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The first eigenvalue problem and tensor products of zeta functions
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Abstract: We obtain a new bound for the first eigenvalue of the Laplacian for Bianchi
manifolds by the method of Luo, Rudnick and Sarnak. We use a recent result of Kim on symmetric
power L-functions. The key idea is to take tensor products of zeta functions, and we report on our
recent developments on Kurokawa’s multiple zeta functions.
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1. Introduction. Let Γ be a congruence
subgroup of PSL(2,Z). It acts on the upper half
plane H2 and the quotient space M = Γ\H2 is a
hyperbolic noncompact orbifold. Let ∆ be the hy-
perbolic Laplacian which operates on L2(M). Since
M is not compact, in the spectra of ∆ there always
exist continuous ones. For general noncompact hy-
perbolic surfaces it is not known if discrete spectra
exist. It is believed today that there are very few
discrete spectra in general. However, when Γ is an
arithmetic group such as a congruence subgroup of
PSL(2,Z), it is proved that the contribution from
the continuous spectra is smaller than that from the
discrete ones, and that the number of eigenvalues λ
of ∆ satisfies the Weyl law:∑

0<λ≤X

1 ∼ vol(M)
4π

X

as X → ∞. The question of the smallest nonzero
eigenvalue λ1 for congruence surfaces is one of the
major problems. The Selberg Conjecture asserts that

(1.1) λ1 ≥ 1
4
.

Indeed Selberg proved that λ1 ≥ 3/16 = 0.185 · · · .
The first major improvement was done by Luo, Rud-
nick and Sarnak [LRS1], in 1995, who obtained that
λ1 ≥ 21/100. Later Kim and Shahidi [KS] deduced
that λ1 ≥ 66/289 = 0.228 · · ·, and Kim [K] improved
it to λ1 ≥ 40/169 = 0.236 · · ·. The current best
bound was given by Kim and Sarnak [KSa], who
proved λ1 ≥ 975/4096 = 0.238 · · · .
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The conjecture (1.1) is equivalent to the Rie-
mann Hypothesis for the Selberg zeta function ZΓ(s)
of Γ, since the nontrivial zeros of ZΓ(s) which corre-
spond to an eigenvalue λ are located at s = 1

2
± ir

with λ = 1
4 + r2.

The conjecture (1.1) is also interpreted as the
infinite part of the Ramanujan Conjecture in the fol-
lowing manner. Let ϕ be a Hecke eigen Maass cusp
form with the eigenvalue λ. The automorphic L-
function of ϕ is defined by

(1.2)

L(s, ϕ) =
∏
p

(
1− a(p)p−s + p−2s

)−1

=
∏
p

det
(
I2 − p−s

(
αp 0
0 βp

))−1

,

where the product is taken over prime numbers, a(p)
is the p-th Fourier coefficient of ϕ, and the complex
numbers αp and βp are determined by αp+βp = a(p)
and αpβp = 1. The Euler product (1.2) converges
for Re(s) > 1, and has a symmetric type functional
equation. The gamma factor of L(s, ϕ) is given by

(1.3) Γ(s, ϕ) = ΓR(s+ ir)ΓR(s− ir),

where ΓR(s) = π− s
2 Γ( s

2). The Ramanujan Conjec-

ture asserts the unitarity of the matrix
(
αp 0
0 βp

)
,

which means |αp| = 1, and is equivalent to
Re(logp αp) = 0. This is analogous to the Selberg
Conjecture λ ≥ 1

4 , which is expressed by Re(±ir) =
0. Here logp αp and ±ir are called the Satake pa-
rameters for the automorphic form ϕ.

There is another important interpretation for
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the conjecture (1.1). We see from the form of the
gamma factor (1.3) that L(s, ϕ) has trivial zeros
at s = ±ir. If we express the conjecture (1.1) by
Re(±ir) = 0, it is regarded as the Riemann Hypoth-
esis for trivial zeros. Actually Jacquet and Shalika
proved that for any cusp form π on GLn(Ak) with
k a number field, the Satake parameters µj (j =
1, . . . , n) for the gamma factor Γ(s, π) of the auto-
morphic L-function L(s, π) satisfy that

(1.4) |Re(µj)| < 1
2
.

