Equisingularity in \mathbb{R}^2 as Morse stability in infinitesimal calculus

By Tzee-Char KuO and Laurentiu PAUNESCU School of Mathematics, University of Sydney Sydney, NSW 2006, Australia (Communicated by Heisuke HIRONAKA, M. J. A., June 14, 2005)

Abstract: Two seemingly unrelated problems are intimately connected. The first is the equsingularity problem in \mathbb{R}^2 : For an analytic family $f_t : (\mathbb{R}^2, 0) \to (\mathbb{R}, 0)$, when should it be called an "equisingular deformation"? This amounts to finding a suitable trivialization condition (as strong as possible) and, of course, a criterion. The second is on the Morse stability. We define \mathbb{R}_* , which is \mathbb{R} "enriched" with a class of infinitesimals. How to generalize the Morse Stability Theorem to polynomials over \mathbb{R}_* ? The space \mathbb{R}_* is much smaller than the space used in Nonstandard Analysis. Our infinitesimals are analytic arcs, represented by fractional power series. In our Theorem II, (B) is a trivialization condition which can serve as a definition for equisingular deformation; (A), and (A') in Addendum 1, are criteria, using the stability of "critical points" and the "complete initial form"; (C) is the Morse stability (Remark 1.6).

Key words: Morse equisingularity; infinitesimals; Newton Polygon.

1. Results. As in the Curve Selection Lemma, by a parameterized arc at 0 in \mathbf{R}^2 (resp. \mathbf{C}^2) we mean a real analytic map germ $\vec{\lambda} : [0, \epsilon) \rightarrow \mathbf{R}^2$ (resp. \mathbf{C}^2), $\vec{\lambda}(0) = 0$, $\vec{\lambda}(s) \neq 0$. We call the image set, $\boldsymbol{\lambda} := \text{Im}(\vec{\lambda})$, a (geometric) arc at 0, or the locus of $\vec{\lambda}$; call $\vec{\lambda}$ a parametrization of $\boldsymbol{\lambda}$.

Take $\lambda \neq \mu$. The distance from $P \in \lambda$ to μ is a fractional power series in $s := \overline{OP}$, $dist(P, \mu) = as^h + \cdots$, where $a > 0, h \in \mathbf{Q}^+$.

We call $\mathcal{O}(\lambda, \mu) := h$ the *contact order* of λ and μ . Define $\mathcal{O}(\lambda, \lambda) := \infty$.

Let \mathbf{S}_{*}^{1} , or simply \mathbf{S}_{*} , denote the set of arcs at 0 in \mathbf{R}^{2} . This is called the *enriched unit circle* for the following reason. The tangent half line at 0, \boldsymbol{l} , of a given $\boldsymbol{\lambda}$ can be identified with a point of the unit circle \mathbf{S}^{1} . If $\boldsymbol{\lambda} \neq \boldsymbol{l}$, then $1 < \mathcal{O}(\boldsymbol{\lambda}, \boldsymbol{l}) < \infty$. Hence we can regard $\boldsymbol{\lambda}$ as an "*infinitesimal*" at \boldsymbol{l} , and \mathbf{S}_{*} as \mathbf{S}^{1} "*enriched*" with infinitesimals.

Let $f : (\mathbf{R}^2, 0) \to (\mathbf{R}, 0)$ be analytic. Write $V_*^{\mathbf{C}}(f) := \{\boldsymbol{\zeta} \in \mathbf{S}^3_* \mid f(z, w) \equiv 0 \text{ on } \boldsymbol{\zeta}\}$, where \mathbf{S}^3_* denotes the set of arcs at 0 in $\mathbf{C}^2(=\mathbf{R}^4)$, and f(z, w) is the complexification of f.

For $\lambda \in \mathbf{S}_*$, write $\mathcal{O}(\lambda, V_*^{\mathbf{C}}(f)) := \max\{\mathcal{O}(\lambda, \zeta) \mid \zeta \in V_*^{\mathbf{C}}(f)\}$. Define the *f-height* of λ by $h_f(\lambda) := \mathcal{O}(\lambda, V_*^{\mathbf{C}}(f))$. Hence $h_f(\lambda) = \infty$ if $f(x, y) \equiv 0$ along λ .

For λ_1 , $\lambda_2 \in \mathbf{S}_*$, define $\lambda_1 \sim_f \lambda_2$ if and only

if $h_f(\lambda_1) = h_f(\lambda_2) < \mathcal{O}(\lambda_1, \lambda_2)$. (In fact, $h_f(\lambda_1) < \mathcal{O}(\lambda_1, \lambda_2)$ implies $h_f(\lambda_1) = h_f(\lambda_2)$.) The equivalence class of λ is denoted by λ_f .

We call λ_f an *f*-truncated arc, or simply an *f*-arc. Write $\mathbf{S}_{*/f} := \mathbf{S}_* / \sim_f$, $h(\lambda_f) := h_f(\lambda)$.

Define the contact order of λ_f and μ_f by: if $\lambda_f \neq \mu_f$, $\mathcal{O}(\lambda_f, \mu_f) := \mathcal{O}(\lambda, \mu)$, $\lambda \in \lambda_f$, $\mu \in \mu_f$; and $\mathcal{O}(\lambda_f, \lambda_f) := \infty$. This is well-defined. Write $\mathcal{O}(\lambda_f, V_*^{\mathbf{C}}(f)) := \mathcal{O}(\lambda, V_*^{\mathbf{C}}(f)).$

From now on we assume f(x, y) is **mini-regular** in x, that is, regular in x of order m(f), the multiplicity of f.

