Characterization of totally η -umbilic real hypersurfaces in nonflat complex space forms by some inequality

By Takehiro ITOH^{*)} and Sadahiro MAEDA^{**)}

(Communicated by Heisuke HIRONAKA, M. J. A., May 12, 2004)

Abstract: In this paper we characterize all totally η -umbilic real hypersurfaces M's in complex projective or complex hyperbolic spaces by using an inequality related to the shape operator A of M.

Key words: Nonflat complex space forms; totally η -umbilic real hypersurfaces; shape operators.

1. Introduction. In an *n*-dimensional nonflat complex space form $\widetilde{M}_n(c)$ of constant holomorphic sectional curvature c, which is either a complex projective space $\mathbb{C}P^n(c)$ or a complex hyperbolic space $\mathbb{C}H^n(c)$, there does not exist a totally umbilic real hypersurface M^{2n-1} .

However, there exist real hypersurfaces M^{2n-1} which are so-called totally η -umbilic real hypersurfaces in $\widetilde{M}_n(c)$, $c \neq 0$. A real hypersurface M of $\widetilde{M}_n(c)$ ($n \geq 2$) (with standard Riemannian metric \langle , \rangle) is called totally η -umbilic, if its shape operator A is of the form $AX = \alpha X$ for each vector X on Mwhich is orthogonal to the characteristic vector ξ of M, where α is a smooth function on M. This definition can be rewritten easily as: $AX = \alpha X + \beta \eta(X)\xi$ for each $X \in TM$, where α, β are smooth functions on M and $\eta(X) = \langle X, \xi \rangle$. It is known that these two functions α and β are automatically constant.

The main purpose of this paper is to give a characterization of all totally η -umbilic real hypersurfaces M's of a nonflat complex space form $\widetilde{M}_n(c)$ by using an inequality related to the shape operator A of M, that is, we will prove the following

Theorem. Let M^{2n-1} be a real hypersurface in a nonflat complex space form $\widetilde{M}_n(c)$ $(n \ge 2)$. Then the following inequality holds:

$$(\operatorname{trace} A - \langle A\xi, \xi \rangle)^2 \leq 2(n-1)(\operatorname{trace} A^2 - \|A\xi\|^2),$$

where A is the shape operator of M in the ambient space $\widetilde{M}_n(c)$.

Moreover, the equality holds on M if and only if M is totally η -umbilic in $\widetilde{M}_n(c)$.

In the last section we pose an open problem on real hypersurfaces in a complex projective space.

2. Basic results on totally η -umbilic real hypersurfaces. We shall review some basic results on totally η -umbilic real hypersurfaces. Let M^{2n-1} be an orientable real hypersurface of a nonflat complex space form $\widetilde{M}_n(c)$ $(n \ge 2)$ and \mathcal{N} a unit normal vector field on M in $\widetilde{M}_n(c)$. The Riemannian connections $\widetilde{\nabla}$ of $\widetilde{M}_n(c)$ and ∇ of M are related by (2.1)

$$\widetilde{\nabla}_X Y = \nabla_X Y + \langle AX, Y \rangle \mathcal{N} \text{ and } \widetilde{\nabla}_X \mathcal{N} = -AX,$$

for vector fields X and Y tangent to M, where \langle , \rangle denotes the Riemannian metric on M induced from the standard metric on $\widetilde{M}_n(c)$, and A is the shape operator of M in $\widetilde{M}_n(c)$. It is known that M admits an almost contact metric structure $(\phi, \xi, \eta, \langle , \rangle)$ induced from the Kähler structure J of $\widetilde{M}_n(c)$. The characteristic vector field ξ of M is defined as $\xi = -J\mathcal{N}$ and this structure satisfies

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \text{ and} \langle \phi X, \phi Y \rangle = \langle X, Y \rangle - \eta(X)\eta(Y),$$

where I denotes the identity mapping of the tangent bundle TM of M. It follows from the equalities (2.1) that

$$(\nabla_X \phi)Y = \eta(Y)AX - \langle AX, Y \rangle \xi$$
 and $\nabla_X \xi = \phi AX$.

Eigenvalues and eigenvectors of the shape operator A are called *principal curvatures* and *principal curvatures* vature vectors, respectively.

²⁰⁰⁰ Mathematics Subject Classification. Primary 53B25; Secondary 53C40.

^{*)} Faculty of Education, Shinshu University, 6-r0, Nisinagano, Nagano 380-8544.

^{**)} Department of Mathematics, Shimane University, 1060, Nishi-Kawatsucho, Matsue, Shimane 690-8504.

