A q-Mahler measure

By Nobushige Kurokawa

Department of Mathematics, Tokyo Institute of Technology Oh-okayama, Meguro-ku, Tokyo 152-8551
(Communicated by Heisuke Hironaka, m. J. a., May 12, 2004)

Abstract

We construct a q-analogue of the Mahler measure using a q-analogue of the logarithm. We present some basic examples, where we obtain q-analogues of special values of zeta functions. We calculate also the classical limit and the crystal limit.

Key words: Mahler measure; q-analogue; crystal; zeta function.

1. Introduction. The Mahler measure $m(f)$ of a polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ is defined as

$$
\begin{aligned}
& m(f) \\
& =\operatorname{Re} \int_{0}^{1} \cdots \int_{0}^{1} \log \left(f\left(e^{2 \pi i \theta_{1}}, \ldots, e^{2 \pi i \theta_{n}}\right)\right) d \theta_{1} \cdots d \theta_{n}
\end{aligned}
$$

It was originated in the study of transcendental numbers by Mahler $[\mathrm{M}]$ and thereafter it turned out to be related to various themes containing special values of zeta functions (Smyth [S], Boyd [B] and Deninger [D]) and to the entropy of the associated dynamical system (Lind-Schmidt-Ward [LSW]). We refer to Everest-Ward [EW] for a survey of the Mahler measure.

In this paper we present a q-analogue $m_{q}(f)$ of $m(f)$ for $q>1$. We recall that the q-analogue $l_{q}(x)$ of the logarithm function $\log (x)$ is defined by

$$
l_{q}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-1)^{n}}{[n]_{q}}
$$

in $|x-1|<q$ originally, where $[n]_{q}=\left(q^{n}-1\right) /$ $(q-1)$. Since $\lim _{q \downarrow 1}[n]_{q}=n$ we have

$$
\lim _{q \downarrow 1} l_{q}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-1)^{n}}{n}=\log (x) .
$$

(See $[\mathrm{KC}]$ for q-analogues.) Moreover, $l_{q}(x)$ has an analytic continuation to all $x \in \mathbf{C}$ as a meromorphic function via the expression

$$
l_{q}(x)=(q-1) \sum_{m=1}^{\infty} \frac{x-1}{x-1+q^{m}}
$$

Actually, the definition implies

[^0]\[

$$
\begin{aligned}
l_{q}(x) & =(q-1) \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-1)^{n}}{q^{n}-1} \\
& =(q-1) \sum_{n=1}^{\infty}(-1)^{n-1}(x-1)^{n} \sum_{m=1}^{\infty} q^{-n m} \\
& =(q-1) \sum_{m=1}^{\infty} \frac{(x-1) q^{-m}}{1+(x-1) q^{-m}}
\end{aligned}
$$
\]

Definition 1.1. Let $q>1$. Then the q-Mahler measure $m_{q}(f)$ of a polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in$ $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ is defined as

$$
\begin{aligned}
& m_{q}(f) \\
& =\operatorname{Re} \int_{0}^{1} \cdots \int_{0}^{1} l_{q}\left(f\left(e^{2 \pi i \theta_{1}}, \ldots, e^{2 \pi i \theta_{n}}\right)\right) d \theta_{1} \cdots d \theta_{n}
\end{aligned}
$$

We report basic calculations.

Theorem 1.

$$
m_{q}(x+a)=l_{q}(a) \quad \text { for } \quad a>1
$$

Example 1.

$$
m_{3}(x+2)=\sum_{m=1}^{\infty} \frac{1}{3^{m}+1}=l_{3}(2)
$$

Theorem 2.

$m_{q}((x+a)(x+b))=l_{q}(a b) \quad$ for $a, b>1$.

Example 2.

$m_{3}\left((x+2)^{2}\right)=l_{3}(4)=2 \sum_{m=0}^{\infty} \frac{1}{3^{m}+1}=l_{3}(2)+1$.
Theorem 3.

$$
m_{q}(x+y+1)=\frac{2(q-1)}{\pi} \sum_{m=1}^{\left[\frac{\log 2}{\log q}\right]} \cos ^{-1}\left(\frac{q^{m}}{2}\right)
$$

Example 3.

