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Characterization of totally η-umbilic real hypersurfaces in

nonflat complex space forms by some inequality
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Abstract: In this paper we characterize all totally η-umbilic real hypersurfaces M ’s in
complex projective or complex hyperbolic spaces by using an inequality related to the shape oper-
ator A of M .
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1. Introduction. In an n-dimensional non-
flat complex space form M̃n(c) of constant holomor-
phic sectional curvature c, which is either a com-
plex projective space CP n(c) or a complex hyper-
bolic space CHn(c), there does not exist a totally
umbilic real hypersurface M2n−1.

However, there exist real hypersurfaces M2n−1

which are so-called totally η-umbilic real hypersur-
faces in M̃n(c), c �= 0. A real hypersurface M of
M̃n(c) (n � 2) (with standard Riemannian metric
〈 , 〉) is called totally η-umbilic, if its shape operator
A is of the form AX = αX for each vector X on M
which is orthogonal to the characteristic vector ξ of
M , where α is a smooth function on M . This defini-
tion can be rewritten easily as: AX = αX+βη(X)ξ
for each X ∈ TM , where α, β are smooth functions
on M and η(X) = 〈X, ξ〉. It is known that these two
functions α and β are automatically constant.

The main purpose of this paper is to give a char-
acterization of all totally η-umbilic real hypersurfaces
M ’s of a nonflat complex space form M̃n(c) by using
an inequality related to the shape operator A of M ,
that is, we will prove the following

Theorem. Let M2n−1 be a real hypersurface
in a nonflat complex space form M̃n(c) (n � 2).
Then the following inequality holds:

(traceA− 〈Aξ, ξ〉)2 � 2(n− 1)(traceA2 − ‖Aξ‖2),

where A is the shape operator of M in the ambient
space M̃n(c).
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Moreover, the equality holds on M if and only if
M is totally η-umbilic in M̃n(c).

In the last section we pose an open problem on
real hypersurfaces in a complex projective space.

2. Basic results on totally η-umbilic real
hypersurfaces. We shall review some basic results
on totally η-umbilic real hypersurfaces. Let M2n−1

be an orientable real hypersurface of a nonflat com-
plex space form M̃n(c) (n � 2) and N a unit normal
vector field on M in M̃n(c). The Riemannian con-
nections ∇̃ of M̃n(c) and ∇ of M are related by

(2.1)

∇̃XY = ∇XY + 〈AX, Y 〉N and ∇̃XN = −AX,
for vector fields X and Y tangent to M , where 〈 , 〉
denotes the Riemannian metric on M induced from
the standard metric on M̃n(c), and A is the shape
operator of M in M̃n(c). It is known that M admits
an almost contact metric structure (φ, ξ, η, 〈 , 〉) in-
duced from the Kähler structure J of M̃n(c). The
characteristic vector field ξ of M is defined as ξ =
−JN and this structure satisfies

φ2 = −I + η ⊗ ξ, η(ξ) = 1, and

〈φX, φY 〉 = 〈X, Y 〉 − η(X)η(Y ),

where I denotes the identity mapping of the tangent
bundle TM of M . It follows from the equalities (2.1)
that

(2.2)

(∇Xφ)Y = η(Y )AX−〈AX, Y 〉ξ and ∇Xξ = φAX.

Eigenvalues and eigenvectors of the shape operator
A are called principal curvatures and principal cur-
vature vectors, respectively.
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We recall the classification theorem of totally
η-umbilic real hypersurfaces of M̃n(c), c �= 0 ([NR]):

Theorem A. Let M2n−1 be a totally η-
umbilic real hypersurface of a nonflat complex space
form M̃n(c) (n � 2) (with shape operator A = αI +
βη ⊗ ξ). Then M is locally congruent to one of the
following :
(P) geodesic spheres of radius r (0 < r < π/

√
c) in

CP n(c), where α = (
√
c/2) cot(

√
cr/2) and β =

−1/α,
(H) i) horospheres in CHn(c), where α = β =√|c|/2

ii) geodesic spheres of radius r (0 < r < ∞)
in CHn(c), where α = (

√
c/2) coth(

√
cr/2) and

β = 1/α,
iii) tubes of radius r (0 < r < ∞) around to-
tally geodesic complex hyperplane CHn−1(c) in
CHn(c), where α = (

√
c/2) tanh(

√
cr/2) and

β = 1/α.
It is known that every totally η-umbilic hyper-

surface M satisfies that the structure tensor φ and
the shape operator A of M in M̃n(c) are commuta-
tive: φA = Aφ.

