Characterization of totally η-umbilic real hypersurfaces in nonflat complex space forms by some inequality

By Takehiro Itон $^{*)}$ and Sadahiro Maeda**)
(Communicated by Heisuke Hironaka, m. J. a., May 12, 2004)

Abstract

In this paper we characterize all totally η-umbilic real hypersurfaces M 's in complex projective or complex hyperbolic spaces by using an inequality related to the shape operator A of M.

Key words: Nonflat complex space forms; totally η-umbilic real hypersurfaces; shape operators.

1. Introduction. In an n-dimensional nonflat complex space form $\widetilde{M}_{n}(c)$ of constant holomorphic sectional curvature c, which is either a complex projective space $\mathbf{C} P^{n}(c)$ or a complex hyperbolic space $\mathbf{C H} H^{n}(c)$, there does not exist a totally umbilic real hypersurface $M^{2 n-1}$.

However, there exist real hypersurfaces $M^{2 n-1}$ which are so-called totally η-umbilic real hypersurfaces in $\widetilde{M}_{n}(c), c \neq 0$. A real hypersurface M of $\widetilde{M}_{n}(c)(n \geqq 2)$ (with standard Riemannian metric $\langle\rangle$,$) is called totally \eta$-umbilic, if its shape operator A is of the form $A X=\alpha X$ for each vector X on M which is orthogonal to the characteristic vector ξ of M, where α is a smooth function on M. This definition can be rewritten easily as: $A X=\alpha X+\beta \eta(X) \xi$ for each $X \in T M$, where α, β are smooth functions on M and $\eta(X)=\langle X, \xi\rangle$. It is known that these two functions α and β are automatically constant.

The main purpose of this paper is to give a characterization of all totally η-umbilic real hypersurfaces M 's of a nonflat complex space form $\widetilde{M}_{n}(c)$ by using an inequality related to the shape operator A of M, that is, we will prove the following

Theorem. Let $M^{2 n-1}$ be a real hypersurface in a nonflat complex space form $\widetilde{M}_{n}(c)(n \geqq 2)$. Then the following inequality holds:
$(\operatorname{trace} A-\langle A \xi, \xi\rangle)^{2} \leqq 2(n-1)\left(\operatorname{trace} A^{2}-\|A \xi\|^{2}\right)$,
where A is the shape operator of M in the ambient space $\widetilde{M}_{n}(c)$.

[^0]Moreover, the equality holds on M if and only if M is totally η-umbilic in $\widetilde{M}_{n}(c)$.

In the last section we pose an open problem on real hypersurfaces in a complex projective space.
2. Basic results on totally $\boldsymbol{\eta}$-umbilic real hypersurfaces. We shall review some basic results on totally η-umbilic real hypersurfaces. Let $M^{2 n-1}$ be an orientable real hypersurface of a nonflat complex space form $\widetilde{M}_{n}(c)(n \geqq 2)$ and \mathcal{N} a unit normal vector field on M in $\widetilde{M}_{n}(c)$. The Riemannian connections $\widetilde{\nabla}$ of $\widetilde{M}_{n}(c)$ and ∇ of M are related by

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\langle A X, Y\rangle \mathcal{N} \text { and } \tilde{\nabla}_{X} \mathcal{N}=-A X \tag{2.1}
\end{equation*}
$$

for vector fields X and Y tangent to M, where \langle, denotes the Riemannian metric on M induced from the standard metric on $\widetilde{M}_{n}(c)$, and A is the shape operator of M in $\widetilde{M}_{n}(c)$. It is known that M admits an almost contact metric structure $(\phi, \xi, \eta,\langle\rangle$,$) in-$ duced from the Kähler structure J of $\widetilde{M}_{n}(c)$. The characteristic vector field ξ of M is defined as $\xi=$ $-J \mathcal{N}$ and this structure satisfies