$m_{\sqrt{3}}(x+y+1)=\frac{\sqrt{3}-1}{3}, \quad m_{3}(x+y+1)=0$.
Taking the limit $q \downarrow 1$ in Theorem 1-3 we recover the classical basic results:
(1) $m(x+a)=\log (a)$ for $a>1$,
(2) $m((x+a)(x+b))=\log (a b)=\log (a)+\log (b)$ for $a, b>1$,
(3) $m(x+y+1)=\frac{3 \sqrt{3}}{4 \pi} \sum_{n=1}^{\infty} \frac{\chi-3(n)}{n^{2}}=\frac{3 \sqrt{3}}{4 \pi} L(2, \chi-3)$, where χ_{-3} is the non-trivial Dirichlet character modulo 3 ((3) is the result due to Smyth [S]).

Cases (1) and (2) are easy to see the behavior as $q \downarrow 1$, but to obtain (3) from Theorem 3 is interesting in view of the quite different appearances.

A basic property of the usual Mahler measure is the additivity:

$$
m(f g)=m(f)+m(g)
$$

The following result shows counter examples for m_{q}; these are intimately related to the failure of $l_{q}(a b)=$ $l_{q}(a)+l_{q}(b)$.

Theorem 4. (1) Let $|a|<q-1$. Then

$$
m_{q}(a x)=-\sum_{n=1}^{\infty} \frac{1}{[n]_{q}}=l_{q}(0)<0 .
$$

(2) When $q>3$

$$
m_{q}(2 x)<m_{q}(2)+m_{q}(x)
$$

(3) When $q>3$

$$
m_{q}(2 \cdot 2)>m_{q}(2)+m_{q}(2)
$$

2. Proofs of theorem 1 and theorem 2.

We start from

$$
\begin{aligned}
& m_{q}(x+a) \\
& \quad=(q-1) \operatorname{Re} \sum_{m=1}^{\infty} \int_{0}^{1} \frac{e^{2 \pi i \theta}+a-1}{e^{2 \pi i \theta}+a-1+q^{m}} d \theta
\end{aligned}
$$

Denote the integral by I_{m}. Then we have

$$
I_{m}=\frac{1}{2 \pi i} \oint \frac{z+a-1}{z+a-1+q^{m}} \cdot \frac{d z}{z}
$$

with the integration on the unit circle $|z|=1$. Notice that $a>1$ implies $a-1+q^{m}>q^{m}>1$ for $m \geq 1$. Hence $z+a-1+q^{m} \neq 0$ in $|z| \leq 1$. Thus

$$
I_{m}=\frac{a-1}{a-1+q^{m}}
$$

This gives Theorem 1.

In the case of Theorem 2 we look at

$$
\begin{aligned}
& m_{q}((x+a)(x+b))=(q-1) \\
& \quad \operatorname{Re} \sum_{m=1}^{\infty} \int_{0}^{1} \frac{\left(e^{2 \pi i \theta}+a\right)\left(e^{2 \pi i \theta}+b\right)-1}{\left(e^{2 \pi i \theta}+a\right)\left(e^{2 \pi i \theta}+b\right)-1+q^{m}} d \theta
\end{aligned}
$$

It is sufficient to show that the integral is equal to $(a b-1) /\left(a b-1+q^{m}\right)$. This follows from the fact that $(z+a)(z+b)-1+q^{m} \neq 0$ in $|z| \leq 1$, which is easily checked by using $a, b>1$.
3. Proof of theorem 3. We have

$$
\begin{aligned}
& m_{q}(x+y+1) \\
& =(q-1) \operatorname{Re} \sum_{m=1}^{\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{e^{2 \pi i \theta_{1}}+e^{2 \pi i \theta_{2}}}{e^{2 \pi i \theta_{1}}+e^{2 \pi i \theta_{2}}+q^{m}} d \theta_{1} d \theta_{2} \\
& =(q-1) \operatorname{Re} \sum_{m=1}^{\infty} \int_{-\frac{1}{2}}^{\frac{1}{2}} f_{m}(\theta) d \theta
\end{aligned}
$$

