Equisingularity in $\boldsymbol{R}^{\mathbf{2}}$ as Morse stability in infinitesimal calculus

By Tzee-Char Kuo and Laurentiu Paunescu
School of Mathematics, University of Sydney Sydney, NSW 2006, Australia
(Communicated by Heisuke Hironaka, m. J. a., June 14, 2005)

Abstract

Two seemingly unrelated problems are intimately connected. The first is the equsingularity problem in \mathbf{R}^{2} : For an analytic family $f_{t}:\left(\mathbf{R}^{2}, 0\right) \rightarrow(\mathbf{R}, 0)$, when should it be called an "equisingular deformation"? This amounts to finding a suitable trivialization condition (as strong as possible) and, of course, a criterion. The second is on the Morse stability. We define \mathbf{R}_{*}, which is \mathbf{R} "enriched" with a class of infinitesimals. How to generalize the Morse Stability Theorem to polynomials over \mathbf{R}_{*} ? The space \mathbf{R}_{*} is much smaller than the space used in Nonstandard Analysis. Our infinitesimals are analytic arcs, represented by fractional power series. In our Theorem II, (B) is a trivialization condition which can serve as a definition for equisingular deformation; (A), and (A^{\prime}) in Addendum 1, are criteria, using the stability of "critical points" and the "complete initial form"; (C) is the Morse stability (Remark 1.6).

Key words: Morse equisingularity; infinitesimals; Newton Polygon.

1. Results. As in the Curve Selection Lemma, by a parameterized arc at 0 in \mathbf{R}^{2} (resp. \mathbf{C}^{2}) we mean a real analytic map germ $\vec{\lambda}:[0, \epsilon) \rightarrow$ $\mathbf{R}^{2}\left(\right.$ resp. $\left.\mathbf{C}^{2}\right), \vec{\lambda}(0)=0, \vec{\lambda}(s) \not \equiv 0$. We call the image set, $\boldsymbol{\lambda}:=\operatorname{Im}(\vec{\lambda})$, a (geometric) arc at 0 , or the locus of $\vec{\lambda}$; call $\vec{\lambda}$ a parametrization of $\boldsymbol{\lambda}$.

Take $\boldsymbol{\lambda} \neq \boldsymbol{\mu}$. The distance from $P \in \boldsymbol{\lambda}$ to $\boldsymbol{\mu}$ is a fractional power series in $s:=\overline{O P}, \operatorname{dist}(P, \boldsymbol{\mu})=$ $a s^{h}+\cdots$, where $a>0, h \in \mathbf{Q}^{+}$.

We call $\mathcal{O}(\boldsymbol{\lambda}, \boldsymbol{\mu}):=h$ the contact order of $\boldsymbol{\lambda}$ and $\boldsymbol{\mu}$. Define $\mathcal{O}(\boldsymbol{\lambda}, \boldsymbol{\lambda}):=\infty$.

Let \mathbf{S}_{*}^{1}, or simply \mathbf{S}_{*}, denote the set of arcs at 0 in \mathbf{R}^{2}. This is called the enriched unit circle for the following reason. The tangent half line at $0, \boldsymbol{l}$, of a given $\boldsymbol{\lambda}$ can be identified with a point of the unit circle \mathbf{S}^{1}. If $\boldsymbol{\lambda} \neq \boldsymbol{l}$, then $1<\mathcal{O}(\boldsymbol{\lambda}, \boldsymbol{l})<\infty$. Hence we can regard $\boldsymbol{\lambda}$ as an "infinitesimal" at \boldsymbol{l}, and \mathbf{S}_{*} as \mathbf{S}^{1} "enriched" with infinitesimals.

Let $f:\left(\mathbf{R}^{2}, 0\right) \rightarrow(\mathbf{R}, 0)$ be analytic. Write $V_{*}^{\mathbf{C}}(f):=\left\{\boldsymbol{\zeta} \in \mathbf{S}_{*}^{3} \mid f(z, w) \equiv 0\right.$ on $\left.\boldsymbol{\zeta}\right\}$, where \mathbf{S}_{*}^{3} denotes the set of arcs at 0 in $\mathbf{C}^{2}\left(=\mathbf{R}^{4}\right)$, and $f(z, w)$ is the complexification of f.

For $\boldsymbol{\lambda} \in \mathbf{S}_{*}$, write $\mathcal{O}\left(\boldsymbol{\lambda}, V_{*}^{\mathbf{C}}(f)\right):=\max \{\mathcal{O}(\boldsymbol{\lambda}, \boldsymbol{\zeta}) \mid$ $\left.\boldsymbol{\zeta} \in V_{*}^{\mathbf{C}}(f)\right\}$. Define the \boldsymbol{f}-height of $\boldsymbol{\lambda}$ by $h_{f}(\boldsymbol{\lambda}):=$ $\mathcal{O}\left(\boldsymbol{\lambda}, V_{*}^{\mathbf{C}}(f)\right)$. Hence $h_{f}(\boldsymbol{\lambda})=\infty$ if $f(x, y) \equiv 0$ along λ.

For $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2} \in \mathbf{S}_{*}$, define $\boldsymbol{\lambda}_{1} \sim_{f} \boldsymbol{\lambda}_{2}$ if and only

[^0]if $h_{f}\left(\boldsymbol{\lambda}_{1}\right)=h_{f}\left(\boldsymbol{\lambda}_{2}\right)<\mathcal{O}\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}\right)$. (In fact, $h_{f}\left(\boldsymbol{\lambda}_{1}\right)<$ $\mathcal{O}\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}\right)$ implies $h_{f}\left(\boldsymbol{\lambda}_{1}\right)=h_{f}\left(\boldsymbol{\lambda}_{2}\right)$.) The equivalence class of $\boldsymbol{\lambda}$ is denoted by $\boldsymbol{\lambda}_{f}$.

We call $\boldsymbol{\lambda}_{f}$ an \boldsymbol{f}-truncated arc, or simply an \boldsymbol{f}-arc. Write $\mathbf{S}_{* / f}:=\mathbf{S}_{*} / \sim_{f}, h\left(\boldsymbol{\lambda}_{f}\right):=h_{f}(\boldsymbol{\lambda})$.

Define the contact order of $\boldsymbol{\lambda}_{f}$ and $\boldsymbol{\mu}_{f}$ by: if $\boldsymbol{\lambda}_{f} \neq \boldsymbol{\mu}_{f}, \mathcal{O}\left(\boldsymbol{\lambda}_{f}, \boldsymbol{\mu}_{f}\right):=\mathcal{O}(\boldsymbol{\lambda}, \boldsymbol{\mu}), \boldsymbol{\lambda} \in \boldsymbol{\lambda}_{f}, \boldsymbol{\mu} \in \boldsymbol{\mu}_{f} ;$ and $\mathcal{O}\left(\boldsymbol{\lambda}_{f}, \boldsymbol{\lambda}_{f}\right):=\infty$. This is well-defined. Write $\mathcal{O}\left(\boldsymbol{\lambda}_{f}, V_{*}^{\mathbf{C}}(f)\right):=\mathcal{O}\left(\boldsymbol{\lambda}, V_{*}^{\mathbf{C}}(f)\right)$.