$$
\begin{aligned}
& \phi^{2}=-I+\eta \otimes \xi, \quad \eta(\xi)=1, \quad \text { and } \\
& \langle\phi X, \phi Y\rangle=\langle X, Y\rangle-\eta(X) \eta(Y),
\end{aligned}
$$

where I denotes the identity mapping of the tangent bundle $T M$ of M. It follows from the equalities (2.1) that
(2.2)
$\left(\nabla_{X} \phi\right) Y=\eta(Y) A X-\langle A X, Y\rangle \xi$ and $\nabla_{X} \xi=\phi A X$.
Eigenvalues and eigenvectors of the shape operator A are called principal curvatures and principal curvature vectors, respectively.

We recall the classification theorem of totally η-umbilic real hypersurfaces of $\widetilde{M}_{n}(c), c \neq 0([\mathrm{NR}])$:

Theorem A. Let $M^{2 n-1}$ be a totally η umbilic real hypersurface of a nonflat complex space form $\widetilde{M}_{n}(c)(n \geqq 2)$ (with shape operator $A=\alpha I+$ $\beta \eta \otimes \xi)$. Then M is locally congruent to one of the following:
(P) geodesic spheres of radius $r(0<r<\pi / \sqrt{c})$ in $\mathbf{C} P^{n}(c)$, where $\alpha=(\sqrt{c} / 2) \cot (\sqrt{c} r / 2)$ and $\beta=$ $-1 / \alpha$,
(H) i) horospheres in $\mathbf{C} H^{n}(c)$, where $\alpha=\beta=$ $\sqrt{|c|} / 2$
ii) geodesic spheres of radius $r(0<r<\infty)$ in $\mathbf{C} H^{n}(c)$, where $\alpha=(\sqrt{c} / 2) \operatorname{coth}(\sqrt{c} r / 2)$ and $\beta=1 / \alpha$,
iii) tubes of radius $r(0<r<\infty)$ around totally geodesic complex hyperplane $\mathbf{C} H^{n-1}(c)$ in $\mathbf{C} H^{n}(c)$, where $\alpha=(\sqrt{c} / 2) \tanh (\sqrt{c} r / 2)$ and $\beta=1 / \alpha$.
It is known that every totally η-umbilic hypersurface M satisfies that the structure tensor ϕ and the shape operator A of M in $\widetilde{M}_{n}(c)$ are commutative: $\phi A=A \phi$.

We here review the definition of circles in Riemannian geometry. A unit speed curve $\gamma=\gamma(s)$ in a Riemannian manifold M is called a circle if there exist a field of unit vectors $Y=Y(s)$ along the curve and a constant $\kappa(\geqq 0)$ which satisfy the differential equations: $\nabla_{\dot{\gamma}} \dot{\gamma}=\kappa Y$ and $\nabla_{\dot{\gamma}} Y=-\kappa \dot{\gamma}$, where $\nabla_{\dot{\gamma}}$ denotes the covariant differentiation along γ with respect to the Riemannian connection ∇ of M. The constant κ is called the curvature of the circle. A circle with zero curvature is nothing but a geodesic.

It is well-known that a hypersurface M^{n} in Euclidean space \mathbf{R}^{n+1} is locally a standard sphere if and only if all geodesics of M are circles of positive curvature in \mathbf{R}^{n+1}. However, there exist no real hypersurfaces all of whose geodesics are circles in a nonflat complex space form $\widetilde{M}_{n}(c)$. This comes from the fact that a nonflat complex space form does not admit a totally umbilic real hypersurface.

Paying attention to the extrinsic shape of geodesics on totally η-umbilic real hypersurfaces in $\widetilde{M}_{n}(c)(c \neq 0)$, we obtain the following which is a characterization of these hypersurfaces ([MO]):

Proposition B. Let $M^{2 n-1}$ be a real hypersurface of a nonflat complex space form $\widetilde{M}_{n}(c)(n \geqq$ 2). Then M is locally congruent to a totally η umbilic real hypersurface if and only if every geodesic
γ on M whose initial vector $\dot{\gamma}(0)$ is orthogonal to the characteristic vector $\xi_{\gamma(0)}$ of M is a circle of positive curvature in the ambient space $\widetilde{M}_{n}(c)$.