with

$$
\begin{aligned}
& f_{m}(\theta)=\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{e^{2 \pi i \theta^{\prime}}+e^{2 \pi i \theta}}{e^{2 \pi i \theta^{\prime}}+e^{2 \pi i \theta}+q^{m}} d \theta^{\prime} \\
& =\left\{\begin{array}{cl}
\frac{e^{2 \pi i \theta}}{e^{2 \pi i \theta}+q^{m}} & \text { if }-\frac{1}{2}+\frac{\alpha_{m}}{2 \pi}<\theta<\frac{1}{2}-\frac{\alpha_{m}}{2 \pi} \\
1 & \text { if } \frac{1}{2}-\frac{\alpha_{m}}{2 \pi}<\theta<\frac{1}{2} \\
& \text { or }-\frac{1}{2}<\theta<-\frac{1}{2}+\frac{\alpha_{m}}{2 \pi}
\end{array}\right.
\end{aligned}
$$

where $0<\alpha_{m}<\pi / 2$ is defined by $\alpha_{m}=$ $\cos ^{-1}\left(q^{m} / 2\right)$. Since

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}} f_{m}(\theta) d \theta=\frac{2 \alpha_{m}}{\pi}=\frac{2}{\pi} \cos ^{-1}\left(\frac{q^{m}}{2}\right)
$$

we obtain Theorem 3.
Remark 1. Taking the limit $q \downarrow 1$ we have

$$
\begin{aligned}
& \lim _{q \downarrow 1} m_{q}(x+y+1) \\
& \quad=\frac{2}{\pi} \int_{0}^{\frac{\pi}{3}} \theta \tan \theta d \theta=\frac{2}{\pi} \int_{0}^{\frac{\pi}{6}} \theta \cot \theta d \theta \\
& \quad=2 \log \mathcal{S}_{2}\left(\frac{1}{6}\right)=\frac{3 \sqrt{3}}{4 \pi} L\left(2, \chi_{-3}\right)
\end{aligned}
$$

using the double sine function $\mathcal{S}_{2}(x)$ (see $[\mathrm{KK}]$ and [O1]) and the idea of the Jackson integral.

4. Proof of theorem 4.

$$
\begin{equation*}
m_{q}(a x)=(q-1) \operatorname{Re} \sum_{m=1}^{\infty} \int_{0}^{1} \frac{a e^{2 \pi i \theta}-1}{a e^{2 \pi i \theta}-1+q^{m}} d \theta \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& =(q-1) \sum_{m=1}^{\infty} \frac{-1}{q^{m}-1} \\
& =-\sum_{n=1}^{\infty} \frac{1}{[n]_{q}} \\
& =l_{q}(0)
\end{aligned}
$$

(2) From (1) we have

$$
m_{q}(2 x)=m_{q}(x)=-\sum_{n=1}^{\infty} \frac{1}{[n]_{q}},
$$

and

$$
m_{q}(2)=l_{q}(2)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{[n]_{q}}=\sum_{m=1}^{\infty} \frac{q-1}{q^{m}+1}>0
$$

(3) Since

$$
m_{q}(4)=l_{q}(4)=3(q-1) \sum_{m=1}^{\infty} \frac{1}{q^{m}+3}
$$

and

$$
m_{q}(2)=l_{q}(2)=(q-1) \sum_{m=1}^{\infty} \frac{1}{q^{m}+1}
$$

we have

$$
\begin{aligned}
& m_{q}(4)-2 m_{q}(2) \\
& =(q-1) \sum_{m=1}^{\infty}\left(\frac{3}{q^{m}+3}-\frac{2}{q^{m}+1}\right)>0 .
\end{aligned}
$$