Let \mathbf{R}^+_* (resp. $\mathbf{R}^+_{*/f}$) denote those arcs of \mathbf{S}_* (resp. $\mathbf{S}_{*/f}$) in y > 0, not tangent to the *x*-axis, and \mathbf{R}^-_* (resp. $\mathbf{R}^-_{*/f}$) denote those in y < 0. Write $\mathbf{R}_* := \mathbf{R}^+_* \cup \mathbf{R}^-_*$, $\mathbf{R}_{*/f} := \mathbf{R}^+_{*/f} \cup \mathbf{R}^-_{*/f}$.

Take λ_f , $\mu_f \in \mathbf{R}^+_{*/f}$, or $\in \mathbf{R}^-_{*/f}$. Define $\lambda_f \simeq \mu_f$ (read: "bar equivalent") *if and only if* either $\lambda_f = \mu_f$, or else $h(\lambda_f) = h(\mu_f) = \mathcal{O}(\lambda_f, \mu_f)$. Call an equivalence class an *f*-bar. The one containing λ_f is denoted by $B(\lambda_f)$, having **height** $h(B(\lambda_f)) := h(\lambda_f)$. (See [3–5].)

If $h(\lambda_f) = \infty$ then $B(\lambda_f) = {\lambda_f}$, a singleton, and conversely.

The given coordinates (x, y) yield a coordinate on each bar of finite height, as follows:

Take B, say in $\mathbf{R}^+_{*/f}$, $h(B) < \infty$. Take $\lambda \in \lambda_f \in$

²⁰⁰⁰ Mathematics Subject Classification. Primary 14Pxx.

B with parametrization $\vec{\lambda}(s)$. Eliminating $s \ (s \ge 0)$ yields a *unique* fractional power series (as in [7])

(1)
$$x = \lambda(y) = a_1 y^{\frac{n_1}{d}} + a_2 y^{\frac{n_2}{d}} + \cdots, \\ d \le n_1 < n_2 < \cdots, \quad (y \ge 0).$$

Here all $a_i \in \mathbf{R}$. Let $\lambda_B(y)$ denote $\lambda(y)$ with all terms y^e , $e \geq h(B)$, deleted. Observe that for any $\boldsymbol{\mu} \in \boldsymbol{\lambda}_f \in B$, $\mu(y)$ has the form $\mu(y) = \lambda_B(y) + uy^{h(B)} + \cdots$, where $u \in \mathbf{R}$ is uniquely determined by $\boldsymbol{\lambda}_f$. We say $\boldsymbol{\lambda}_f \in B$ has canonical coordinate u, writing $\boldsymbol{\lambda}_f := u$. We call $x = \lambda_B(y)$, which depends only on B, the canonical representation of B.

Take $B, h(B) < \infty$, and $u = \lambda_f \in B$. Let us write

$$f(\lambda_B(y) + uy^{h(B)} + \cdots, y)$$

:= $I_f^B(u)y^e + \cdots, I_f^B(\lambda_f) := I_f^B(u) \neq 0.$

An important observation is that e depends only on B, not on λ_f ; $I_f^B(u)$ depends only on λ_f , not on $\lambda \in \lambda_f$, and is a polynomial (Lemma 1.2 below). We call $L_f(B) := L_f(\lambda_f) := e$ the **Lojasiewicz** *exponent* of f on B.

Attention/Convention. Not every $u \in \mathbf{R}$ is a canonical coordinate. For example, $f(x, y) = x^2 - y^3$ has a bar B of height 3/2, and ± 1 are not canonical coordinates; $I_f^B(u)$ is not a priori defined at ± 1 . Since I_f^B is a polynomial, we shall regard it as defined for all $u \in \mathbf{R}$.

In general, the canonical coordinate identifies Bwith a copy of \mathbf{R} minus the real roots of I_f^B . Hence \overline{B} , the metric space completion, is a copy of \mathbf{R} .

If $B = {\lambda_f}$, a singleton, we define $I_f^B(\lambda_f) := 0$, $L_f(\lambda_f) := \infty$.

Now, take l(x, y) := x, and consider $\mathbf{S}_{*/l}$. If $\nu(y) = ay^e + \cdots, a \neq 0, e \geq 1$, then the *l*-arc ν_l can be identified with $(a, e) \in (\mathbf{R} - \{0\}) \times \mathbf{Q}^{+1}, \mathbf{Q}^{+1} :=$ $\{r \in \mathbf{Q}^+ \mid r \geq 1\}$. If $\nu(y) \equiv 0$ then $h(\nu_l) = \infty$; we write $\nu_l := (0, \infty)$. We call $\mathcal{V} := ((\mathbf{R} - \{0\}) \times \mathbf{Q}^{+1}) \cup \{(0, \infty)\} (= \mathbf{R}^{\pm}_{*/l})$ the *infinitesimal value space*. The given f, mini-regular in x, induces a \mathcal{V} -valued function

$$f_*: \mathbf{R}_{*/f} \to \mathcal{V},$$

$$f_*(\boldsymbol{\lambda}_f) := \left(I_f^B(\boldsymbol{\lambda}_f), L_f(\boldsymbol{\lambda}_f)\right) \in \mathcal{V}, \quad (\boldsymbol{\lambda}_f \in B).$$

Take $z \in \mathbf{C}$. We say z is a *B*-root of f if f has a Newton-Puiseux root of the form $\alpha(y) = \lambda_B(y) + zy^{h(B)} + \cdots$. The number of such roots is the *multiplicity* of z. **Definition 1.1.** Take $c := \gamma_f \in B$. If $h(B) < \infty$ and $c \in \mathbb{R}$ is a *B*-root of f_x , say of multiplicity k, we say γ_f is a *(real) critical point* of f_* of multiplicity $m(\gamma_f) := k$.

If $B = \{\gamma_f\}$, and $m(B) \ge 2$, we also call γ_f a critical point of multiplicity m(B) - 1.

Call $f_*(c) := f_*(\gamma_f) \in \mathcal{V}$ the *critical value* at γ_f .