From now on we assume $f(x, y)$ is mini-regular in x, that is, regular in x of order $m(f)$, the multiplicity of f.

Let $\mathbf{R}_{*}^{+}\left(\right.$resp. $\left.\mathbf{R}_{* / f}^{+}\right)$denote those arcs of \mathbf{S}_{*} (resp. $\mathbf{S}_{* / f}$) in $y>0$, not tangent to the x-axis, and $\mathbf{R}_{*}^{-}\left(\right.$resp. $\left.\mathbf{R}_{* / f}^{-}\right)$denote those in $y<0$. Write $\mathbf{R}_{*}:=$ $\mathbf{R}_{*}^{+} \cup \mathbf{R}_{*}^{-}, \mathbf{R}_{* / f}:=\mathbf{R}_{* / f}^{+} \cup \mathbf{R}_{* / f}^{-}$.

Take $\boldsymbol{\lambda}_{f}, \boldsymbol{\mu}_{f} \in \mathbf{R}_{* / f}^{+}$, or $\in \mathbf{R}_{* / f}^{-}$. Define $\boldsymbol{\lambda}_{f} \simeq$ $\boldsymbol{\mu}_{f}$ (read:"bar equivalent") if and only if either $\boldsymbol{\lambda}_{f}=$ $\boldsymbol{\mu}_{f}$, or else $h\left(\boldsymbol{\lambda}_{f}\right)=h\left(\boldsymbol{\mu}_{f}\right)=\mathcal{O}\left(\boldsymbol{\lambda}_{f}, \boldsymbol{\mu}_{f}\right)$. Call an equivalence class an \boldsymbol{f}-bar. The one containing $\boldsymbol{\lambda}_{f}$ is denoted by $B\left(\boldsymbol{\lambda}_{f}\right)$, having height $h\left(B\left(\boldsymbol{\lambda}_{f}\right)\right):=$ $h\left(\boldsymbol{\lambda}_{f}\right)$. (See [3-5].)

If $h\left(\boldsymbol{\lambda}_{f}\right)=\infty$ then $B\left(\boldsymbol{\lambda}_{f}\right)=\left\{\boldsymbol{\lambda}_{f}\right\}$, a singleton, and conversely.

The given coordinates (x, y) yield a coordinate on each bar of finite height, as follows:

Take B, say in $\mathbf{R}_{* / f}^{+}, h(B)<\infty$. Take $\boldsymbol{\lambda} \in \boldsymbol{\lambda}_{f} \in$
B with parametrization $\vec{\lambda}(s)$. Eliminating $s(s \geq 0)$ yields a unique fractional power series (as in [7])

$$
\begin{align*}
x= & \lambda(y)=a_{1} y^{\frac{n_{1}}{d}}+a_{2} y^{\frac{n_{2}}{d}}+\cdots, \tag{1}\\
& d \leq n_{1}<n_{2}<\cdots, \quad(y \geq 0) .
\end{align*}
$$

Here all $a_{i} \in \mathbf{R}$. Let $\lambda_{B}(y)$ denote $\lambda(y)$ with all terms $y^{e}, e \geq h(B)$, deleted. Observe that for any $\boldsymbol{\mu} \in \boldsymbol{\lambda}_{f} \in B, \mu(y)$ has the form $\mu(y)=\lambda_{B}(y)+$ $u y^{h(B)}+\cdots$, where $u \in \mathbf{R}$ is uniquely determined by $\boldsymbol{\lambda}_{f}$. We say $\boldsymbol{\lambda}_{f} \in B$ has canonical coordinate u, writing $\boldsymbol{\lambda}_{f}:=u$. We call $x=\lambda_{B}(y)$, which depends only on B, the canonical representation of B.

Take $B, h(B)<\infty$, and $u=\boldsymbol{\lambda}_{f} \in B$. Let us write

$$
\begin{aligned}
& f\left(\lambda_{B}(y)+u y^{h(B)}+\cdots, y\right) \\
& \quad:=I_{f}^{B}(u) y^{e}+\cdots, I_{f}^{B}\left(\boldsymbol{\lambda}_{f}\right):=I_{f}^{B}(u) \neq 0 .
\end{aligned}
$$

An important observation is that e depends only on B, not on $\boldsymbol{\lambda}_{f} ; I_{f}^{B}(u)$ depends only on $\boldsymbol{\lambda}_{f}$, not on $\boldsymbol{\lambda} \in \boldsymbol{\lambda}_{f}$, and is a polynomial (Lemma 1.2 below). We call $L_{f}(B):=L_{f}\left(\boldsymbol{\lambda}_{f}\right):=e$ the Lojasiewicz exponent of f on B.

Attention/Convention. Not every $u \in \mathbf{R}$ is a canonical coordinate. For example, $f(x, y)=x^{2}-$ y^{3} has a bar B of height $3 / 2$, and ± 1 are not canonical coordinates; $I_{f}^{B}(u)$ is not a priori defined at ± 1. Since I_{f}^{B} is a polynomial, we shall regard it as defined for all $u \in \mathbf{R}$.

In general, the canonical coordinate identifies B with a copy of \mathbf{R} minus the real roots of I_{f}^{B}. Hence \bar{B}, the metric space completion, is a copy of \mathbf{R}.

If $B=\left\{\boldsymbol{\lambda}_{f}\right\}$, a singleton, we define $I_{f}^{B}\left(\boldsymbol{\lambda}_{f}\right):=$ $0, L_{f}\left(\boldsymbol{\lambda}_{f}\right):=\infty$.

Now, take $l(x, y):=x$, and consider $\mathbf{S}_{* / l}$. If $\nu(y)=a y^{e}+\cdots, a \neq 0, e \geq 1$, then the $l-\operatorname{arc} \boldsymbol{\nu}_{l}$ can be identified with $(a, e) \in(\mathbf{R}-\{0\}) \times \mathbf{Q}^{+1}, \mathbf{Q}^{+1}:=$ $\left\{r \in \mathbf{Q}^{+} \mid r \geq 1\right\}$. If $\nu(y) \equiv 0$ then $h\left(\boldsymbol{\nu}_{l}\right)=\infty ;$ we write $\boldsymbol{\nu}_{l}:=(0, \infty)$. We call $\mathcal{V}:=((\mathbf{R}-\{0\}) \times$ $\left.\mathbf{Q}^{+1}\right) \cup\{(0, \infty)\}\left(=\mathbf{R}_{* / l}^{ \pm}\right)$the infinitesimal value space. The given f, mini-regular in x, induces a \mathcal{V}-valued function

$$
f_{*}: \mathbf{R}_{* / f} \rightarrow \mathcal{V}
$$

$$
f_{*}\left(\boldsymbol{\lambda}_{f}\right):=\left(I_{f}^{B}\left(\boldsymbol{\lambda}_{f}\right), L_{f}\left(\boldsymbol{\lambda}_{f}\right)\right) \in \mathcal{V}, \quad\left(\boldsymbol{\lambda}_{f} \in B\right)
$$

Take $z \in \mathbf{C}$. We say z is a B-root of f if f has a Newton-Puiseux root of the form $\alpha(y)=\lambda_{B}(y)+$ $z y^{h(B)}+\cdots$. The number of such roots is the multiplicity of z.