Remark 2. The above (1) gives also a counter example to the expectation " $m_{q}(f) \geq 0$ for each f of \mathbf{Z}-coefficients"; the corresponding fact for $m(f)$ is a characteristic property of the Mahler measure (see [EW]).
5. Variations. It is natural to generalize $m_{q}(f)$ for $q \in \mathbf{C}$. We notice three cases:
(1) $|q|>1$: The previous definitions of $l_{q}(x)$ and $m_{q}(f)$ are applicable, and results are similar.
(2) $0<|q|<1$: Take

$$
l_{q}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(x-1)^{n}}{[n]_{q}}
$$

in $|x-1|<1$ with $[n]_{q}=\left(1-q^{n}\right) /(1-q)$. It has an analytic continuation to all $x \in \mathbf{C}$ via

$$
l_{q}(x)=(1-q) \sum_{m=0}^{\infty} \frac{x-1}{x-1+q^{-m}} .
$$

Using this q-logarithm, the q-Mahler measure $m_{q}(f)$ is defined by the same formula as above. Moreover
the calculations are quite similar to the case of $|q|>$ 1.
(3) $q=0$ ("crystal Mahler measure"): Setting

$$
l_{0}(x)=1-\frac{1}{x}
$$

(this being obtained as the limit $q \rightarrow 0$ in (2)), we have the crystal Mahler measure ("crystal" means " $q=0$ ")
$m_{0}(f)$
$=1-\operatorname{Re} \int_{0}^{1} \cdots \int_{0}^{1} f\left(e^{2 \pi i \theta_{1}}, \ldots, e^{2 \pi i \theta_{n}}\right)^{-1} d \theta_{1} \cdots d \theta_{n}$.
For example $m_{0}(x+1)=1 / 2$ and $m_{0}(x+y+1)=$ $2 / 3$. We notice the following result

$$
m_{q}\left(\frac{x+1}{y+1} z+1\right)=\frac{4}{\pi^{2}} \sum_{\substack{n \geq 1 \\ \text { odd }}} \frac{1}{[n]_{q} n^{2}}
$$

valid for $|q|>1$ and $|q|<1$, which is a q-deformation of Smyth's result

$$
m\left(\frac{x+1}{y+1} z+1\right)=\frac{4}{\pi^{2}} \sum_{\substack{n \geq 1 \\ \text { odd }}} \frac{1}{n^{3}}=\frac{7 \zeta(3)}{2 \pi^{2}}
$$

In particular

$$
m_{0}\left(\frac{x+1}{y+1} z+1\right)=\frac{1}{2} .
$$

We refer [O2] for further examples and calculations.

References

[B] Boyd, D. W.: Mahler's measure and special values of L-functions. Experiment. Math., 7, 37-82 (1998).
[D] Deninger, C.: Deligne periods of mixed motives, K-theory and the entropy of certain \mathbf{Z}^{n}-actions. J. Amer. Math. Soc., 10, 259-281 (1997).
[EW] Everest, G., and Ward, T.: Heights of Polynomials and Entropy in Algebraic Dynamics. SpringerVerlag, London-New York-Tokyo (1999).
[KC] Kac, V., and Cheung, P.: Quantum Calculus. Springer-Verlag, New York (2002).
[KK] Kurokawa, N., and Koyama, S.: Multiple sine functions. Forum Math., 15, 839-876 (2003).
[LSW] Lind, D., Schmidt, K., and Ward, T.: Mahler measure and entropy for commuting automorphisms of compact groups. Invent. Math., 101, 593-629 (1990).
[M] Mahler, K.: An application of Jensen's formula to polynomials. Mathematika, 7, 98-100 (1960).
[O1] Oyanagi, H.: Differential equations for Mahler measures. J. Ramanujan Math. Soc., 18, 181-194 (2003).
[O2] Oyanagi, H.: Q-analogues of Mahler measures. (In preparation).
[S] Smyth, C. J.: On measures of polynomials in several variables. Bull. Austral. Math. Soc., 23, 49 63 (1981).

[^0]: 2000 Mathematics Subject Classification. 11M06.