If f_x has complex *B*-root(s), but no real *B*-root, then we take a *generic* real number r, put $\gamma(y) := \lambda_B(y) + ry^{h(B)}$, and call γ_f the real critical point in *B* with multiplicity $m(\gamma_f) := 1$. (Convention: For different such *B*, we take *different* generic r.)

The above is the list of all (real) critical points. (If f_x has no *B*-root, *B* yields no critical point.) The number of critical points is finite (Lemma 1.2).

Now, let **M** be the maximal ideal of $\mathbf{R}\{s\}$, furnished with the point-wise convergence topology, that is, the smallest topology so that the projection maps

$$\pi_N : \mathbf{M} \longrightarrow \mathbf{R}^N, a_1 s + \dots + a_N s^N + \dots \mapsto (a_1, \dots, a_N), \quad N \in \mathbf{Z}^+,$$

are continuous. Furnish \mathbf{S}_* , $\mathbf{S}_{*/f}$ with the quotient topologies by the quotient maps

$$p_*: \mathbf{M}^2 - \{0\} \to \mathbf{S}_*, \quad p_{*/f}: \mathbf{M}^2 - \{0\} \to \mathbf{S}_{*/f}.$$

Take $\vec{\lambda} \in \mathbf{M}^2$, and a real-valued function, α , defined near $\vec{\lambda}$. We say α is analytic at $\vec{\lambda}$ if $\alpha = \varphi \circ \pi_N$, π_N a projection, φ an analytic function at $\pi_N(\vec{\lambda})$ in \mathbf{R}^N . This defines an analytic structure on \mathbf{M}^2 . We furnish \mathbf{S}_* and $\mathbf{S}_{*/f}$ with the quotient analytic structure.

In the following, let I be a sufficiently small neighborhood of 0 in **R**. We write "*c*-" for "continuous", "*a*-" for "analytic", "*c/a*-" for "continuous (resp. analytic)".

Let F(x, y; t) be a given t-parameterized adeformation of f(x, y). That is to say, F(x, y; t) is real analytic in (x, y, t), defined for (x, y) near $0 \in$ \mathbf{R}^2 , $t \in I$, with F(x, y; 0) = f(x, y), $F(0, 0; t) \equiv 0$. When t is fixed, we also write F(x, y; t) as $f_t(x, y)$.

In $\mathbf{S}_* \times I$ define $(\boldsymbol{\lambda}, t) \sim_F (\boldsymbol{\lambda}', t')$ if and only if t = t' and $\boldsymbol{\lambda} \sim_{f_t} \boldsymbol{\lambda}'$. Denote the quotient space by $\mathbf{S}_* \times_F I$. Similarly, $\mathbf{R}^{\pm}_* \times_F I := \mathbf{R}^{\pm}_* \times I / \sim_F$.

By a *t*-parameterized c/a-deformation of λ_f we mean a family of f_t -arcs, λ_{f_t} , obtained as follows. Take a parametrization $\vec{\lambda}(s)$ of λ_f , and a c/a-map: $I \to \mathbf{M}^2$, $t \mapsto \vec{\lambda}_t$, $\vec{\lambda}_0 = \vec{\lambda}$. Then $\lambda_{f_t} := p_{*/f_t}(\vec{\lambda}_t)$. This is equivalent to taking a c/a-map: $I \to \mathbf{S}_* \times_F I$, $t \mapsto (\boldsymbol{\lambda}_{f_t}, t)$. A c/a-deformation of a given B is, by definition, a family $\{B_t\}$ obtained by taking any $\boldsymbol{\lambda}_f \in B$, a c/a-deformation $\boldsymbol{\lambda}_{f_t}$, and then $B_t := B(\boldsymbol{\lambda}_{f_t})$.

Theorem I. The following three conditions are equivalent.

(a) Each (real) critical point, γ_f , of f_* is stable along $\{f_t\}$ in the sense that γ_f admits a cdeformation γ_{f_t} , a critical point of $(f_t)_*$, such that $m(\gamma_{f_t}), h(\gamma_{f_t}), L_{f_t}(\gamma_{f_t})$ are constants. (If γ_f arises from the generic number r, we use the same r for γ_{f_t} .)

(b) There exists a (t-level preserving) homeomorphism

$$\begin{aligned} H: (\mathbf{R}^2 \times I, 0 \times I) &\to (\mathbf{R}^2 \times I, 0 \times I), \\ ((x, y), t) &\mapsto (\eta_t(x, y), t), \end{aligned}$$

which is bi-analytic off the t-axis $\{0\} \times I$, with the following five properties:

(b.1) $f_t(\eta_t(x,y)) = f(x,y), t \in I$, (trivialization of F(x,y;t));

(b.2) Given any bar B, $\eta_t(\vec{\alpha}(s))$ is analytic in $(\vec{\alpha}, s, t)$, $\vec{\alpha} \in p_{*/f}^{-1}(B)$ (analyticity on each bar); in particular, η_t is arc-analytic, for any fixed t;

(b.3) $\mathcal{O}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \mathcal{O}(\eta_t(\boldsymbol{\alpha}),\eta_t(\boldsymbol{\beta}))$ (contact order preserving); moreover, $\eta_t(\boldsymbol{\alpha}_f) \in \mathbf{S}_{*/f_t}$ is well-defined (invariance of truncated arcs).

(b.4) The induced mapping $\eta_t : B \to B_t$ extends to an analytic isomorphism: $\overline{B} \to \overline{B}_t$.

(b.5) If c is a critical point of f_* , then $c_t = \eta_t(c)$ is one of $(f_t)_*$, $m(c) = m(c_t)$.