Definition 1.1. Take $c:=\gamma_{f} \in B$. If $h(B)<$ ∞ and $c(\in \mathbf{R})$ is a B-root of f_{x}, say of multiplicity k, we say γ_{f} is a (real) critical point of f_{*} of multiplicity $m\left(\gamma_{f}\right):=k$.

If $B=\left\{\gamma_{f}\right\}$, and $m(B) \geq 2$, we also call γ_{f} a critical point of multiplicity $m(B)-1$.

Call $f_{*}(c):=f_{*}\left(\gamma_{f}\right) \in \mathcal{V}$ the critical value at γ_{f}.

If f_{x} has complex B-root(s), but no real B-root, then we take a generic real number r, put $\gamma(y):=$ $\lambda_{B}(y)+r y^{h(B)}$, and call γ_{f} the real critical point in B with multiplicity $m\left(\gamma_{f}\right):=1$. (Convention: For different such B, we take different generic r.)

The above is the list of all (real) critical points. (If f_{x} has no B-root, B yields no critical point.) The number of critical points is finite (Lemma 1.2).

Now, let \mathbf{M} be the maximal ideal of $\mathbf{R}\{s\}$, furnished with the point-wise convergence topology, that is, the smallest topology so that the projection maps

$$
\begin{aligned}
& \pi_{N}: \mathbf{M} \longrightarrow \mathbf{R}^{N}, \\
& a_{1} s+\cdots+a_{N} s^{N}+\cdots \mapsto\left(a_{1}, \ldots, a_{N}\right), \quad N \in \mathbf{Z}^{+},
\end{aligned}
$$

are continuous. Furnish $\mathbf{S}_{*}, \mathbf{S}_{* / f}$ with the quotient topologies by the quotient maps

$$
p_{*}: \mathbf{M}^{2}-\{0\} \rightarrow \mathbf{S}_{*}, \quad p_{* / f}: \mathbf{M}^{2}-\{0\} \rightarrow \mathbf{S}_{* / f}
$$

Take $\vec{\lambda} \in \mathbf{M}^{2}$, and a real-valued function, α, defined near $\vec{\lambda}$. We say α is analytic at $\vec{\lambda}$ if $\alpha=\varphi \circ$ π_{N}, π_{N} a projection, φ an analytic function at $\pi_{N}(\vec{\lambda})$ in \mathbf{R}^{N}. This defines an analytic structure on \mathbf{M}^{2}. We furnish \mathbf{S}_{*} and $\mathbf{S}_{* / f}$ with the quotient analytic structure.

In the following, let I be a sufficiently small neighborhood of 0 in \mathbf{R}. We write " c-" for "continuous", " $a-$ " for "analytic", " c / a-" for "continuous (resp. analytic)".

Let $F(x, y ; t)$ be a given t-parameterized a deformation of $f(x, y)$. That is to say, $F(x, y ; t)$ is real analytic in (x, y, t), defined for (x, y) near $0 \in$ $\mathbf{R}^{2}, t \in I$, with $F(x, y ; 0)=f(x, y), F(0,0 ; t) \equiv 0$. When t is fixed, we also write $F(x, y ; t)$ as $f_{t}(x, y)$.

In $\mathbf{S}_{*} \times I$ define $(\boldsymbol{\lambda}, t) \sim_{F}\left(\boldsymbol{\lambda}^{\prime}, t^{\prime}\right)$ if and only if $t=t^{\prime}$ and $\boldsymbol{\lambda} \sim_{f_{t}} \boldsymbol{\lambda}^{\prime}$. Denote the quotient space by $\mathbf{S}_{*} \times_{F} I$. Similarly, $\mathbf{R}_{*}^{ \pm} \times_{F} I:=\mathbf{R}_{*}^{ \pm} \times I / \sim_{F}$.

By a t-parameterized $\boldsymbol{c} / \boldsymbol{a}$-deformation of $\boldsymbol{\lambda}_{f}$ we mean a family of f_{t}-arcs, $\boldsymbol{\lambda}_{f_{t}}$, obtained as follows. Take a parametrization $\vec{\lambda}(s)$ of $\boldsymbol{\lambda}_{f}$, and a c / a-map: $I \rightarrow \mathbf{M}^{2}, t \mapsto \vec{\lambda}_{t}, \vec{\lambda}_{0}=\vec{\lambda}$. Then $\boldsymbol{\lambda}_{f_{t}}:=p_{* / f_{t}}\left(\vec{\lambda}_{t}\right)$.

This is equivalent to taking a c / a-map: $I \rightarrow \mathbf{S}_{*} \times{ }_{F}$ $I, t \mapsto\left(\boldsymbol{\lambda}_{f_{t}}, t\right)$. A $\boldsymbol{c} / \boldsymbol{a}$-deformation of a given B is, by definition, a family $\left\{B_{t}\right\}$ obtained by taking any $\boldsymbol{\lambda}_{f} \in B$, a c / a-deformation $\boldsymbol{\lambda}_{f_{t}}$, and then $B_{t}:=$ $B\left(\boldsymbol{\lambda}_{f_{t}}\right)$.

Theorem I. The following three conditions are equivalent.
(a) Each (real) critical point, γ_{f}, of f_{*} is stable along $\left\{f_{t}\right\}$ in the sense that γ_{f} admits a c deformation $\gamma_{f_{t}}$, a critical point of $\left(f_{t}\right)_{*}$, such that $m\left(\gamma_{f_{t}}\right), h\left(\gamma_{f_{t}}\right), L_{f_{t}}\left(\gamma_{f_{t}}\right)$ are constants. (If γ_{f} arises from the generic number r, we use the same r for $\gamma_{f_{t}}$.)
(b) There exists a (t-level preserving) homeomorphism

$$
\begin{aligned}
H: & \left(\mathbf{R}^{2} \times I, 0 \times I\right) \rightarrow\left(\mathbf{R}^{2} \times I, 0 \times I\right) \\
& ((x, y), t) \mapsto\left(\eta_{t}(x, y), t\right)
\end{aligned}
$$