We recall the classification theorem of totally η -umbilic real hypersurfaces of $\widetilde{M}_n(c), c \neq 0$ ([NR]):

Theorem A. Let M^{2n-1} be a totally η umbilic real hypersurface of a nonflat complex space form $\widetilde{M}_n(c)$ $(n \ge 2)$ (with shape operator $A = \alpha I + \beta \eta \otimes \xi$). Then M is locally congruent to one of the following:

- (P) geodesic spheres of radius $r (0 < r < \pi/\sqrt{c})$ in $\mathbf{C}P^n(c)$, where $\alpha = (\sqrt{c}/2)\cot(\sqrt{c}r/2)$ and $\beta = -1/\alpha$,
- (H) i) horospheres in $\mathbf{C}H^n(c)$, where $\alpha = \beta = \sqrt{|c|}/2$
 - ii) geodesic spheres of radius $r (0 < r < \infty)$ in $\mathbf{C}H^n(c)$, where $\alpha = (\sqrt{c}/2) \coth(\sqrt{cr}/2)$ and $\beta = 1/\alpha$,

iii) tubes of radius $r (0 < r < \infty)$ around totally geodesic complex hyperplane $\mathbf{C}H^{n-1}(c)$ in $\mathbf{C}H^{n}(c)$, where $\alpha = (\sqrt{c}/2) \tanh(\sqrt{cr}/2)$ and $\beta = 1/\alpha$.

It is known that every totally η -umbilic hypersurface M satisfies that the structure tensor ϕ and the shape operator A of M in $\widetilde{M}_n(c)$ are commutative: $\phi A = A\phi$.

We here review the definition of circles in Riemannian geometry. A unit speed curve $\gamma = \gamma(s)$ in a Riemannian manifold M is called a *circle* if there exist a field of unit vectors Y = Y(s) along the curve and a constant $\kappa (\geq 0)$ which satisfy the differential equations: $\nabla_{\dot{\gamma}}\dot{\gamma} = \kappa Y$ and $\nabla_{\dot{\gamma}}Y = -\kappa\dot{\gamma}$, where $\nabla_{\dot{\gamma}}$ denotes the covariant differentiation along γ with respect to the Riemannian connection ∇ of M. The constant κ is called the curvature of the circle. A circle with zero curvature is nothing but a geodesic.

It is well-known that a hypersurface M^n in Euclidean space \mathbf{R}^{n+1} is locally a standard sphere if and only if all geodesics of M are circles of positive curvature in \mathbf{R}^{n+1} . However, there exist no real hypersurfaces all of whose geodesics are circles in a nonflat complex space form $\widetilde{M}_n(c)$. This comes from the fact that a nonflat complex space form does not admit a totally umbilic real hypersurface.

Paying attention to the extrinsic shape of geodesics on totally η -umbilic real hypersurfaces in $\widetilde{M}_n(c)$ ($c \neq 0$), we obtain the following which is a characterization of these hypersurfaces ([MO]):

Proposition B. Let M^{2n-1} be a real hypersurface of a nonflat complex space form $\widetilde{M}_n(c)$ $(n \ge 2)$. Then M is locally congruent to a totally η umbilic real hypersurface if and only if every geodesic γ on M whose initial vector $\dot{\gamma}(0)$ is orthogonal to the characteristic vector $\xi_{\gamma(0)}$ of M is a circle of positive curvature in the ambient space $\widetilde{M}_n(c)$.

The following result shows that Proposition B is no longer true if we replace "a circle of positive curvature" by "a circle" ([AKM]):

Theorem C. Let M^{2n-1} be a real hypersurface of a nonflat complex space form $\widetilde{M}_n(c)$ $(n \ge 2)$. Then M is locally congruent to a totally η -umbilic real hypersurface or a ruled real hypersurface if and only if every geodesic γ on M whose initial vector $\dot{\gamma}(0)$ is orthogonal to the characteristic vector $\xi_{\gamma(0)}$ of M is a circle in the ambient space $\widetilde{M}_n(c)$.

It is well-known that the characteristic vector ξ of each ruled real hypersurface is not principal (for details, see [NR]).

3. Characterizations of totally η -umbilic real hypersurfaces. Our tool in this section is the first equality in (2.2). We first prove the following:

Proposition 1. The structure tensor ϕ of each real hypersurface M^{2n-1} in $\widetilde{M}_n(c)$ $(c \neq 0)$ is not parallel, namely $\nabla \phi$ does not vanish identically on M.