If we apply it to the case K = Q, n = 2, π = ϕ,
µ1 = ir and µ2 = −ir, the theorem (1.4) shows
|Re(±ir)| < 1

2
, which can be regarded as the criti-

cal strip, giving the “trivial zero-free region” for the
trivial zeros s = ±ir.

Turning our eyes to three dimensional cases, the
problem stands analogously. Let Γd = PSL(2, Od) be
a Bianchi group, where Od is the integer ring of the
imaginary quadratic field Kd with discriminant d <
0. The Bianchi group acts on the three dimensional
hyperbolic space H3 in the usual way, and the quo-
tient space M = Md = Γd\H3 is a noncompact arith-
metic hyperbolic orbifold called the Bianchi mani-
fold. The hyperbolic Laplacian operates on L2(Md)
and the spectral situation is the same as the two di-
mensional case mentioned above. The Selberg con-
jecture tells that the first nonzero eigenvalue λ1 of
the Laplacian should satisfy that

(1.5) λ1 ≥ 1.

The first result toward this conjecture was λ1 ≥ 3/4
which was obtained by Sarnak [Sa]. Later he im-
proved it to

(1.6) λ1 ≥ 21/25 = 0.84,

in his letter to Shahidi, which was published in
[LRS2]. The bound (1.6) is the current best result
for this case.

If ϕ is a Hecke eigen Maass cusp form attached
to an eigenvalue λ, the automorphic L-function is
defined by (1.2), and its gamma factor is given by

Γ(s, ϕ) = ΓC

(
s+

ir

2

)
ΓC

(
s− ir

2

)
,

where ΓC(s) = (2π)−sΓ(s) and λ = 1 + r2. Here the
conjecture (1.5) is again equivalent to Re(±ir) = 0.
By taking n = 2, k = Kd and π = ϕ in the theorem
(1.4), we have µ1 = ir/2 and µ2 = −ir/2, and the
crude estimate |Re(±ir)| < 1 holds.

In the next section we will review how the esti-
mate of the first eigenvalue can be improved by use
of symmetric power L-functions, and will calculate
some new results for three dimensional cases.

2. Results. As we saw in the previous sec-
tion, the Selberg Conjecture (1.1) is regarded as the
Riemann Hypothesis for trivial zeros of the auto-
morphic L-function L(s, ϕ). Generally speaking, for
improving a zero-free region for a Riemann type hy-
pothesis, a possible useful idea is to take tensor prod-
ucts of zeta functions, that is, to construct a zeta
function having zeros at sum of zeros of the origi-
nal zeta function. For our purpose the (n − 1)-th
symmetric power L-functions play the role:

(2.1)

L(s, Symn−1(ϕ)) =
∏
p

n−1∏
j=0

(
1− αn−1−j

p βj
pp

−s
)−1

.

It is conjectured that the functions (2.1) have an-
alytic continuations and functional equations. The
meromorphic continuation and functional equation
are known for these for n ≤ 10 ([Sh]). Kim [K] and
Kim-Shahidi [KS] established that the completed
L-function supplied with the gamma factor is en-
tire for n = 4 and 5, except perhaps for poles at
s = 0 and 1. (The case n = 3 was previously
known by Shimura [S].) Moreover they show in these
cases that there is an automorphic representation πn

on GLn(Ak) whose L-function L(s, πn) is equal to
L(s, Symn−1(ϕ)). Here the number field k is typi-
cally given by

k =

{
Q (dimM = 2, M = congruence type)
Kd (dimM = 3, M = Md).

In what follows we deal with these two cases, and will
see how the first eigenvalue problem is investigated.

The above correspondence from ϕ to πn is called
the n-th symmetric power functorial lift from GL2 to
GLn. This is a special but quite useful example of
the general functoriality conjecture by Langlands [L].
We naturally set the following assumption on an inte-
ger n ≥ 2 and a cuspidal automorphic representation
π of GL2(Ak) with a number field k.