which is bi-analytic off the t-axis $\{0\} \times I$, with the following five properties:
(b.1) $f_{t}\left(\eta_{t}(x, y)\right)=f(x, y), t \in I,($ trivialization of $F(x, y ; t)$;
(b.2) Given any bar $B, \eta_{t}(\vec{\alpha}(s))$ is analytic in $(\vec{\alpha}, s, t), \vec{\alpha} \in p_{* / f}^{-1}(B)$ (analyticity on each bar); in particular, η_{t} is arc-analytic, for any fixed t;
(b.3) $\mathcal{O}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\mathcal{O}\left(\eta_{t}(\boldsymbol{\alpha}), \eta_{t}(\boldsymbol{\beta})\right)$ (contact order preserving); moreover, $\eta_{t}\left(\boldsymbol{\alpha}_{f}\right) \in \mathbf{S}_{* / f_{t}}$ is well-defined (invariance of truncated arcs).
(b.4) The induced mapping $\eta_{t}: B \rightarrow B_{t}$ extends to an analytic isomorphism: $\bar{B} \rightarrow \bar{B}_{t}$.
(b.5) If c is a critical point of f_{*}, then $c_{t}=\eta_{t}(c)$ is one of $\left(f_{t}\right)_{*}, m(c)=m\left(c_{t}\right)$.
(c) There exists an isomorphism $H_{*}: \mathbf{R}_{* / f} \times$ $I \rightarrow \mathbf{R}_{*} \times_{F} I,\left(\boldsymbol{\alpha}_{f}, t\right) \mapsto\left(\eta_{t}\left(\boldsymbol{\alpha}_{f}\right), t\right)$, preserving critical points and multiplicities. That is to say, H_{*} is a homeomorphism,
(c.1) Given $B, B_{t}:=\eta_{t}(B)$ is a bar, $h\left(B_{t}\right)=$ $h(B), m\left(B_{t}\right)=m(B)$;
(c.2) The restriction of η_{t} to B extends to an analytic isomorphism $\bar{\eta}_{t}: \bar{B} \rightarrow \bar{B}_{t}$;
(c.3) If c is a critical point of f_{*}, then $c_{t}:=$ $\eta_{t}(c)$ is one of $\left(f_{t}\right)_{*}, m(c)=m\left(c_{t}\right)$.

Theorem II. The following three conditions are equivalent.
(A) The function f_{*} is Morse stable along $\left\{f_{t}\right\}$. That is, every critical point is stable along $\left\{f_{t}\right\}$, and for critical points $c \in B, c^{\prime} \in B^{\prime}, f_{*}(c)=f_{*}\left(c^{\prime}\right)$ implies $\left(f_{t}\right)_{*}\left(c_{t}\right)=\left(f_{t}\right)_{*}\left(c_{t}^{\prime}\right)$.
(B) There exists H, as in (b), with an additional property:
(b.6) If c, c^{\prime} are critical points, $f_{*}(c)=f_{*}\left(c^{\prime}\right)$, then $\left(f_{t}\right)_{*}\left(c_{t}\right)=\left(f_{t}\right)_{*}\left(c_{t}^{\prime}\right)$.
(C) There exist an isomorphism H_{*} as in (c), and an isomorphism $K_{*}: \mathcal{V} \times I \rightarrow \mathcal{V} \times I$, such that $K_{*} \circ$ $\left(f_{*} \times i d\right)=\Phi \circ H_{*}$, where $\Phi\left(\boldsymbol{\alpha}_{f_{t}}, t\right):=\left(\left(f_{t}\right)_{*}\left(\boldsymbol{\alpha}_{f_{t}}\right), t\right)$.

Lemma 1.2. Let $\left\{z_{1}, \ldots, z_{q}\right\}$ be the set of B roots of $f\left(z_{i} \in \mathbf{C}\right), h(B)<\infty$. Then

$$
I_{f}^{B}(u)=a \prod_{i=1}^{q}\left(u-z_{i}\right)^{m_{i}}
$$

$0 \neq a \in \mathbf{R}, a$ constant, m_{i} the multiplicity of z_{i}.
In particular, $I_{f}^{B}(u)$ is a polynomial with real coefficients.

If $c:=\gamma_{f} \in B$ is a critical point of f_{*}, then $\frac{d}{d u} I_{f}^{B}(c)=0 \neq I_{f}^{B}(c)$, and conversely. The multiplicity of c (as a critical point of the polynomial $\left.I_{f}^{B}(u)\right)$ equals $m\left(\gamma_{f}\right)$.

The number of critical points of f_{*} in $\mathbf{R}_{* / f}^{+}$ (resp. $\mathbf{R}_{* / f}^{-}$) is bounded by $m(f)-1$.

Definition 1.3. The degree of $I_{f}^{B}(u)$ is called the multiplicity of B, denoted by $m(B)$.

We say B is a polar bar if $I_{f}^{B}(u)$ has at least two distinct roots (in \mathbf{C}), or B is a singleton with $m(B) \geq 2$. Call $\mathcal{I}(f):=\left\{\left(B, I_{f}^{B}\right) \mid B\right.$ polar $\}$ the complete initial form of f.

Corollary 1.4. Each critical point belongs to a polar bar; each polar bar contains at least one critical point.

We recall Morse Theory. Take an a-family of real polynomials $p_{t}(x)=a_{0}(t) x^{d}+\cdots+a_{d}(t), a_{0}(0) \neq$ $0, t \in I$, as an a-deformation of $p(x):=p_{0}(x)$. Let $c_{0} \in \mathbf{R}$ be a critical point of $p(x)$, of multiplicity $m\left(c_{0}\right)$. We say c_{0} is stable along $\left\{p_{t}\right\}$, if it admits a c-deformation $c_{t}, \frac{d}{d x} p_{t}\left(c_{t}\right)=0, m\left(c_{t}\right)=m\left(c_{0}\right)$. (A c-deformation c_{t}, if exists, is necessarily an a deformation.)

Definition 1.5. We say $p(x)$ is Morse and zero stable along $\left\{p_{t}\right\}$ if:
(i) Every (real) critical point of $p_{0}(x)$ is stable along $\left\{p_{t}\right\}$;
(ii) For critical points $c_{0}, c_{0}^{\prime}, p_{0}\left(c_{0}\right)=p_{0}\left(c_{0}^{\prime}\right)$ implies $p_{t}\left(c_{t}\right)=p_{t}\left(c_{t}^{\prime}\right)$.
(iii) If $p_{0}\left(c_{0}\right)=\frac{d}{d x} p_{0}\left(c_{0}\right)=0$, then $p_{t}\left(c_{t}\right)=$ $\frac{d}{d x} p_{t}\left(c_{t}\right)=0$.

Remark 1.6. Theorem II generalizes in spirit a version of the Morse Stability Theorem : If $p(x)$ is Morse and zero stable along $\left\{p_{t}\right\}$ then there exist
analytic isomorphisms $H, K: \mathbf{R} \times I \rightarrow \mathbf{R} \times I$, such that $K \circ(p \times i d)=\Phi \circ H, K(0, t) \equiv 0$, where $\Phi(x, t):=$ $\left(p_{t}(x), t\right)$.

That $(\mathrm{a}) \Rightarrow(\mathrm{c})$ reduces to the following. Given $x=f_{i}(t), 1 \leq i \leq N$, analytic, $f_{i}(t) \neq f_{j}(t)$, for $i \neq j, t \in I$. There exists an analytic isomorphism $H: \mathbf{R} \times I \rightarrow \mathbf{R} \times I,(x, t) \mapsto\left(\eta_{t}(x), t\right), \eta_{t}\left(f_{i}(t)\right)=$ const, $1 \leq i \leq N$. (Proved by Cartan's Theorem A, or Interpolation.)