We here review the definition of circles in Rie-
mannian geometry. A unit speed curve γ = γ(s) in
a Riemannian manifold M is called a circle if there
exist a field of unit vectors Y = Y (s) along the curve
and a constant κ (� 0) which satisfy the differential
equations: ∇γ̇ γ̇ = κY and ∇γ̇Y = −κγ̇, where ∇γ̇

denotes the covariant differentiation along γ with re-
spect to the Riemannian connection ∇ of M . The
constant κ is called the curvature of the circle. A
circle with zero curvature is nothing but a geodesic.

It is well-known that a hypersurface Mn in Eu-
clidean space Rn+1 is locally a standard sphere if
and only if all geodesics of M are circles of posi-
tive curvature in Rn+1. However, there exist no real
hypersurfaces all of whose geodesics are circles in a
nonflat complex space form M̃n(c). This comes from
the fact that a nonflat complex space form does not
admit a totally umbilic real hypersurface.

Paying attention to the extrinsic shape of
geodesics on totally η-umbilic real hypersurfaces in
M̃n(c) (c �= 0), we obtain the following which is a
characterization of these hypersurfaces ([MO]):

Proposition B. Let M2n−1 be a real hyper-
surface of a nonflat complex space form M̃n(c) (n �
2). Then M is locally congruent to a totally η-
umbilic real hypersurface if and only if every geodesic

γ on M whose initial vector γ̇(0) is orthogonal to the
characteristic vector ξγ(0) of M is a circle of positive
curvature in the ambient space M̃n(c).

The following result shows that Proposition B
is no longer true if we replace “a circle of positive
curvature” by “a circle” ([AKM]):

Theorem C. Let M2n−1 be a real hypersur-
face of a nonflat complex space form M̃n(c) (n � 2).
Then M is locally congruent to a totally η-umbilic
real hypersurface or a ruled real hypersurface if and
only if every geodesic γ on M whose initial vector
γ̇(0) is orthogonal to the characteristic vector ξγ(0)

of M is a circle in the ambient space M̃n(c).
It is well-known that the characteristic vector ξ

of each ruled real hypersurface is not principal (for
details, see [NR]).

3. Characterizations of totally η-umbilic
real hypersurfaces. Our tool in this section is the
first equality in (2.2). We first prove the following:

Proposition 1. The structure tensor φ of
each real hypersurface M2n−1 in M̃n(c) (c �= 0) is
not parallel, namely ∇φ does not vanish identically
on M .

Proof. Suppose that ∇φ ≡ 0 on M . Then it
follows from the first equality in (2.2) that

(3.1) η(Y )AX − 〈AX, Y 〉ξ = 0 for ∀X, Y ∈ TM.

Putting X = Y = ξ in (3.1), we can see that ξ
is principal. Next for each X (�= 0) orthogonal to
ξ with AX = rX, putting Y = ξ in (3.1), we get
r = 0. So our real hypersurfce is totally η-umbilic
with α = 0 in the ambient space M̃n(c), which is a
contradiction (see Theorem A).

The following is a characterization of a totally
η-umbilic real hypersurface in terms of the covariant
derivative of its structure tensor φ:

Proposition 2. Let M2n−1 be a real hyper-
surface of a nonflat complex space form M̃n(c) (n �
2). Then the following are equivalent:
(1) M is totally η-umbilic in the ambient space

M̃n(c).
(2) The structure tensor φ of M satisfies

(3.2)

(∇Xφ)Y = k(η(Y )X − 〈X, Y 〉ξ) for ∀X, Y ∈ TM,

where k is a nonzero constant.
Proof. (1)=⇒ (2): Suppose that AX = αX +

βη(X)ξ for ∀X, Y ∈ TM . Then it follows from the
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first equality in (2.2) that (∇Xφ)Y = α(η(Y )X −
〈X, Y 〉ξ) for ∀X, Y ∈ TM .

(2)=⇒ (1): In view of the first equality in (2.2)
and (3.2) we find that

η(Y )AX − 〈AX, Y 〉ξ = k(η(Y )X − 〈X, Y 〉ξ)(3.3)

for ∀X, Y ∈ TM.

Putting X = Y = ξ in (3.3), we can see that ξ is
principal. Next for each X (�= 0) orthogonal to ξ

with AX = rX, putting Y = ξ in (3.3), we get r =
k. So we obtain the desirable conclusion.

We are now in a position to prove our theorem:
Proof of main theorem. Making use of (3.2),

we define the following tensor T on M as:

T (X, Y ) = (∇Xφ)Y − k(η(Y )X − 〈X, Y 〉ξ)
for ∀X, Y ∈ TM.