Assumption 2.1. There is a cuspidal auto-
morphic representation πn=Symn−1(π) of GLn(Ak)
whose L-function is equal to L(s, Symn−1(π)).

The results mentioned above assures that this is
true for n ≤ 5.

When Assumption 2.1 is true, the L-function
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L(s, πn) = L(s, Symn−1(π)) has an analytic continu-
ation and the functional equation. The gamma fac-
tor is given by

(2.2) Γ(s, πn) =



n−1∏
j=0

ΓR(s+ (n − 1− 2j)ir)

(dimM = 2)
n−1∏
j=0

ΓC

(
s+

n− 1− 2j
2

ir

)
(dimM = 3).

Applying the theorem (1.4) to the Satake parameters

µj =


(n− 1− 2j)ir (dimM = 2)

n− 1− 2j
2

ir (dimM = 3)

with j = 0 gives

|Re(ir)| <


1

n − 1
(dimM = 2)

1
2(n− 1)

(dimM = 3)

from which nontrivial estimates

(2.3) λ1 >


1
4
−
(

1
2(n− 1)

)2

(dimM = 2)

1−
(

1
n− 1

)2

(dimM = 3)

follow. Thus we obviously see that Assumption 2.1
for all n implies the Selberg Conjecture.

There is another remarkable approach to this
problem from a different direction, which was created
by Luo, Rudnick and Sarnak [LRS1] in 1995 by use
of techniques in analytic number theory. They es-
sentially improved Jacquet-Shalika’s “critical strip”
(1.4) as follows:

Theorem 2.2 ([LRS1, LRS2]). When π is a
cuspidal automorphic representation on GLn(Ak),
the estimate (1.4) is improved as

|Re(µj)| ≤ 1
2
− 1
n2 + 1

.

They first proved the theorem for k = Q in
[LRS1], which lead to the remarkable result λ1 ≥
21/100 breaking the long lasting Selberg’s record
3/16. Then a generalization to any number field k is
done in [LRS2], which they mention implies the same
estimate for Shimura curves by our taking a totally
real number field as k.

When we take an imaginary quadratic field as k,
Theorem 2.2 also gives an improvement for three di-
mensional arithmetic manifolds such as Bianchi man-
ifolds. We obtain the results by combining Theo-
rem 2.2 with the above mentioned idea of tensor
products of L-functions. The results are summarized
as follows:

Theorem 2.3. Let ϕ be a Hecke eigen Maass
form corresponding to the first eigenvalue λ1. If ϕ
and an integer n ≥ 2 satisfy Assumption 2.1, we
have the following estimates:

(2.4) λ1 >


1
4
−
(

n+ 1
2(n2 + 1)

)2

(dimM = 2)

1−
(
n + 1
n2 + 1

)2

(dimM = 3)

.

The above mentioned results λ1 ≥ 66/289 by
Kim and Shahidi and λ1 ≥ 40/169 by Kim for two
dimensional cases agree to this result by our taking
n = 4 and n = 5, respectively. By putting n = 5 in
the three dimensional cases, we have a new estimate
as follows:

Corollary 2.4. For any Bianchi manofold
M = Md, the first eigenvalue λ1 satisfies that

λ1 ≥ 160
169

= 0.946 · · · .
Remark 2.5. When the class number of K is

1, more refined analysis as in the paper of Kim and
Sarnak [KSa] is possible. If one would do the same
as what they do, it should be shown that

|Re(µj)| ≤ 1
2
− 1
n(n+ 1)

2
+ 1

in place of Theorem 2.2 and consequently that

λ1 ≥ 975/1024 = 0.952 · · · .
3. Tensor products of zeta functions.