We say $\mathcal{I}(f)$ is Morse and zero stable along $\left\{f_{t}\right\}$ if each polar B admits a c-deformation B_{t}, a polar bar of f_{t}, such that two of $h\left(B_{t}\right), m\left(B_{t}\right), L_{f_{t}}\left(B_{t}\right)$ are constants (we can then show all three are), and $\left\{I_{f}^{B}\right\}$ is Morse and zero stable along $\left\{I_{f_{t}}^{B_{t}}\right\}$, for each B.

Addendum 1. (\mathbf{B}) is also equivalent to (\mathbf{A}^{\prime}): $\mathcal{I}(f)$ is Morse and zero stable along $\left\{f_{t}\right\}$.
2. Relative Newton polygons. Take $\boldsymbol{\lambda}$, say in \mathbf{R}_{*}^{+}, with $\lambda(y)$. Let us change variables: $X:=$ $x-\lambda(y), Y:=y$,

$$
\begin{aligned}
& \mathcal{F}(X, Y):=f(X+\lambda(Y), Y):=\sum a_{i j} X^{i} Y^{j / d} \\
& \quad i, j \geq 0, i+j>0
\end{aligned}
$$

In the first quadrant of a coordinate plane we plot a dot at $(i, j / d)$ for each $a_{i j} \neq 0$, called a (Newton) dot. The Newton polygon of \mathcal{F} in the usual sense is called the Newton Polygon of f relative to $\boldsymbol{\lambda}$, denoted by $\mathbf{P}(f, \boldsymbol{\lambda})$. (See [4].) Write $m_{0}:=m(f)$. Let the vertices be

$$
\begin{aligned}
& V_{0}=\left(m_{0}, 0\right), \ldots, V_{k}=\left(m_{k}, q_{k}\right) \\
& q_{i} \in \mathbf{Q}^{+}, m_{i}>m_{i+1}, q_{i}<q_{i+1}
\end{aligned}
$$

The (Newton) edges are: $E_{i}=\overline{V_{i-1} V_{i}}$, with angle $\theta_{i}, \tan \theta_{i}:=\frac{q_{i}-q_{i-1}}{m_{i-1}-m_{i}}, \pi / 4 \leq \theta_{i}<\pi / 2$; a vertical one, E_{k+1}, sitting at $V_{k}, \theta_{k+1}=\pi / 2$; a horizontal one, E_{0}, which is unimportant.

If $m_{k} \geq 1$ then $f \equiv 0$ on $\boldsymbol{\lambda}$. If $m_{k} \geq 2, f$ is singular on $\boldsymbol{\lambda}$. If $\boldsymbol{\lambda} \sim_{f} \boldsymbol{\lambda}^{\prime}$ then $\mathbf{P}(f, \boldsymbol{\lambda})=\mathbf{P}\left(f, \boldsymbol{\lambda}^{\prime}\right)$, hence $\mathbf{P}\left(f, \boldsymbol{\lambda}_{f}\right)$ is well-defined.

Notation: $L\left(E_{i}\right):=\overline{V_{i-1} V_{i}^{\prime}}, V_{i}^{\prime}:=\left(0, q_{i-1}+\right.$ $m_{i-1} \tan \theta_{i}$), i.e. E_{i} extended to the y-axis.

Fundamental Lemma. Suppose each polar bar B admits a c-deformation B_{t} such that $h\left(B_{t}\right)$ and $m\left(B_{t}\right)$ are independent of t. Then each $\boldsymbol{\lambda}_{f} \in$ $\mathbf{R}_{* / f}$ admits an a-deformation $\boldsymbol{\lambda}_{f_{t}} \in \mathbf{R}_{* / f_{t}}$ such that $\mathbf{P}\left(f_{t}, \boldsymbol{\lambda}_{f_{t}}\right)$ is independent of t. The induced deformation $B_{t}:=B\left(\boldsymbol{\lambda}_{f_{t}}\right)$ of $B_{0}:=B\left(\boldsymbol{\lambda}_{f}\right)$, and hence the a-deformation $x=\lambda_{B_{t}}(y)$ of the canonical representation $x=\lambda_{B_{0}}(y)$, are uniquely defined; that is, if
we take any $\boldsymbol{\eta}_{f} \in B\left(\boldsymbol{\lambda}_{f}\right)$, and a c-deformation $\boldsymbol{\eta}_{f_{t}}$ with $\mathbf{P}\left(f_{t}, \boldsymbol{\eta}_{f_{t}}\right)=\mathbf{P}\left(f, \boldsymbol{\lambda}_{f}\right)$, then $B\left(\boldsymbol{\eta}_{f_{t}}\right)=B\left(\boldsymbol{\lambda}_{f_{t}}\right)$.

Given B, B^{\prime}. The contact order $\mathcal{O}\left(B_{t}, B_{t}^{\prime}\right)$, defined below, is independent of t.

For $B \neq B^{\prime}$, define $\mathcal{O}\left(B, B^{\prime}\right):=\mathcal{O}\left(\boldsymbol{\lambda}_{f}, \boldsymbol{\lambda}_{f}^{\prime}\right)$, $\boldsymbol{\lambda}_{f} \in B, \boldsymbol{\lambda}_{f}^{\prime} \in B^{\prime}$; and $\mathcal{O}(B, B):=\infty$.

The Lemma is proved by a succession of Tschirnhausen transforms at the vertices, beginning at V_{0}, which represents $a_{m 0} X^{m}$ in $\mathcal{F}(X, Y), m:=m(f)$. Let us define \mathcal{P} by
(2) $\quad F(X+\lambda(Y), Y ; t):=\mathcal{F}(X, Y)+\mathcal{P}(X, Y ; t)$,

$$
\mathcal{P}(X, Y ; t):=\sum p_{i j}(t) X^{i} Y^{j / d}
$$

where $p_{i j}(t)$ are analytic, $p_{i j}(0)=0$. Take a root of $\frac{\partial^{m-1}}{\partial X^{m-1}}\left[a_{m 0} X^{m}+\mathcal{P}(X, Y ; t)\right]=0$,

$$
X=\rho_{t}(Y):=\sum b_{j}(t) Y^{j / d}, \quad b_{j}(0)=0
$$

$b_{j}(t)$ analytic. (Implicit Function Theorem.)
Thus, $\lambda(y)+\rho_{t}(y)$ is an a-deformation of $\lambda(y)$. Let $X_{1}:=X-\rho_{t}(Y), Y_{1}:=Y$. Then

$$
\begin{aligned}
& F\left(X_{1}+\lambda\left(Y_{1}\right)+\rho_{t}\left(Y_{1}\right), Y_{1} ; t\right) \\
& \quad:=\mathcal{F}\left(X_{1}, Y_{1}\right)+\mathcal{P}^{(1)}\left(X_{1}, Y_{1} ; t\right)
\end{aligned}
$$

where $\mathcal{P}^{(1)}:=\sum p_{i j}^{(1)}(t) X_{1}^{i} Y_{1}^{j / d}, p_{i j}^{(1)}(0)=0$, and $p_{m-1, j}^{(1)}(t) \equiv 0$ (Tschirnhausen).