The following result shows that Proposition B is no longer true if we replace "a circle of positive curvature" by "a circle" ([AKM]):

Theorem C. Let $M^{2 n-1}$ be a real hypersurface of a nonflat complex space form $\widetilde{M}_{n}(c)(n \geqq 2)$. Then M is locally congruent to a totally η-umbilic real hypersurface or a ruled real hypersurface if and only if every geodesic γ on M whose initial vector $\dot{\gamma}(0)$ is orthogonal to the characteristic vector $\xi_{\gamma(0)}$ of M is a circle in the ambient space $\widetilde{M}_{n}(c)$.

It is well-known that the characteristic vector ξ of each ruled real hypersurface is not principal (for details, see [NR]).
3. Characterizations of totally η-umbilic real hypersurfaces. Our tool in this section is the first equality in (2.2). We first prove the following:

Proposition 1. The structure tensor ϕ of each real hypersurface $M^{2 n-1}$ in $\widetilde{M}_{n}(c)(c \neq 0)$ is not parallel, namely $\nabla \phi$ does not vanish identically on M.

Proof. Suppose that $\nabla \phi \equiv 0$ on M. Then it follows from the first equality in (2.2) that
(3.1) $\eta(Y) A X-\langle A X, Y\rangle \xi=0$ for $\forall X, Y \in T M$.

Putting $X=Y=\xi$ in (3.1), we can see that ξ is principal. Next for each $X(\neq 0)$ orthogonal to ξ with $A X=r X$, putting $Y=\xi$ in (3.1), we get $r=0$. So our real hypersurfce is totally η-umbilic with $\alpha=0$ in the ambient space $\widetilde{M}_{n}(c)$, which is a contradiction (see Theorem A).

The following is a characterization of a totally η-umbilic real hypersurface in terms of the covariant derivative of its structure tensor ϕ :

Proposition 2. Let $M^{2 n-1}$ be a real hypersurface of a nonflat complex space form $\widetilde{M}_{n}(c)(n \geqq$ 2). Then the following are equivalent:
(1) M is totally η-umbilic in the ambient space $\widetilde{M}_{n}(c)$.
(2) The structure tensor ϕ of M satisfies
(3.2)
$\left(\nabla_{X} \phi\right) Y=k(\eta(Y) X-\langle X, Y\rangle \xi)$ for $\forall X, Y \in T M$,
where k is a nonzero constant.
Proof. (1) $\Longrightarrow(2)$: Suppose that $A X=\alpha X+$ $\beta \eta(X) \xi$ for $\forall X, Y \in T M$. Then it follows from the
first equality in (2.2) that $\left(\nabla_{X} \phi\right) Y=\alpha(\eta(Y) X-$ $\langle X, Y\rangle \xi)$ for $\forall X, Y \in T M$.
$(2) \Longrightarrow(1)$: In view of the first equality in (2.2) and (3.2) we find that

$$
\begin{array}{r}
\eta(Y) A X-\langle A X, Y\rangle \xi=k(\eta(Y) X-\langle X, Y\rangle \xi) \tag{3.3}\\
\text { for } \forall X, Y \in T M .
\end{array}
$$

Putting $X=Y=\xi$ in (3.3), we can see that ξ is principal. Next for each $X(\neq 0)$ orthogonal to ξ with $A X=r X$, putting $Y=\xi$ in (3.3), we get $r=$ k. So we obtain the desirable conclusion.