Proof. Suppose that $\nabla \phi \equiv 0$ on M. Then it follows from the first equality in (2.2) that

(3.1)
$$\eta(Y)AX - \langle AX, Y \rangle \xi = 0$$
 for $\forall X, Y \in TM$.

Putting $X = Y = \xi$ in (3.1), we can see that ξ is principal. Next for each $X \neq 0$ orthogonal to ξ with AX = rX, putting $Y = \xi$ in (3.1), we get r = 0. So our real hypersurfce is totally η -umbilic with $\alpha = 0$ in the ambient space $\widetilde{M}_n(c)$, which is a contradiction (see Theorem A).

The following is a characterization of a totally η -umbilic real hypersurface in terms of the covariant derivative of its structure tensor ϕ :

Proposition 2. Let M^{2n-1} be a real hypersurface of a nonflat complex space form $\widetilde{M}_n(c)$ $(n \ge 2)$. Then the following are equivalent:

- (1) M is totally η -umbilic in the ambient space $\widetilde{M}_n(c)$.
- (2) The structure tensor ϕ of M satisfies

(3.2)

$$(\nabla_X \phi)Y = k(\eta(Y)X - \langle X, Y \rangle \xi) \text{ for } \forall X, Y \in TM,$$

where k is a nonzero constant.

Proof. (1) \Longrightarrow (2): Suppose that $AX = \alpha X + \beta \eta(X) \xi$ for $\forall X, Y \in TM$. Then it follows from the

 $(2) \Longrightarrow (1)$: In view of the first equality in (2.2) and (3.2) we find that

(3.3)
$$\eta(Y)AX - \langle AX, Y \rangle \xi = k(\eta(Y)X - \langle X, Y \rangle \xi)$$

for $\forall X, Y \in TM$.

Putting $X = Y = \xi$ in (3.3), we can see that ξ is principal. Next for each $X \neq 0$ orthogonal to ξ with AX = rX, putting $Y = \xi$ in (3.3), we get r = k. So we obtain the desirable conclusion.

We are now in a position to prove our theorem: Proof of main theorem. Making use of (3.2),

we define the following tensor T on M as:

$$T(X,Y) = (\nabla_X \phi)Y - k(\eta(Y)X - \langle X,Y \rangle \xi)$$

for $\forall X, Y \in TM$.

Calculating the length of T, we obtain the following inequalty

$$||T||^{2} = 2\operatorname{trace} A^{2} + 4(n-1)k^{2} - 2||A\xi||^{2} + 4k\langle A\xi,\xi\rangle - 4k \cdot \operatorname{trace} A \ge 0,$$

so that for each k we see that

(3.4)
$$2(n-1)k^2 + 2(\langle A\xi,\xi\rangle - \operatorname{trace} A)k + \operatorname{trace} A^2 - \|A\xi\|^2 \ge 0.$$

This tells us that the discriminant D of the quadratic function (3.4) is nonpositive. Thus we obtain the conclusion.

4. Open problem. Totally η -umbilic real hypersurfaces are typical examples of homogeneous real hypersurfaces, namely they are given as orbits under subgroups of the isometry group $I(\widetilde{M}_n(c))$ of the ambient space $\widetilde{M}_n(c)$. The classification problem of homogeneous real hypersurfaces in $\mathbb{C}H^n(c)$ is still open. However, in $\mathbb{C}P^n(c)$ the classification problem of such hypersurfaces is completely solved. Here, without loss of generality we put c = 4. We recall the following ([NR]):

Theorem D. Let M be a homogeneous real hypersurface of $\mathbb{C}P^n(4)$. Then M is a tube of radius r over the following Kähler submanifolds:

- (A₁) hyperplane $\mathbb{C}P^{n-1}(4)$, where $0 < r < \pi/2$,
- (A₂) totally geodesic $\mathbb{C}P^k(4)$ $(1 \leq k \leq n-2),$ where $0 < r < \pi/2,$
- (B) complex hyperquadric Q_{n-1} , where $0 < r < \pi/4$,
- (C) $\mathbf{C}P^1(4) \times \mathbf{C}P^{\frac{n-1}{2}}(4)$, where $0 < r < \pi/4$ and $n \geq 5$ is odd,

- (D) complex Grassmann $CG_{2,5}$, where $0 < r < \pi/4$ and n = 9,
- (E) Hermitian symmetric space SO(10)/U(5), where $0 < r < \pi/4$ and n = 15.

