fields in (u, v, t).

It remains to study Ψ := FT /(|XFX | + |Y FY |)
when X = δ(v, t) + uvh(B), Y = v.

Let G(U, V, T ) := F(U + δ(V, T ), V, T ). The
Chain Rule yields

XFX = (U + δ)GU , Y FY = V (GV − δV GU ),(4)

FT = GT − δTGU .

Let us compare P(f, γ(i)) and P(G, U = 0), the
(usual) Newton Polygon of G. Let E ′

i , θ ′
i and V ′

i

denote the edges, angles and vertices of the latter.
Then Ei = E′

i, for 1 ≤ i ≤ l, where l is the largest
integer such that tan θl < h(B̄). Moreover, θ ′

l+1 =
θl+1 (although El+1, E ′

l+1 may be different).
Consider the vertex V ′

l+1 := (m′
l+1, q

′
l+1),

m′
l+1 ≥ 2. It yields a term µ := a(T )UpV q of δGU ,

a(0) �= 0, p := m′
l+1 − 1, q := q′l+1 + tan θl+1. With

the substitution U = uvh(B), (u �= 0,) V = v, µ is the
dominating term in (4). That is, Ov(µ) < Ov(µ′),
for all terms µ′ in UGU , V GV , etc., (and for all terms
µ′ �= µ in δGU ), since OY (δ) = tan θl+1.

It follows that Ψ is analytic. That lim �ν+
i has

only removable singularities also follows.
Conditions (b.2) etc. can be derived from the

Key Lemma.
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