(c) There exists an isomorphism $H_* : \mathbf{R}_{*/f} \times I \to \mathbf{R}_* \times_F I$, $(\boldsymbol{\alpha}_f, t) \mapsto (\eta_t(\boldsymbol{\alpha}_f), t)$, preserving critical points and multiplicities. That is to say, H_* is a homeomorphism,

(c.1) Given B, $B_t := \eta_t(B)$ is a bar, $h(B_t) = h(B)$, $m(B_t) = m(B)$;

(c.2) The restriction of η_t to B extends to an analytic isomorphism $\bar{\eta}_t : \bar{B} \to \bar{B}_t$;

(c.3) If c is a critical point of f_* , then $c_t := \eta_t(c)$ is one of $(f_t)_*$, $m(c) = m(c_t)$.

Theorem II. The following three conditions are equivalent.

(A) The function f_* is Morse stable along $\{f_t\}$. That is, every critical point is stable along $\{f_t\}$, and for critical points $c \in B$, $c' \in B'$, $f_*(c) = f_*(c')$ implies $(f_t)_*(c_t) = (f_t)_*(c'_t)$. (B) There exists H, as in (b), with an additional property:

(b.6) If c, c' are critical points, $f_*(c) = f_*(c')$, then $(f_t)_*(c_t) = (f_t)_*(c'_t)$.

(C) There exist an isomorphism H_* as in (c), and an isomorphism $K_* : \mathcal{V} \times I \to \mathcal{V} \times I$, such that $K_* \circ$ $(f_* \times id) = \Phi \circ H_*$, where $\Phi(\boldsymbol{\alpha}_{f_t}, t) := ((f_t)_*(\boldsymbol{\alpha}_{f_t}), t)$.

Lemma 1.2. Let $\{z_1, \ldots, z_q\}$ be the set of *B*-roots of $f(z_i \in \mathbf{C})$, $h(B) < \infty$. Then

$$I_f^B(u) = a \prod_{i=1}^q (u - z_i)^{m_i},$$

 $0 \neq a \in \mathbf{R}$, a constant, m_i the multiplicity of z_i .

In particular, $I_f^B(u)$ is a polynomial with real coefficients.

If $c := \gamma_f \in B$ is a critical point of f_* , then $\frac{d}{du}I_f^B(c) = 0 \neq I_f^B(c)$, and conversely. The multiplicity of c (as a critical point of the polynomial $I_f^B(u)$) equals $m(\gamma_f)$.

The number of critical points of f_* in $\mathbf{R}^+_{*/f}$ (resp. $\mathbf{R}^-_{*/f}$) is bounded by m(f) - 1.

Definition 1.3. The degree of $I_f^B(u)$ is called the *multiplicity* of *B*, denoted by m(B).

We say B is a **polar bar** if $I_f^B(u)$ has at least two distinct roots (in **C**), or B is a singleton with $m(B) \ge 2$. Call $\mathcal{I}(f) := \{(B, I_f^B) \mid B \text{ polar}\}$ the **complete initial form** of f.

Corollary 1.4. Each critical point belongs to a polar bar; each polar bar contains at least one critical point.

We recall Morse Theory. Take an *a*-family of real polynomials $p_t(x) = a_0(t)x^d + \cdots + a_d(t)$, $a_0(0) \neq 0$, $t \in I$, as an *a*-deformation of $p(x) := p_0(x)$. Let $c_0 \in \mathbf{R}$ be a critical point of p(x), of multiplicity $m(c_0)$. We say c_0 is stable along $\{p_t\}$, if it admits a *c*-deformation c_t , $\frac{d}{dx}p_t(c_t) = 0$, $m(c_t) = m(c_0)$. (A *c*-deformation c_t , if exists, is necessarily an *a*deformation.)

Definition 1.5. We say p(x) is *Morse and zero stable* along $\{p_t\}$ if:

(i) Every (real) critical point of $p_0(x)$ is stable along $\{p_t\}$;

(ii) For critical points c_0 , c'_0 , $p_0(c_0) = p_0(c'_0)$ implies $p_t(c_t) = p_t(c'_t)$.

(iii) If $p_0(c_0) = \frac{d}{dx}p_0(c_0) = 0$, then $p_t(c_t) = \frac{d}{dx}p_t(c_t) = 0$.

Remark 1.6. Theorem II generalizes in spirit a version of the Morse Stability Theorem : If p(x)is Morse and zero stable along $\{p_t\}$ then there exist

No. 6]

analytic isomorphisms $H, K : \mathbf{R} \times I \to \mathbf{R} \times I$, such that $K \circ (p \times id) = \Phi \circ H, K(0, t) \equiv 0$, where $\Phi(x, t) := (p_t(x), t)$.

That (a) \Rightarrow (c) reduces to the following. Given $x = f_i(t), 1 \leq i \leq N$, analytic, $f_i(t) \neq f_j(t)$, for $i \neq j, t \in I$. There exists an analytic isomorphism $H : \mathbf{R} \times I \to \mathbf{R} \times I$, $(x,t) \mapsto (\eta_t(x), t), \eta_t(f_i(t)) = const, 1 \leq i \leq N$. (Proved by Cartan's Theorem A, or Interpolation.)

We say $\mathcal{I}(f)$ is **Morse and zero stable** along $\{f_t\}$ if each polar B admits a c-deformation B_t , a polar bar of f_t , such that two of $h(B_t)$, $m(B_t)$, $L_{f_t}(B_t)$ are constants (we can then show all three are), and $\{I_f^B\}$ is Morse and zero stable along $\{I_{f_t}^{B_t}\}$, for each B.

Addendum 1. (B) is also equivalent to (A'): $\mathcal{I}(f)$ is Morse and zero stable along $\{f_t\}$.