The numbers of distinct principal curvatures of these homogeneous real hypersurfaces are 2, 3, 3, 5, 5, 5, respectively. Note that a geodesic sphere of radius r in $\mathbb{C}P^n(4)$ is congruent to a tube of radius $(\pi/2) - r$ over hyperplane $\mathbb{C}P^{n-1}(4)$ in $\mathbb{C}P^n(4)$, where $0 < r < \pi/2$.

Motivated by Propositions 1 and 2, we are interested in $\|\nabla \phi\|$ for each minimal homogeneous real hypersurface in $\mathbb{C}P^n(4)$. Direct computation yields the following:

Proposition 3. Let M be a minimal homogeneous real hypersurface (which is a tube of radius r) of $\mathbb{C}P^n(4)$. Then the radius r and the norm of the covariant derivative of the structure tensor ϕ on M are as follows:

(A₁) cot
$$r = \sqrt{2n-1}$$
 and $\|\nabla \phi\|^2 = \frac{4(n-1)}{2n-1}$

(A₂)
$$\cot r = \sqrt{\frac{2k+1}{2n-2k-1}} and$$

 $\|\nabla \phi\|^2 = 4\left\{\frac{(n-1-k)(2k+1)}{2n-1-2k} + \frac{k(2n-1-2k)}{2k+1}\right\}$

(B)
$$\cot r = \sqrt{n} + \sqrt{n-1}$$
 and $\|\nabla \phi\|^2 = 4(n+1)$,

(C)
$$\cot r = \frac{\sqrt{n+\sqrt{2}}}{\sqrt{n-2}}$$
 and $\|\nabla\phi\|^2 = 12n - 4 - \frac{16}{n-2}$.

(D)
$$\cot r = \sqrt{5} \text{ and } \|\nabla \phi\|^2 = \frac{488}{5} (= 97.6),$$

(E) $\cot r = \frac{\sqrt{15} + \sqrt{6}}{3}$ and $\|\nabla \phi\|^2 = \frac{512}{3} (= 170.6 \cdots).$

Proposition 3 tells us that $\|\nabla \phi\|^2$ takes the minimal value in case of type A₁ and takes the maximum value in case of type C. In this context we pose the following problem:

Problem. Let M be a compact orientable minimal real hypersurface of $\mathbb{C}P^n(4)$. If the covariant derivative of the structure tensor ϕ satisfies $\|\nabla \phi\|^2 \leq 4(n-1)/(2n-1)$ on M, is M congruent to a geodesic sphere in $\mathbb{C}P^n(4)$?

We emphasize that $\|\nabla\phi\|$ is a natural invariant for each real hypersurface M in a nonflat complex space form $\widetilde{M}_n(c)$ $(n \ge 2)$. In general, for any real hypersurface M the following holds: $\|\nabla\phi\|^2 = 2(\operatorname{trace} A^2 - \|A\xi\|^2)$. The following proposition is worth mentioning.

Proposition 4. Let M be a minimal homogeneous real hypersurface of $\mathbb{C}P^n(4)$. Then trace A^2 of M is described as follows:

(1) If M is of type A_1 or A_2 , then trace $A^2 = 2n - 2$.

(2) If M is of type B, C, D or E, then trace $A^2 = 6n - 2$.

Proposition 4 shows that we cannot distinguish minimal homogeneous real hypersurfaces of type A_1 and A_2 , and also minimal ones of type B, C, D and E in terms of trace A^2 . The following is well-known ([NR]):

Theorem E. Let M be a compact orientable minimal real hypersurface of $\mathbb{CP}^n(4)$. Suppose that the shape operator A of M in $\mathbb{CP}^n(4)$ satisfies trace $A^2 \leq 2n - 2$ on M. Then trace $A^2 \equiv 2n - 2$ and M is congruent to one of minimal homogeneous real hypersurfaces of type A_1 and A_2 .

Acknowledgement. The second author partially supported by Grant-in-Aid for Scientific Research (C) (No. 14540080), The Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- [AKM] Adachi, T., Kimura, M., and Maeda, S.: Real hypersurfaces some of whose geodesics are plane curves in nonflat complex space forms. (To appear in Tohoku Math. J.).
- [MO] Maeda, S., and Ogiue, K.: Characterizations of geodesic hyperspheres in a complex projective space by observing the extrinsic shape of geodesics. Math. Z., 225, 537–542 (1997).
- [NR] Niebergall, R., and Ryan, P. J.: Real hypersurfaces in complex space forms. Tight and Taut Submanifolds (eds. Cecil, T. E. and Chern, S. S.). Cambridge Univ. Press, Cambridge, pp. 233–305 (1997).