For brevity, we shall write the coordinates $\left(X_{1}, Y_{1}, t\right)$ simply as (X, Y, t), abusing notations. That is, we now have $p_{m-1, j}(t) \equiv 0$ in (2).

We claim that \mathcal{P} in fact has no dot below $L\left(E_{1}\right)$. This is proved by contradiction.

Suppose it has. Take a generic number $s \in \mathbf{R}$. Let $\zeta(y):=\lambda(y)+s y^{e}, e:=\tan \theta_{1}$, and
$F(\widetilde{X}+\zeta(\widetilde{Y}), \widetilde{Y} ; t):=\mathcal{F}(\widetilde{X}, \widetilde{Y})+\widetilde{\mathcal{P}}, \quad \widetilde{\mathcal{P}}(\widetilde{X}, \widetilde{Y} ; 0) \equiv 0$.
Since s is generic, $\mathbf{P}\left(f, \boldsymbol{\zeta}_{f}\right)$ has only one edge, which is $L\left(E_{1}\right)$, and $B\left(\boldsymbol{\zeta}_{f}\right)$ is polar. Below $L\left(E_{1}\right), \widetilde{\mathcal{P}}$ has at least one $\operatorname{dot}($ when $t \neq 0)$, but still no dot of the form $(m-1, q)$.

A c-deformation B_{t} of $B\left(\boldsymbol{\zeta}_{f}\right)$ would either create new $\operatorname{dot}(\mathrm{s})$ of the form $(m-1, q)$ below $L\left(E_{1}\right)$, or else not change the existing $\operatorname{dot}(\mathrm{s})$ of $\widetilde{\mathcal{P}}$ below $L\left(E_{1}\right)$. (This is the spirit of the Tschirnhausen transformation.) Thus, as $t \neq 0, h\left(B_{t}\right)$ or $m\left(B_{t}\right)$, or both, will drop. This contradicts to the hypothesis of the Fundamental Lemma.

This argument can be repeated recursively at V_{1}, V_{2}, etc., to clear all dots under $\mathbf{P}\left(f, \boldsymbol{\lambda}_{f}\right)$. More precisely, suppose in (2), \mathcal{P} has no dots below $L\left(E_{i}\right)$,
$0 \leq i \leq r$. By the Newton-Puiseux Theorem, there exists a root ρ_{t} of $\frac{\partial^{m_{r}-1}}{\partial X^{m_{r}-1}}\left[a X^{m_{r}} Y^{q_{r}}+\mathcal{P}\right]=0$ with $\mathcal{O}_{y}\left(\rho_{t}\right) \geq \tan \theta_{r+1}$, where $a X^{m_{r}} Y^{q_{r}}$ is the term for V_{r}. A Tschirnhausen transform will then eliminate all dots of \mathcal{P} of the form $\left(m_{r}-1, q\right)$. As before, all dots below $L\left(E_{r+1}\right)$ also disappear.

We have seen the only way to clear dots below $\mathbf{P}\left(f, \boldsymbol{\lambda}_{f}\right)$ is by the Tschirnhausen transforms. If $\mathbf{P}\left(f, \boldsymbol{\eta}_{f_{t}}\right)=\mathbf{P}\left(f, \boldsymbol{\lambda}_{f}\right)$, we must have $\mathcal{O}\left(\boldsymbol{\lambda}_{f_{t}}, \boldsymbol{\eta}_{f_{t}}\right) \geq$ $h\left(B_{0}\right)$. The uniqueness follows.

Define a partial ordering " $>$ " by: $B>\hat{B}$ if and only if $h(B)>h(\hat{B})=\mathcal{O}\left(\boldsymbol{\lambda}_{f}, \boldsymbol{\mu}_{f}\right), \boldsymbol{\lambda}_{f} \in B, \boldsymbol{\mu}_{f} \in \hat{B}$. Let \hat{B} be the largest bar so that $B \geq \hat{B}, B^{\prime} \geq \hat{B}$. We write $\lambda_{B}(y)=\lambda_{\hat{B}}(y)+a y^{e}+\cdots, \lambda_{B^{\prime}}(y)=\lambda_{\hat{B}}(y)+$ $b y^{e}+\cdots, e:=h(\hat{B})$. The uniqueness of \hat{B}_{t} completes the proof.
3. Vector fields. Assume (a). We use a vector field \vec{v} to prove (b). The other implications are not hard.

Take a critical point γ_{f}, say in $B, \gamma(y)=$ $\lambda_{B}(y)+c y^{h(B)}$. Let B_{t} be the deformation of B. Let c_{t} be the a-deformation of $c, \frac{d}{d u} I_{f_{t}}^{B_{t}}\left(c_{t}\right)=0, m\left(c_{t}\right)=$ $m(c)$. (If c is generic, take $c_{t}=c$.)

Let $\gamma_{t}(y):=\lambda_{B_{t}}(y)+c_{t} y^{h\left(B_{t}\right)}$. Then γ_{t} is a critical point of f_{t} in B_{t}.

Now, let $\gamma_{f}^{(i)}, 1 \leq i \leq N$, denote all the critical points of f, for all (polar) B. For brevity, write $\gamma^{(i)}:=\gamma_{f}^{(i)}$, with deformations $\gamma_{t}^{(i)}$, just defined.

We can assume $F(x, 0 ; t)= \pm x^{m}$, and hence $\frac{\partial F}{\partial t}(x, 0 ; t) \equiv 0$. As $F(x, 0 ; t)=a(t) x^{m}+\cdots, a(0) \neq$ 0 , a substitution $u=\sqrt[m]{|a(t)|} \cdot x+\cdots$ will bring $F(x, 0, t)$ to this form.

We can also assume $\boldsymbol{\gamma}^{(i)} \in \mathbf{R}_{* / f}^{+}$for $1 \leq i \leq r$, and $\boldsymbol{\gamma}^{(i)} \in \mathbf{R}_{* / f}^{-}$for $r+1 \leq i \leq N$.

For each $\gamma^{(i)} \in \mathbf{R}_{* / f}^{+}$, we now construct a vector field $\vec{v}_{i}^{+}(x, y, t)$, defined for $y \geq 0$.