2. Relative Newton polygons. Take λ , say in \mathbf{R}^+_* , with $\lambda(y)$. Let us change variables: $X := x - \lambda(y), Y := y$,

$$\begin{aligned} \mathcal{F}(X,Y) &:= f(X+\lambda(Y),Y) := \sum a_{ij} X^i Y^{j/d}, \\ i,j &\geq 0, \ i+j > 0. \end{aligned}$$

In the first quadrant of a coordinate plane we plot a dot at (i, j/d) for each $a_{ij} \neq 0$, called a (Newton) dot. The Newton polygon of \mathcal{F} in the usual sense is called the *Newton Polygon of f relative to* λ , denoted by $\mathbf{P}(f, \lambda)$. (See [4].) Write $m_0 := m(f)$. Let the vertices be

$$V_0 = (m_0, 0), \dots, V_k = (m_k, q_k),$$

$$q_i \in \mathbf{Q}^+, \ m_i > m_{i+1}, \ q_i < q_{i+1}.$$

The (Newton) edges are: $E_i = \overline{V_{i-1}V_i}$, with angle θ_i , $\tan \theta_i := \frac{q_i - q_{i-1}}{m_{i-1} - m_i}$, $\pi/4 \le \theta_i < \pi/2$; a vertical one, E_{k+1} , sitting at V_k , $\theta_{k+1} = \pi/2$; a horizontal one, E_0 , which is unimportant.

If $m_k \geq 1$ then $f \equiv 0$ on λ . If $m_k \geq 2$, f is singular on λ . If $\lambda \sim_f \lambda'$ then $\mathbf{P}(f, \lambda) = \mathbf{P}(f, \lambda')$, hence $\mathbf{P}(f, \lambda_f)$ is well-defined.

Notation: $L(E_i) := \overline{V_{i-1}V_i}, V_i' := (0, q_{i-1} + m_{i-1} \tan \theta_i), i.e. E_i$ extended to the y-axis.

Fundamental Lemma. Suppose each polar bar B admits a c-deformation B_t such that $h(B_t)$ and $m(B_t)$ are independent of t. Then each $\lambda_f \in$ $\mathbf{R}_{*/f}$ admits an a-deformation $\lambda_{f_t} \in \mathbf{R}_{*/f_t}$ such that $\mathbf{P}(f_t, \lambda_{f_t})$ is independent of t. The induced deformation $B_t := B(\lambda_{f_t})$ of $B_0 := B(\lambda_f)$, and hence the a-deformation $x = \lambda_{B_t}(y)$ of the canonical representation $x = \lambda_{B_0}(y)$, are uniquely defined; that is, if we take any $\eta_f \in B(\lambda_f)$, and a c-deformation η_{f_t} with $\mathbf{P}(f_t, \eta_{f_t}) = \mathbf{P}(f, \lambda_f)$, then $B(\eta_{f_t}) = B(\lambda_{f_t})$.

Given B, B'. The contact order $\mathcal{O}(B_t, B'_t)$, defined below, is independent of t.

For $B \neq B'$, define $\mathcal{O}(B, B') := \mathcal{O}(\lambda_f, \lambda'_f)$, $\lambda_f \in B, \lambda'_f \in B'$; and $\mathcal{O}(B, B) := \infty$.

The Lemma is proved by a succession of Tschirnhausen transforms at the vertices, beginning at V_0 , which represents $a_{m0}X^m$ in $\mathcal{F}(X,Y)$, m := m(f). Let us define \mathcal{P} by

(2)
$$F(X + \lambda(Y), Y; t) := \mathcal{F}(X, Y) + \mathcal{P}(X, Y; t),$$
$$\mathcal{P}(X, Y; t) := \sum p_{ij}(t) X^i Y^{j/d},$$

where $p_{ij}(t)$ are analytic, $p_{ij}(0) = 0$. Take a root of $\frac{\partial^{m-1}}{\partial X^{m-1}}[a_{m0}X^m + \mathcal{P}(X,Y;t)] = 0,$

$$X = \rho_t(Y) := \sum b_j(t) Y^{j/d}, \quad b_j(0) = 0,$$

 $b_j(t)$ analytic. (Implicit Function Theorem.)

Thus, $\lambda(y) + \rho_t(y)$ is an *a*-deformation of $\lambda(y)$. Let $X_1 := X - \rho_t(Y), Y_1 := Y$. Then

$$F(X_1 + \lambda(Y_1) + \rho_t(Y_1), Y_1; t)$$

:= $\mathcal{F}(X_1, Y_1) + \mathcal{P}^{(1)}(X_1, Y_1; t),$

where $\mathcal{P}^{(1)} := \sum p_{ij}^{(1)}(t) X_1^i Y_1^{j/d}, \ p_{ij}^{(1)}(0) = 0$, and $p_{m-1,j}^{(1)}(t) \equiv 0$ (Tschirnhausen).

For brevity, we shall write the coordinates (X_1, Y_1, t) simply as (X, Y, t), abusing notations. That is, we now have $p_{m-1,j}(t) \equiv 0$ in (2).

We claim that \mathcal{P} in fact has no dot below $L(E_1)$. This is proved by contradiction.

Suppose it has. Take a generic number $s \in \mathbf{R}$. Let $\zeta(y) := \lambda(y) + sy^e$, $e := \tan \theta_1$, and

$$F(\widetilde{X} + \zeta(\widetilde{Y}), \widetilde{Y}; t) := \mathcal{F}(\widetilde{X}, \widetilde{Y}) + \widetilde{\mathcal{P}}, \quad \widetilde{\mathcal{P}}(\widetilde{X}, \widetilde{Y}; 0) \equiv 0.$$

Since s is generic, $\mathbf{P}(f, \boldsymbol{\zeta}_f)$ has only one edge, which is $L(E_1)$, and $B(\boldsymbol{\zeta}_f)$ is polar. Below $L(E_1)$, $\widetilde{\mathcal{P}}$ has at least one dot (when $t \neq 0$), but still no dot of the form (m-1, q).

