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A class of balanced manifolds
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Abstract: We prove that a compact complex 3-dimensional manifold, which is Kähler
outside a smooth curve, carries a balanced hermitian metric.
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1. Introduction. In this short note we
would like to complete the analysis initiated in [2]
and [3], showing that:

Corollary 2.9. Let M be a compact complex
manifold of dimension 3; if M is Kähler outside a
smooth curve C, then M carries a balanced metric.

Recall that a hermitian metric on an n-
dimensional manifold M is called balanced, or (n −
1)-Kähler, if the fundamental form ω of the metric
satisfies dωn−1 = 0.

This result is a step in proving the following very
general conjecture:

Conjecture (see [7]). Let M be a compact
complex manifold of dimension n ≥ 3, and let Y be
an analytic subset of M of codimension bigger than
one. If M − Y is Kähler, then M is balanced.

Example. The conjecture fails for n = 2, or
when codimY = 1.

Consider the Hopf surface H , as a principal bun-
dle over CP1. It is well-known that H is not Kähler,
hence not balanced (n = 2), nor in the class C of
Fujiki. Nevertheless, if T denotes the generic fibre
(which is a torus), H − T � C × T is Kähler. In di-
mension bigger than two, if M is a Kähler manifold,
H ×M is Kähler outside the hypersurface T ×M ,
but is not balanced (if it were, the projection H ×
M → H would imply that H is balanced).

2. Results. Let us fix a compact complex
manifold M of dimension n ≥ 3. Dp,q(M) and
D′

p,q(M) are respectively the space of (p, q)-forms on
M and the space of currents on M with bidimension
(p, q) or bidegree (n−p, n−q) (also called (n−p, n−
q)-currents). A subscript R, for instance Dp,p

R (M),
denotes the spaces of real forms or currents.
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We shall need the ∂∂-cohomology groups of M ,
or Aeppli groups, in particular for p = 1 or p = n−1:

Λp,p
R (M) :=

{ϕ ∈ Dp,p
R (M) : dϕ = 0}

{√−1∂∂ψ : ψ ∈ Dp−1,p−1
R (M)}

� {T ∈ D′
n−p,n−p(M)R : dT = 0}

{√−1∂∂P : P ∈ D′
n−p+1,n−p+1(M)R} .

Let C be an irreducible curve in M . C is the
(1, 1)-component of a boundary means that the class
of [C], the current given by the integration on C, is
the zero class in Λn−1,n−1

R (M), while C is part of the
(1, 1)-component of a boundary means that there is
a closed positive current S �= 0 on M , of bidimension
(1, 1), such that χCS = 0 and the class of [C] + S

vanishes in Λn−1,n−1
R (M).

The main result we need is the following (see [2],
Theorem 5.5):

Theorem 2.1. Let C be an irreducible curve
in M, dimM ≥ 3, such that M −C is Kähler. Then
one and only one of the following cases may occur :

(i) M is Kähler,
(ii) C is the (1, 1)-component of a boundary,
(iii) C is part of the (1, 1)-component of a

boundary.
Let us state a couple of Lemmas.
Lemma 2.2. Assume C is a smooth curve in

M . Then the map i∗ : Λ1,1
R (M) → Λ1,1

R (C) induced
by the embedding i : C →M is surjective if and only
if C is not the (1, 1)-component of a boundary.

Proof. C is Kähler, beacuse it is a curve, so
that Λ1,1

R (C) � H2(C,R) � R. Since Λ1,1
R (C) is

one-dimensional, i∗ is either surjective or the zero
map.

Let us denote by “ . ” the intersection between
classes in the Aeppli groups of complementary de-
gree: f.i., for every closed form ϕ ∈ D1,1(M),
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{ϕ}.{[C]} = ϕ.C =
∫

C

i∗ϕ =
∫

M

ϕ ∧ ψ,

where ψ is a smooth representative of the class of [C]
in Λn−1,n−1

R (M).
If C is the (1, 1)-component of a boundary and

i∗ is surjective, take a volume form β on C and let
β = i∗ϕ: then

0 = ϕ.C =
∫

C

i∗ϕ = vol(C) > 0.

On the contrary, if C is not the (1, 1)-
component of a boundary, since the intersection is
non-degenerate, there is a class {ϕ} �= 0 such that

0 �= ϕ.C =
∫

C

i∗ϕ

thus i∗ is not the zero map.
Lemma 2.3 ([4], Proposition 3.3). Let Y be

an analytic subset of the compact complex space X,
let γ be a smooth representative of a class {γ} ∈
Λ1,1

R (X) such that {γ}/Y is a Kähler class on Y .
Then there exists a smooth representative γ′ = γ +√−1∂∂u which is strictly positive on a neighborhood
U of Y .

Let us go back to Theorem 2.1. In the first case,
M is obviously balanced. As regards the second case,
the second author proved in [3] the following result:

Theorem 2.4. Let C be a smooth curve in a
compact complex manifold M of dimension 3, such
that M − C is Kähler. If C is the (1, 1)-component
of a boundary, then M is balanced.

We shall consider here the third case, that is:
(∗) M is a compact complex manifold of dimen-

sion n ≥ 3, i : C →M is a smooth curve in
M such that M −C is Kähler and C is part
of the (1, 1)-component of a boundary.

We would like to prove that, in this situation,M
belongs to the class C of Fujiki, that is, it is bimero-
morphic to a Kähler manifold. We can reach our goal
thanks to the characterization of the class C given in
[4].

Definition 2.5 ([4] or [6]). A Kähler current
on a compact complex manifold M is a closed posi-
tive (1, 1)-current T which satisfies T ≥ εω for some
ε > 0 and some fundamental form ω of a hermitian
metric on M .

Theorem 2.6 ([4] Theorem 3.4). A compact
complex manifold M admits a Kähler current if and
only if M ∈ C.

Theorem 2.7. Assume (∗). Then M ∈ C.

Proof. Let β be a closed Kähler form on C. By
Lemma 2.2, there is a form γ on M such that {β} =
{i∗γ} ∈ Λ1,1

R (C). By Lemma 2.3, there is a smooth
function u on M such that γ′ := γ +

√−1∂∂u is
strictly positive on U , where U is a suitable neigh-
borhood of C. Let α be the Kähler form of a Kähler
metric on M − C. Since codimC > 1, α extends to
a closed positive current on M (see [5]), namely the
trivial extension α0.

Let ω be a fixed fundamental form of a hermitian
metric on M . We claim that:

i) ∃ ε > 0 such that εω < γ′ on U ,
ii) ∃ K > 0 such that Kα0 > εω − γ′ on the

compact set M − U , because α0 is smooth there.
Thus Kα0 + γ′ > εω on M .
Thanks to the following theorem, we get the re-

sult we stated in the introduction.
Theorem 2.8 ([1] Theorem 3.4). Let M and

M̃ be compact complex manifolds, and f : M̃ →M a
modification. Then M̃ is balanced if and only if M
is balanced. In particular, all M ∈ C are balanced.

Corollary 2.9. Let M be a compact complex
manifold of dimension 3; if M is Kähler outside a
smooth curve C, then M carries a balanced metric.
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