Write $\gamma_{t}:=\gamma_{t}^{(i)}$. Let $X:=x-\gamma_{t}(y), Y:=y$. Then $\mathcal{F}(X, Y ; T):=F\left(X+\gamma_{t}(Y), Y ; T\right)$ is analytic in $\left(X, Y^{1 / d}, T\right)$. As in $[1,6]$, define $\vec{v}_{i}^{+}(x, y, t):=$ $\vec{V}\left(x-\gamma_{t}(y), y, t\right), y \geq 0$, where
(3) $\vec{V}(X, Y, t):=\frac{X \mathcal{F}_{X} \mathcal{F}_{t}}{\left(X \mathcal{F}_{X}\right)^{2}+\left(Y \mathcal{F}_{Y}\right)^{2}} \cdot X \frac{\partial}{\partial X}$

$$
+\frac{Y \mathcal{F}_{Y} \mathcal{F}_{t}}{\left(X \mathcal{F}_{X}\right)^{2}+\left(Y \mathcal{F}_{Y}\right)^{2}} \cdot Y \frac{\partial}{\partial Y}-\frac{\partial}{\partial t} .
$$

In general, given $\boldsymbol{\alpha}_{i}, x=\alpha_{i}(y)$, say in $\mathbf{R}_{*}^{+}, 1 \leq$ $i \leq r$. Let $q(x, y):=\prod_{k=1}^{r}\left(x-\alpha_{k}(y)\right)^{2}$,

$$
q_{i}(x, y):=q(x, y) /\left(x-\alpha_{i}(y)\right)^{2}
$$

$$
p_{i}(x, y):=q_{i}(x, y) /\left[q_{1}(x, y)+\cdots+q_{r}(x, y)\right] .
$$

We call $\left\{p_{1}, \ldots, p_{r}\right\}$ a partition of unity for $\left\{\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{r}\right\}$.

Now, take $\left\{p_{i}\right\}$ for $\left\{\gamma_{t}^{(1)}, \cdots \gamma_{t}^{(r)}\right\}$. Define $\vec{v}^{+}(x, y, t):=\sum_{i=1}^{r} p_{i}(x, y, t) \vec{v}_{i}^{+}(x, y, t)$.

Similarly, $\gamma_{f}^{(i)}, r+1 \leq i \leq N$, yield $\vec{v}^{-}(x, y, t)$, $y \leq 0$. We can then glue $\vec{v}^{ \pm}(x, y, t)$ together along the x-axis, since $\vec{v}^{ \pm}(x, 0, t) \equiv-\frac{\partial}{\partial t}$. This is our vector field $\vec{v}(x, y, t)$, which, by (3), is clearly tangent to the level surfaces of $F(x, y ; t)$, proving (b.1).

4. Sketch of Proof.

Lemma 4.1. Let $W(X, Y)$ be a weighted form of degree $d, w(X)=h, w(Y)=1$. Take u_{0}, not a multiple root of $W(X, 1)$. If $W\left(u_{0}, 1\right) \neq 0$ or $u_{0} \neq 0$ then, with $X=u v^{h}, Y=v$,

$$
\left|X W_{X}\right|+\left|Y W_{Y}\right|=\text { unit } \cdot|v|^{d}, \text { for u near } u_{0}
$$

For, by Euler's Theorem, if $X-u_{0} Y^{h}$ divides W_{X} and W_{Y}, then u_{0} is a multiple root.

To show (b.2), etc., take $\boldsymbol{\alpha}$, say in \mathbf{R}_{*}^{+}. Take k, $\mathcal{O}\left(\gamma^{(k)}, \boldsymbol{\alpha}\right)=\max \left\{\mathcal{O}\left(\gamma^{(j)}, \boldsymbol{\alpha}\right) \mid 1 \leq j \leq r\right\}$.

We can assume $\boldsymbol{\alpha}$ is not a multiple root of f, $e:=\mathcal{O}\left(\gamma^{(k)}, \boldsymbol{\alpha}_{f}\right)<\infty$. (If $\boldsymbol{\alpha}$ is, then $\boldsymbol{\gamma}^{(k)}=\boldsymbol{\alpha}_{f}$, $h(B)=\infty$. This case is easy.)

Write $B:=B\left(\boldsymbol{\alpha}_{f}\right)$ if $B\left(\boldsymbol{\alpha}_{f}\right) \leq B\left(\gamma^{(k)}\right)$, and $B:=B\left(\boldsymbol{\gamma}^{(k)}\right)$ if $B\left(\boldsymbol{\alpha}_{f}\right)>B\left(\boldsymbol{\gamma}^{(k)}\right)$.

Thus $\alpha(y)=\lambda_{B}(y)+a y^{e}+\cdots, \frac{d}{d u} I_{f}^{B}(a) \neq 0$. Let us consider the mapping

$$
\begin{gathered}
\tau:(u, v, t) \mapsto(x, y, t):=\left(\lambda_{B_{t}}(v)+u v^{e}, v, t\right), \\
\quad u \in \mathbf{R}, 0 \leq v<\varepsilon, t \in I,
\end{gathered}
$$

B_{t} the deformation of B, and the liftings $\overrightarrow{\nu_{j}^{+}}:=$ $(d \tau)^{-1}\left(p_{j} \vec{v}_{j}^{+}\right), \vec{\nu}^{+}:=\sum_{j=1}^{r} \vec{\nu}_{j}^{+}$.

Key Lemma. The lifted vector fields $\vec{\nu}_{j}^{+}$, and hence $\vec{\nu}^{+}$, are analytic at (u, v, t), if u is not a multiple root of $I_{f_{t}}^{B_{t}}$. Moreover, $\vec{\nu}^{+}(u, 0, t)$ is analytic for all $u \in \mathbf{R}$; that is, $\lim _{v \rightarrow 0^{+}} \vec{\nu}^{+}(u, v, t)$ has only removable singularities on the u-axis.

We analyze each $\vec{\nu}_{i}^{+}$, using (3). For brevity, write $\mathbf{B}:=B\left(\boldsymbol{\gamma}^{(i)}\right), \mathbf{B}_{t}:=B\left(\boldsymbol{\gamma}_{t}^{(i)}\right)$.

First, consider the case $B=\mathbf{B}$. This case exposes the main ideas.

Now I_{f}^{B} and $\mathbf{P}\left(f, \gamma^{(i)}\right)$ are related as follows. Let $W(X, Y)=\sum_{i, j} a_{i j} X^{i} Y^{j / d}$ be the (unique) weighted form such that $W(u, 1)=I_{f}^{B}(u+c)$, $w(X)=h(B), w(Y)=1$, where c is the canonical coordinate of $\gamma^{(i)}$. The Newton dots on the high-
est compact edge of $\mathbf{P}\left(f, \gamma^{(i)}\right)$ represent the non-zero terms of $W(X, Y)$; the highest vertex is $\left(0, L_{f}(B)\right)$.

Thus $\frac{d}{d u} W(0,1)=\frac{d}{d u} I_{f}^{B}(c)=0, W(0,1) \neq 0$. The weighted degree of $W(X, Y)$ is $L_{f}(B)$.

Hence, by Lemma 4.1, the substitution $X=$ $x-\lambda_{B}(y)-c y^{h(B)}=(u-c) v^{h(B)}, Y=v$, yields $\mathcal{O}_{v}\left(\left|X \mathcal{F}_{X}\right|+\left|Y \mathcal{F}_{Y}\right|\right)=L_{f}(\mathbf{B})$, if $u-c$ is not a multiple root of $W(u, 1)$.

The Newton Polygon is independent of t : $\mathbf{P}\left(f, \gamma^{(i)}\right)=\mathbf{P}\left(f_{t}, \gamma_{t}^{(i)}\right)$. All Newton dots of \mathcal{F}, and hence those of \mathcal{F}_{T}, are contained in $\mathbf{P}\left(f, \gamma^{(i)}\right)$. Hence $\mathcal{O}_{v}\left(\mathcal{F}_{T}\left((u-c) v^{h(B)}, v ; T\right)\right) \geq L_{f}(B)$.