A c-deformation B_t of $B(\boldsymbol{\zeta}_f)$ would either create new dot(s) of the form (m-1,q) below $L(E_1)$, or else not change the existing dot(s) of $\widetilde{\mathcal{P}}$ below $L(E_1)$. (This is the spirit of the Tschirnhausen transformation.) Thus, as $t \neq 0$, $h(B_t)$ or $m(B_t)$, or both, will drop. This contradicts to the hypothesis of the Fundamental Lemma.

This argument can be repeated recursively at V_1 , V_2 , etc., to clear all dots under $\mathbf{P}(f, \lambda_f)$. More precisely, suppose in (2), \mathcal{P} has no dots below $L(E_i)$,

 $0 \leq i \leq r$. By the Newton-Puiseux Theorem, there exists a root ρ_t of $\frac{\partial^{m_r-1}}{\partial X^{m_r-1}}[aX^{m_r}Y^{q_r} + \mathcal{P}] = 0$ with $\mathcal{O}_y(\rho_t) \geq \tan \theta_{r+1}$, where $aX^{m_r}Y^{q_r}$ is the term for V_r . A Tschirnhausen transform will then eliminate all dots of \mathcal{P} of the form $(m_r - 1, q)$. As before, all dots below $L(E_{r+1})$ also disappear.

We have seen the *only* way to clear dots below $\mathbf{P}(f, \boldsymbol{\lambda}_f)$ is by the Tschirnhausen transforms. If $\mathbf{P}(f, \boldsymbol{\eta}_{f_t}) = \mathbf{P}(f, \boldsymbol{\lambda}_f)$, we must have $\mathcal{O}(\boldsymbol{\lambda}_{f_t}, \boldsymbol{\eta}_{f_t}) \geq h(B_0)$. The uniqueness follows.

Define a partial ordering ">" by: $B > \hat{B}$ if and only if $h(B) > h(\hat{B}) = \mathcal{O}(\lambda_f, \mu_f), \lambda_f \in B, \mu_f \in \hat{B}$. Let \hat{B} be the largest bar so that $B \ge \hat{B}, B' \ge \hat{B}$. We write $\lambda_B(y) = \lambda_{\hat{B}}(y) + ay^e + \cdots, \lambda_{B'}(y) = \lambda_{\hat{B}}(y) + by^e + \cdots, e := h(\hat{B})$. The uniqueness of \hat{B}_t completes the proof.

3. Vector fields. Assume (a). We use a vector field \vec{v} to prove (b). The other implications are not hard.

Take a critical point γ_f , say in B, $\gamma(y) = \lambda_B(y) + cy^{h(B)}$. Let B_t be the deformation of B. Let c_t be the *a*-deformation of c, $\frac{d}{du}I_{f_t}^{B_t}(c_t) = 0$, $m(c_t) = m(c)$. (If c is generic, take $c_t = c$.)

Let $\gamma_t(y) := \lambda_{B_t}(y) + c_t y^{h(B_t)}$. Then γ_t is a critical point of f_t in B_t .

Now, let $\gamma_f^{(i)}$, $1 \leq i \leq N$, denote all the critical points of f, for all (polar) B. For brevity, write $\gamma^{(i)} := \gamma_f^{(i)}$, with deformations $\gamma_t^{(i)}$, just defined.

We can assume $F(x,0;t) = \pm x^m$, and hence $\frac{\partial F}{\partial t}(x,0;t) \equiv 0$. As $F(x,0;t) = a(t)x^m + \cdots$, $a(0) \neq 0$, a substitution $u = \sqrt[m]{|a(t)|} \cdot x + \cdots$ will bring F(x,0,t) to this form.

We can also assume $\gamma^{(i)} \in \mathbf{R}^+_{*/f}$ for $1 \leq i \leq r$, and $\gamma^{(i)} \in \mathbf{R}^-_{*/f}$ for $r+1 \leq i \leq N$.

For each $\dot{\boldsymbol{\gamma}}^{(i)} \in \mathbf{R}^+_{*/f}$, we now construct a vector field $\vec{v}^+_i(x, y, t)$, defined for $y \ge 0$.

Write $\gamma_t := \gamma_t^{(i)}$. Let $X := x - \gamma_t(y), Y := y$. Then $\mathcal{F}(X, Y; T) := F(X + \gamma_t(Y), Y; T)$ is analytic in $(X, Y^{1/d}, T)$. As in [1, 6], define $\vec{v}_i^+(x, y, t) :=$ $\vec{V}(x - \gamma_t(y), y, t), y \ge 0$, where

(3)
$$\vec{V}(X,Y,t) := \frac{X\mathcal{F}_X\mathcal{F}_t}{(X\mathcal{F}_X)^2 + (Y\mathcal{F}_Y)^2} \cdot X\frac{\partial}{\partial X} + \frac{Y\mathcal{F}_Y\mathcal{F}_t}{(X\mathcal{F}_X)^2 + (Y\mathcal{F}_Y)^2} \cdot Y\frac{\partial}{\partial Y} - \frac{\partial}{\partial t}.$$

In general, given $\boldsymbol{\alpha}_i, x = \alpha_i(y)$, say in $\mathbf{R}^+_*, 1 \leq i \leq r$. Let $q(x, y) := \prod_{k=1}^r (x - \alpha_k(y))^2$,

$$q_i(x,y) := q(x,y)/(x - \alpha_i(y))^2,$$

$$p_i(x,y) := q_i(x,y)/[q_1(x,y) + \dots + q_r(x,y)].$$

We call $\{p_1, \ldots, p_r\}$ a *partition of unity* for $\{\alpha_1, \ldots, \alpha_r\}$.

Now, take $\{p_i\}$ for $\{\gamma_t^{(1)}, \dots, \gamma_t^{(r)}\}$. Define $\vec{v}^+(x, y, t) := \sum_{i=1}^r p_i(x, y, t) \vec{v}_i^+(x, y, t)$.