All the developments and the improvements toward
the Selberg Conjectures in the previous sections were
obtained by the use of (n − 1)-th symmetric power
L-functions. Their essential property is the fact that
they have a zero at the (n − 1) times of zeros of
the original automorphic L-functions. As we saw in
the previous sections, the first eigenvalue problem
is an analogue of the Riemann Hypothesis for trivial
zeros of automorphic L-functions. It can be regarded
as a general principle that tensor products of zeta
functions are useful for solving problems in the type
of the Riemann Hypothesis.
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In the function field case, indeed, Deligne [D]
heavily used the additive structure of zeros of con-
gruence zeta functions in his proof of the Weil Con-
jecture. In that case the additivity of zeros of zeta
functions are realized by the Kunneth’s formula on
étale cohomology. Hence it is natural to consider a
tensor power for other zeta functions as well, such as
the Riemann zeta function or Hasse zeta functions,
although their underlying cohomology is not known.
It should be essential to construct new zeta functions
having zeros at sum of zeros of original zeta func-
tions. The following theorem gives such functions.

Theorem 3.1. Let p and q be prime numbers.
Define the function ζp,q(s) as follows: for p �= q

ζp,q(s) :=
(
1− p−s

) 1
2
(
1− q−s

) 1
2

× exp

 1
2i

∞∑
k=1

cot
(
πk log p

log q

)
k

p−ks

+
1
2i

∞∑
n=1

cot
(
πn log q

log p

)
n

q−ns

 ,

and for p = q

ζp,p(s)

:=
(
1− p−s

)1− is log p
2π exp

(
− 1

2πi

∞∑
n=1

1
n2
p−ns

)
.

Then the function ζp,q(s) has the following proper-
ties:
(1) The sum over k and n in the definition of ζp,q(s)

converges absolutely in Re(s) > 0.
(2) The functions ζp,q(s) are meromorphic func-

tions of order two on the entire plane.
(3) The zeros of ζp,q(s) are given by

s = 2πi
(

k

log p
+

n

log q

)
with k and n nonnegative integers.

(4) The poles of ζp,q(s) are given by

s = 2πi
(

k

log p
+

n

log q

)
with k and n negative integers.
Proof. The function ζp,q(s) agrees to the abso-

lute tensor product ζ(s,Fp) ⊗ ζ(s,Fq) except for a
nonzero holomorphic factor, whose explicit form was
given in our previous paper [KK2]. By the definition
of the absolute tensor product, it has zeros at ρ +
ρ′ with multiplicity m(ρ, ρ′), where ρ and ρ′ denote

zeros of ζ(s,Fp) and ζ(s,Fq), respectively, and the
multiplicity is defined by

m(ρ, ρ′)

= m1(ρ)m2(ρ′) ×


1 Im(ρj) ≥ 0, (j = 1, 2)
−1 Im(ρj) < 0, (j = 1, 2)
0 otherwise.

Thus the function ζp,q(s) has the desired property.

The absolute tensor product was proposed by
Kurokawa [Ku] in a purely analytic manner. In
[KK2] we developed his theory to obtain the explicit
Euler product of the double Hasse zeta function of
finite fields. All the theory is based on our funda-
mental theory of multiple sine functions [KK1].

According to the definition of absolute tensor
product we should count the combinations of zeros
or poles, only when all of them are in the upper half
plane or they are in the lower half plane. By this
parity condition we obtain the results by establish-
ing the following “signed” double Poisson summation
formula.

Theorem 3.2 ([KK2]). Let a, b > 0. Assume
a/b is generic and that the test function H(t) satisfies

(3.1) H̃(x) :=
∫ ∞

−∞
H(t)eitxdt = O(µx)

as x→∞ for some 0 < µ < 1, then we have∑
k,n>0

H

(
2π
(
k

a
+
n

b

))

+
1
2

(∑
k>0

H

(
2π
k

a

)
+
∑
n>0

H
(
2π
n

b

))

= − ia

4π

∑
k>0

cot
(
π
ka

b

)
H̃(ka)

− ib

4π

∑
n>0

cot
(
π
nb

a

)
H̃(nb)− iab

8π2
H̃ ′(0).

Here the notion of genericity for real numbers
a/b is defined in [KK2]. We deduce such a formula
by taking a contour surrounding only the upper half
of the critical strip and integrating the logarithmic
derivative of the product of the zeta functions. Doing
the same for the Riemann zeta function would lead
us to the explicit form of the double Riemann zeta
function expressed by the Euler product over pairs of
prime numbers, after we establish the signed double
explicit formula. The details will be announced in
our forthcoming paper [KK3].
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