We are now in a position to prove our theorem:
Proof of main theorem. Making use of (3.2), we define the following tensor T on M as:

$$
\begin{array}{r}
T(X, Y)=\left(\nabla_{X} \phi\right) Y-k(\eta(Y) X-\langle X, Y\rangle \xi) \\
\text { for } \forall X, Y \in T M .
\end{array}
$$

Calculating the length of T, we obtain the following inequalty

$$
\begin{array}{r}
\|T\|^{2}=2 \operatorname{trace} A^{2}+4(n-1) k^{2}-2\|A \xi\|^{2} \\
+4 k\langle A \xi, \xi\rangle-4 k \cdot \text { trace } A \geqq 0
\end{array}
$$

so that for each k we see that

$$
\begin{align*}
2(n-1) k^{2} & +2(\langle A \xi, \xi\rangle-\operatorname{trace} A) k \tag{3.4}\\
& +\operatorname{trace} A^{2}-\|A \xi\|^{2} \geqq 0
\end{align*}
$$

This tells us that the discriminant D of the quadratic function (3.4) is nonpositive. Thus we obtain the conclusion.
4. Open problem. Totally η-umbilic real hypersurfaces are typical examples of homogeneous real hypersurfaces, namely they are given as orbits under subgroups of the isometry group $I\left(\widetilde{M}_{n}(c)\right)$ of the ambient space $\widetilde{M}_{n}(c)$. The classification problem of homogeneous real hypersurfaces in $\mathbf{C} H^{n}(c)$ is still open. However, in $\mathbf{C} P^{n}(c)$ the classification problem of such hypersurfaces is completely solved. Here, without loss of generality we put $c=4$. We recall the following ([NR]):

Theorem D. Let M be a homogeneous real hypersurface of $\mathbf{C} P^{n}(4)$. Then M is a tube of radius r over the following Kähler submanifolds:
$\left(\mathrm{A}_{1}\right)$ hyperplane $\mathbf{C} P^{n-1}(4)$, where $0<r<\pi / 2$,
$\left(\mathrm{A}_{2}\right)$ totally geodesic $\mathbf{C} P^{k}(4)(1 \leqq k \leqq n-2)$, where $0<r<\pi / 2$,
(B) complex hyperquadric Q_{n-1}, where $0<r<$ $\pi / 4$,
(C) $\mathbf{C} P^{1}(4) \times \mathbf{C} P^{\frac{n-1}{2}}(4)$, where $0<r<\pi / 4$ and $n(\geqq 5)$ is odd,
(D) complex Grassmann $\mathbf{C} G_{2,5}$, where $0<r<$ $\pi / 4$ and $n=9$
(E) Hermitian symmetric space $S O(10) / U(5)$, where $0<r<\pi / 4$ and $n=15$.
The numbers of distinct principal curvatures of these homogeneous real hypersurfaces are $2,3,3$, $5,5,5$, respectively. Note that a geodesic sphere of radius r in $\mathbf{C} P^{n}(4)$ is congruent to a tube of radius $(\pi / 2)-r$ over hyperplane $\mathbf{C} P^{n-1}(4)$ in $\mathbf{C} P^{n}(4)$, where $0<r<\pi / 2$.

Motivated by Propositions 1 and 2, we are interested in $\|\nabla \phi\|$ for each minimal homogeneous real hypersurface in $\mathbf{C} P^{n}(4)$. Direct computation yields the following:

Proposition 3. Let M be a minimal homogeneous real hypersurface (which is a tube of radius r) of $\mathbf{C} P^{n}(4)$. Then the radius r and the norm of the covariant derivative of the structure tensor ϕ on M are as follows:
$\left(\mathrm{A}_{1}\right) \cot r=\sqrt{2 n-1}$ and $\|\nabla \phi\|^{2}=\frac{4(n-1)}{2 n-1}$,
$\left(\mathrm{A}_{2}\right) \cot r=\sqrt{\frac{2 k+1}{2 n-2 k-1}}$ and

$$
\|\nabla \phi\|^{2}=4\left\{\frac{(n-1-k)(2 k+1)}{2 n-1-2 k}+\frac{k(2 n-1-2 k)}{2 k+1}\right\},
$$