Similarly, $\gamma_f^{(i)}$, $r+1 \leq i \leq N$, yield $\vec{v}^-(x, y, t)$, $y \leq 0$. We can then glue $\vec{v}^{\pm}(x, y, t)$ together along the x-axis, since $\vec{v}^{\pm}(x, 0, t) \equiv -\frac{\partial}{\partial t}$. This is our vector field $\vec{v}(x, y, t)$, which, by (3), is clearly tangent to the level surfaces of F(x, y; t), proving (b.1).

4. Sketch of Proof.

Lemma 4.1. Let W(X, Y) be a weighted form of degree d, w(X) = h, w(Y) = 1. Take u_0 , not a multiple root of W(X, 1). If $W(u_0, 1) \neq 0$ or $u_0 \neq 0$ then, with $X = uv^h$, Y = v,

$$|XW_X| + |YW_Y| = unit \cdot |v|^d$$
, for u near u_0 .

For, by Euler's Theorem, if $X - u_0 Y^h$ divides W_X and W_Y , then u_0 is a multiple root.

To show (b.2), etc., take $\boldsymbol{\alpha}$, say in \mathbf{R}^+_* . Take k, $\mathcal{O}(\boldsymbol{\gamma}^{(k)}, \boldsymbol{\alpha}) = \max\{\mathcal{O}(\boldsymbol{\gamma}^{(j)}, \boldsymbol{\alpha}) \mid 1 \leq j \leq r\}.$

We can assume $\boldsymbol{\alpha}$ is not a multiple root of f, $e := \mathcal{O}(\boldsymbol{\gamma}^{(k)}, \boldsymbol{\alpha}_f) < \infty$. (If $\boldsymbol{\alpha}$ is, then $\boldsymbol{\gamma}^{(k)} = \boldsymbol{\alpha}_f$, $h(B) = \infty$. This case is easy.)

Write $B := B(\boldsymbol{\alpha}_f)$ if $B(\boldsymbol{\alpha}_f) \leq B(\boldsymbol{\gamma}^{(k)})$, and $B := B(\boldsymbol{\gamma}^{(k)})$ if $B(\boldsymbol{\alpha}_f) > B(\boldsymbol{\gamma}^{(k)})$.

Thus $\alpha(y) = \lambda_B(y) + ay^e + \cdots, \frac{d}{du}I_f^B(a) \neq 0.$ Let us consider the mapping

$$\tau: (u, v, t) \mapsto (x, y, t) := (\lambda_{B_t}(v) + uv^e, v, t),$$
$$u \in \mathbf{R}, \ 0 \le v < \varepsilon, \ t \in I,$$

 B_t the deformation of B, and the liftings $\vec{\nu}_j^+ := (d\tau)^{-1}(p_j\vec{v}_j^+), \ \vec{\nu}^+ := \sum_{j=1}^r \vec{\nu}_j^+.$

Key Lemma. The lifted vector fields $\vec{\nu}_j^+$, and hence $\vec{\nu}^+$, are analytic at (u, v, t), if u is not a multiple root of $I_{f_t}^{B_t}$. Moreover, $\vec{\nu}^+(u, 0, t)$ is analytic for all $u \in \mathbf{R}$; that is, $\lim_{v \to 0^+} \vec{\nu}^+(u, v, t)$ has only removable singularities on the u-axis.

We analyze each $\vec{\nu}_i^+$, using (3). For brevity, write $\mathbf{B} := B(\boldsymbol{\gamma}^{(i)}), \mathbf{B}_t := B(\boldsymbol{\gamma}_t^{(i)}).$

First, consider the case $B = \mathbf{B}$. This case exposes the main ideas.

Now I_f^B and $\mathbf{P}(f, \boldsymbol{\gamma}^{(i)})$ are related as follows. Let $W(X, Y) = \sum_{i,j} a_{ij} X^i Y^{j/d}$ be the (unique) weighted form such that $W(u, 1) = I_f^B(u + c)$, w(X) = h(B), w(Y) = 1, where c is the canonical coordinate of $\boldsymbol{\gamma}^{(i)}$. The Newton dots on the high-

No. 6]

est compact edge of $\mathbf{P}(f, \boldsymbol{\gamma}^{(i)})$ represent the non-zero terms of W(X, Y); the highest vertex is $(0, L_f(B))$.

Thus $\frac{d}{du}W(0,1) = \frac{d}{du}I_f^B(c) = 0, W(0,1) \neq 0.$ The weighted degree of W(X,Y) is $L_f(B)$.

Hence, by Lemma 4.1, the substitution X = $x - \lambda_B(y) - cy^{h(B)} = (u - c)v^{h(B)}, Y = v$, yields $\mathcal{O}_v(|X\mathcal{F}_X| + |Y\mathcal{F}_Y|) = L_f(\mathbf{B}), \text{ if } u - c \text{ is not a mul-}$ tiple root of W(u, 1).

The Newton Polygon is independent of t: $\mathbf{P}(f, \boldsymbol{\gamma}^{(i)}) = \mathbf{P}(f_t, \boldsymbol{\gamma}_t^{(i)}).$ All Newton dots of \mathcal{F} , and hence those of \mathcal{F}_T , are contained in $\mathbf{P}(f, \boldsymbol{\gamma}^{(i)})$. Hence $\mathcal{O}_v(\mathcal{F}_T((u-c)v^{h(B)}, v; T)) \ge L_f(B).$

By the Chain Rule, we have $X \frac{\partial}{\partial X} = (u-c) \frac{\partial}{\partial u}$, $Y \frac{\partial}{\partial Y} = v \frac{\partial}{\partial v} - h(B)(u-c) \frac{\partial}{\partial u}$. It follows that $(d\tau)^{-1}(\vec{v}_i^+)$ and $\vec{\nu}_i$ are analytic at

(u, v, t), if u is not a multiple root of $I_{f_t}^{B_t}$.