Calculating the length of T , we obtain the following
inequalty

‖T‖2 = 2 traceA2 + 4(n− 1)k2 − 2‖Aξ‖2

+ 4k〈Aξ, ξ〉 − 4k · traceA � 0,

so that for each k we see that

2(n− 1)k2 + 2(〈Aξ, ξ〉 − traceA)k(3.4)

+ traceA2 − ‖Aξ‖2 � 0.

This tells us that the discriminantD of the quadratic
function (3.4) is nonpositive. Thus we obtain the
conclusion.

4. Open problem. Totally η-umbilic real
hypersurfaces are typical examples of homogeneous
real hypersurfaces, namely they are given as orbits
under subgroups of the isometry group I(M̃n(c)) of
the ambient space M̃n(c). The classification prob-
lem of homogeneous real hypersurfaces in CHn(c)
is still open. However, in CP n(c) the classification
problem of such hypersurfaces is completely solved.
Here, without loss of generality we put c = 4. We
recall the following ([NR]):

Theorem D. Let M be a homogeneous real
hypersurface of CP n(4). Then M is a tube of ra-
dius r over the following Kähler submanifolds:
(A1) hyperplane CP n−1(4), where 0 < r < π/2,
(A2) totally geodesic CP k(4) (1 � k � n − 2),

where 0 < r < π/2,
(B) complex hyperquadric Qn−1, where 0 < r <

π/4,
(C) CP 1(4)×CP

n−1
2 (4), where 0 < r < π/4 and

n (� 5) is odd,

(D) complex Grassmann CG2,5, where 0 < r <

π/4 and n = 9,
(E) Hermitian symmetric space SO(10)/U(5),

where 0 < r < π/4 and n = 15.
The numbers of distinct principal curvatures of

these homogeneous real hypersurfaces are 2, 3, 3,
5, 5, 5, respectively. Note that a geodesic sphere
of radius r in CP n(4) is congruent to a tube of ra-
dius (π/2)−r over hyperplane CP n−1(4) in CP n(4),
where 0 < r < π/2.

Motivated by Propositions 1 and 2, we are in-
terested in ‖∇φ‖ for each minimal homogeneous real
hypersurface in CP n(4). Direct computation yields
the following:

Proposition 3. Let M be a minimal homoge-
neous real hypersurface (which is a tube of radius r)
of CP n(4). Then the radius r and the norm of the
covariant derivative of the structure tensor φ on M

are as follows:
(A1) cot r =

√
2n− 1 and ‖∇φ‖2 = 4(n−1)

2n−1 ,

(A2) cot r =
√

2k+1
2n−2k−1 and

‖∇φ‖2 = 4
{ (n−1−k)(2k+1)

2n−1−2k + k(2n−1−2k)
2k+1

}
,

(B) cot r =
√
n+

√
n− 1 and ‖∇φ‖2 = 4(n+ 1),

(C) cot r =
√

n+
√

2√
n−2

and ‖∇φ‖2 = 12n− 4− 16
n−2 ,

(D) cot r =
√

5 and ‖∇φ‖2 = 488
5 (= 97.6),

(E) cot r =
√

15+
√

6
3 and ‖∇φ‖2 = 512

3 (=
170.6 · · ·).

Proposition 3 tells us that ‖∇φ‖2 takes the min-
imal value in case of type A1 and takes the maximum
value in case of type C. In this context we pose the
following problem:

Problem. Let M be a compact orientable
minimal real hypersurface of CP n(4). If the co-
variant derivative of the structure tensor φ satisfies
‖∇φ‖2 � 4(n− 1)/(2n− 1) on M , is M congruent
to a geodesic sphere in CP n(4)?

We emphasize that ‖∇φ‖ is a natural invari-
ant for each real hypersurface M in a nonflat com-
plex space form M̃n(c) (n � 2). In general, for any
real hypersurface M the following holds: ‖∇φ‖2 =
2(traceA2 − ‖Aξ‖2). The following proposition is
worth mentioning.

Proposition 4. Let M be a minimal homoge-
neous real hypersurface of CP n(4). Then traceA2 of
M is described as follows:
(1) If M is of type A1 or A2, then traceA2 = 2n−

2.
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(2) If M is of type B, C, D or E, then traceA2 =
6n− 2.
Proposition 4 shows that we cannot distinguish

minimal homogeneous real hypersurfaces of type A1

and A2, and also minimal ones of type B, C, D and
E in terms of traceA2. The following is well-known
([NR]):

Theorem E. Let M be a compact orientable
minimal real hypersurface of CP n(4). Suppose that
the shape operator A of M in CP n(4) satisfies
traceA2 � 2n − 2 on M . Then traceA2 ≡ 2n − 2
and M is congruent to one of minimal homogeneous
real hypersurfaces of type A1 and A2.
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