By the Chain Rule, we have $X \frac{\partial}{\partial X}=(u-c) \frac{\partial}{\partial u}$, $Y \frac{\partial}{\partial Y}=v \frac{\partial}{\partial v}-h(B)(u-c) \frac{\partial}{\partial u}$.

It follows that $(d \tau)^{-1}\left(\vec{v}_{i}^{+}\right)$and $\vec{\nu}_{i}$ are analytic at (u, v, t), if u is not a multiple root of $I_{f_{t}}^{B_{t}}$.

Next, suppose $B<\mathbf{B}$. Again we show $(d \tau)^{-1}\left(\vec{v}_{i}^{+}\right)$has the required property.

Write $\gamma^{(i)}(y):=\lambda_{B}(y)+c^{\prime} y^{h(B)}+\cdots$. Let $W(X, Y)$ denote the weighted form such that $W(u, 1)=I_{f}^{B}\left(u+c^{\prime}\right), w(X)=h(B), w(Y)=1$.

If $W(X, Y)$ has more than one terms, they are dots on a compact edge of $\mathbf{P}\left(f, \boldsymbol{\gamma}^{(i)}\right)$, not the highest one. If $W(X, Y)$ has only one term, it is a vertex, say $(\bar{m}, \bar{q}), \bar{m} \geq 2$.

In either case, $u=0$ is a multiple root of $W(u, 1)$. All Newton dots of \mathcal{F}_{T} are contained in $\mathbf{P}\left(f, \gamma^{(i)}\right)$. The rest of the argument is the same as above.

Finally, suppose $B \not \leq \mathbf{B}$. Here p_{i} plays a vital role in analyzing $\vec{\nu}_{i}^{+}$.

Let \bar{B} denote the largest bar such that $B>\bar{B} \leq$ B.

Let $U:=x-\lambda_{B_{t}}(y), V:=y$. The identity $p_{i}=$ $p_{k} q_{i} / q_{k}$, and the Chain Rule yield

$$
\begin{aligned}
& p_{i} \cdot X \frac{\partial}{\partial X}=p_{k} \frac{(U+\varepsilon)^{2}}{(U+\delta)^{2}}(U+\delta) \frac{\partial}{\partial U} \\
& p_{i} \cdot Y \frac{\partial}{\partial Y}=p_{k} \cdot \frac{(U+\varepsilon)^{2}}{(U+\delta)^{2}}\left[V \frac{\partial}{\partial V}-V \delta^{\prime}(V) \frac{\partial}{\partial U}\right]
\end{aligned}
$$

where $\delta:=\delta(y, t):=\lambda_{B_{t}}(y)-\gamma_{t}^{(i)}(y), \varepsilon:=\lambda_{B_{t}}(y)-$ $\gamma_{t}^{(k)}(y), \mathcal{O}_{y}(\delta)=h(\bar{B})<h(B) \leq \mathcal{O}_{y}(\varepsilon)$.

The substitution $U=u v^{h(B)}, V=v$ lifts both to analytic vector fields in (u, v, t).

It remains to study $\Psi:=\mathcal{F}_{T} /\left(\left|X \mathcal{F}_{X}\right|+\left|Y \mathcal{F}_{Y}\right|\right)$ when $X=\delta(v, t)+u v^{h(B)}, Y=v$.

Let $\mathcal{G}(U, V, T):=\mathcal{F}(U+\delta(V, T), V, T) . \quad$ The Chain Rule yields
(4) $X \mathcal{F}_{X}=(U+\delta) \mathcal{G}_{U}, \quad Y \mathcal{F}_{Y}=V\left(\mathcal{G}_{V}-\delta_{V} \mathcal{G}_{U}\right)$,

$$
\mathcal{F}_{T}=\mathcal{G}_{T}-\delta_{T} \mathcal{G}_{U} .
$$

Let us compare $\mathbf{P}\left(f, \gamma^{(i)}\right)$ and $\mathbf{P}(\mathcal{G}, U=0)$, the (usual) Newton Polygon of \mathcal{G}. Let $E_{i}^{\prime}, \theta_{i}^{\prime}$ and $V_{i}{ }^{\prime}$ denote the edges, angles and vertices of the latter. Then $E_{i}=E_{i}^{\prime}$, for $1 \leq i \leq l$, where l is the largest integer such that $\tan \theta_{l}<h(\bar{B})$. Moreover, $\theta_{l+1}^{\prime}=$ θ_{l+1} (although $E_{l+1}, E_{l+1}^{\prime}$ may be different).

Consider the vertex $V_{l+1}^{\prime}:=\left(m_{l+1}^{\prime}, q_{l+1}^{\prime}\right)$, $m_{l+1}^{\prime} \geq 2$. It yields a term $\mu:=a(T) U^{p} V^{q}$ of $\delta \mathcal{G}_{U}$, $a(0) \neq 0, p:=m_{l+1}^{\prime}-1, q:=q_{l+1}^{\prime}+\tan \theta_{l+1}$. With the substitution $U=u v^{h(B)},(u \neq 0) V=v,, \mu$ is the dominating term in (4). That is, $\mathcal{O}_{v}(\mu)<\mathcal{O}_{v}\left(\mu^{\prime}\right)$, for all terms μ^{\prime} in $U \mathcal{G}_{U}, V \mathcal{G}_{V}$, etc., (and for all terms $\mu^{\prime} \neq \mu$ in $\left.\delta \mathcal{G}_{U}\right)$, since $\mathcal{O}_{Y}(\delta)=\tan \theta_{l+1}$.

It follows that Ψ is analytic. That $\lim \vec{\nu}_{i}^{+}$has only removable singularities also follows.

Conditions (b.2) etc. can be derived from the Key Lemma.

References

[1] T. Fukui and E. Yoshinaga, The modified analytic trivialization of family of real analytic functions, Invent. Math. 82 (1985), no. 3, 467-477.
[2] S. Koiki, On strong C^{0}-equivalence of real analytic functions, J. Math. Soc. Japan 45 (1993), no. 2, 313-320.
[3] T.-C. Kuo and Y. C. Lu, On analytic function germs of two complex variables, Topology 16 (1977), no. 4, 299-310.
[4] T.-C. Kuo and A. Parusiński, Newton polygon relative to an arc, in Real and complex singularities (São Carlos, 1998), 76-93, Chapman \& Hall/CRC, Boca Raton, FL, 2000.
[5] K. Kurdyka and L. Paunescu, Arc-analytic roots of analytic functions are Lipschitz, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1693-1702. (Electronic).
[6] L. Paunescu, A weighted version of the Kuiper-Kuo-Bochnak-Eojasiewicz theorem, J. Algebraic Geom. 2 (1993), no. 1, 69-79.
[7] R. J. Walker, Algebraic Curves, Princeton Univ. Press, Princeton, NJ, 1950.

[^0]: 2000 Mathematics Subject Classification. Primary 14Pxx.