Next, suppose $B < \mathbf{B}$. Again we show $(d\tau)^{-1}(\vec{v}_i^+)$ has the required property.

Write $\gamma^{(i)}(y) := \lambda_B(y) + c' y^{h(B)} + \cdots$. Let W(X,Y) denote the weighted form such that $W(u,1) = I_f^B(u+c'), \, w(X) = h(B), \, w(Y) = 1.$

If W(X, Y) has more than one terms, they are dots on a compact edge of $\mathbf{P}(f, \boldsymbol{\gamma}^{(i)})$, not the highest one. If W(X, Y) has only one term, it is a vertex, say $(\bar{m}, \bar{q}), \bar{m} > 2.$

In either case, u = 0 is a multiple root of W(u,1). All Newton dots of \mathcal{F}_T are contained in $\mathbf{P}(f, \boldsymbol{\gamma}^{(i)})$. The rest of the argument is the same as above.

Finally, suppose $B \not\leq \mathbf{B}$. Here p_i plays a vital role in analyzing $\vec{\nu}_i^+$.

Let \bar{B} denote the largest bar such that $B > \bar{B} <$ Β.

Let $U := x - \lambda_{B_t}(y), V := y$. The identity $p_i =$ $p_k q_i/q_k$, and the Chain Rule yield

$$p_i \cdot X \frac{\partial}{\partial X} = p_k \frac{(U+\varepsilon)^2}{(U+\delta)^2} (U+\delta) \frac{\partial}{\partial U},$$

$$p_i \cdot Y \frac{\partial}{\partial Y} = p_k \cdot \frac{(U+\varepsilon)^2}{(U+\delta)^2} \left[V \frac{\partial}{\partial V} - V \delta'(V) \frac{\partial}{\partial U} \right],$$

where $\delta := \delta(y, t) := \lambda_{B_t}(y) - \gamma_t^{(i)}(y), \varepsilon := \lambda_{B_t}(y) - \lambda_{B_t}(y)$ $\gamma_t^{(k)}(y), \mathcal{O}_u(\delta) = h(\bar{B}) < h(B) \le \mathcal{O}_u(\varepsilon).$

The substitution $U = uv^{h(B)}$, V = v lifts both to analytic vector fields in (u, v, t).

It remains to study $\Psi := \mathcal{F}_T / (|X\mathcal{F}_X| + |Y\mathcal{F}_Y|)$ when $X = \delta(v, t) + uv^{h(B)}, Y = v$.

Let $\mathcal{G}(U, V, T) := \mathcal{F}(U + \delta(V, T), V, T)$. The Chain Rule yields

(4)
$$X\mathcal{F}_X = (U+\delta)\mathcal{G}_U, \ Y\mathcal{F}_Y = V(\mathcal{G}_V - \delta_V\mathcal{G}_U),$$

 $\mathcal{F}_T = \mathcal{G}_T - \delta_T\mathcal{G}_U.$

Let us compare $\mathbf{P}(f, \boldsymbol{\gamma}^{(i)})$ and $\mathbf{P}(\mathcal{G}, U = 0)$, the (usual) Newton Polygon of \mathcal{G} . Let E'_i , θ'_i and V'_i denote the edges, angles and vertices of the latter. Then $E_i = E'_i$, for $1 \le i \le l$, where l is the largest integer such that $\tan \theta_l < h(\bar{B})$. Moreover, $\theta'_{l+1} =$ θ_{l+1} (although E_{l+1}, E'_{l+1} may be different).

Consider the vertex $V'_{l+1} := (m'_{l+1}, q'_{l+1})$ $m'_{l+1} \geq 2$. It yields a term $\mu := a(T)U^p V^q$ of $\delta \mathcal{G}_U$, $a(0) \neq 0, p := m'_{l+1} - 1, q := q'_{l+1} + \tan \theta_{l+1}$. With the substitution $U = uv^{h(B)}$, $(u \neq 0)$, V = v, μ is the dominating term in (4). That is, $\mathcal{O}_v(\mu) < \mathcal{O}_v(\mu')$, for all terms μ' in $U\mathcal{G}_U$, $V\mathcal{G}_V$, etc., (and for all terms $\mu' \neq \mu$ in $\delta \mathcal{G}_U$), since $\mathcal{O}_Y(\delta) = \tan \theta_{l+1}$.

It follows that Ψ is analytic. That $\lim \vec{\nu}_i^+$ has only removable singularities also follows.

Conditions (b.2) etc. can be derived from the Key Lemma.

References

- [1] T. Fukui and E. Yoshinaga, The modified analytic trivialization of family of real analytic functions, Invent. Math. 82 (1985), no. 3, 467–477.
- S. Koiki, On strong C^0 -equivalence of real analytic [2]functions, J. Math. Soc. Japan 45 (1993), no. 2, 313 - 320.
- [3] T.-C. Kuo and Y. C. Lu, On analytic function germs of two complex variables, Topology 16 (1977), no. 4, 299-310.
- [4] T.-C. Kuo and A. Parusiński, Newton polygon relative to an arc, in Real and complex singularities (São Carlos, 1998), 76–93, Chapman & Hall/CRC, Boca Raton, FL, 2000.
- [5]K. Kurdyka and L. Paunescu, Arc-analytic roots of analytic functions are Lipschitz, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1693–1702. (Electronic).
- [6] L. Paunescu, A weighted version of the Kuiper-Kuo-Bochnak-Łojasiewicz theorem, J. Algebraic Geom. 2 (1993), no. 1, 69–79.
- [7] R. J. Walker, Algebraic Curves, Princeton Univ. Press, Princeton, NJ, 1950.