(B) $\cot r=\sqrt{n}+\sqrt{n-1}$ and $\|\nabla \phi\|^{2}=4(n+1)$,
(C) $\cot r=\frac{\sqrt{n}+\sqrt{2}}{\sqrt{n-2}}$ and $\|\nabla \phi\|^{2}=12 n-4-\frac{16}{n-2}$,
(D) $\cot r=\sqrt{5}$ and $\|\nabla \phi\|^{2}=\frac{488}{5}(=97.6)$,
(E) $\cot r=\frac{\sqrt{15}+\sqrt{6}}{3}$ and $\|\nabla \phi\|^{2}=\frac{512}{3}(=$ $170.6 \cdots$).
Proposition 3 tells us that $\|\nabla \phi\|^{2}$ takes the minimal value in case of type A_{1} and takes the maximum value in case of type C. In this context we pose the following problem:

Problem. Let M be a compact orientable minimal real hypersurface of $\mathbf{C} P^{n}(4)$. If the covariant derivative of the structure tensor ϕ satisfies $\|\nabla \phi\|^{2} \leqq 4(n-1) /(2 n-1)$ on M, is M congruent to a geodesic sphere in $\mathbf{C} P^{n}(4)$?

We emphasize that $\|\nabla \phi\|$ is a natural invariant for each real hypersurface M in a nonflat complex space form $\widetilde{M}_{n}(c)(n \geqq 2)$. In general, for any real hypersurface M the following holds: $\|\nabla \phi\|^{2}=$ $2\left(\right.$ trace $\left.A^{2}-\|A \xi\|^{2}\right)$. The following proposition is worth mentioning.

Proposition 4. Let M be a minimal homogeneous real hypersurface of $\mathbf{C} P^{n}(4)$. Then trace A^{2} of M is described as follows:
(1) If M is of type A_{1} or A_{2}, then trace $A^{2}=2 n-$ 2.
(2) If M is of type $\mathrm{B}, \mathrm{C}, \mathrm{D}$ or E , then trace $A^{2}=$ Japan.
$6 n-2$.
Proposition 4 shows that we cannot distinguish minimal homogeneous real hypersurfaces of type A_{1} and A_{2}, and also minimal ones of type $\mathrm{B}, \mathrm{C}, \mathrm{D}$ and E in terms of trace A^{2}. The following is well-known ([NR]):

Theorem E. Let M be a compact orientable minimal real hypersurface of $\mathbf{C} P^{n}(4)$. Suppose that the shape operator A of M in $\mathbf{C} P^{n}(4)$ satisfies trace $A^{2} \leqq 2 n-2$ on M. Then trace $A^{2} \equiv 2 n-2$ and M is congruent to one of minimal homogeneous real hypersurfaces of type A_{1} and A_{2}.

Acknowledgement. The second author partially supported by Grant-in-Aid for Scientific Research (C) (No. 14540080), The Ministry of Education, Culture, Sports, Science and Technology of

References

[AKM] Adachi, T., Kimura, M., and Maeda, S.: Real hypersurfaces some of whose geodesics are plane curves in nonflat complex space forms. (To appear in Tohoku Math. J.).
[MO] Maeda, S., and Ogiue, K.: Characterizations of geodesic hyperspheres in a complex projective space by observing the extrinsic shape of geodesics. Math. Z., 225, 537-542 (1997).
[NR] Niebergall, R., and Ryan, P. J.: Real hypersurfaces in complex space forms. Tight and Taut Submanifolds (eds. Cecil, T. E. and Chern, S. S.). Cambridge Univ. Press, Cambridge, pp. 233-305 (1997).

[^0]: 2000 Mathematics Subject Classification. Primary 53B25; Secondary 53C40.
 *) Faculty of Education, Shinshu University, 6-r0, Nisinagano, Nagano 380-8544.
 **) Department of Mathematics, Shimane University, 1060, Nishi-Kawatsucho, Matsue, Shimane 690-8504.

