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Abstract: In the following article we present the results on the existence of almost periodic
solutions for impulsive neural networks. We also formulate several results on exponential stability
of these equations.
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1. Introduction. The mathematical models
of many problems and phenomena in the real world
can be described with impulsive differential equa-
tions of the form{

ẋ(t) = F (t, x(t)), t �= τk,

∆x(t) = Ik(x(t)), t = τk, k ∈ Z,

where t belongs to the interval J ⊂ R, F : J×Rn →
Rn, the sequence {τk} has no finite accumulation
point, ∆x(t) = x(t+ 0) − x(t− 0), Ik : Rn → Rn.

The theory of impulsive differential equations
goes back to the works of Mil’man and Myshkis
[13]. In the recent years impulsive differential equa-
tions have been intensively researched (see the mono-
graphs of Samoilenko and Perestyuk [2] and Laksh-
mikantham et al. [12]). Recently, some qualitative
properties (oscillation, asymptotic behavior and sta-
bility) are investigated by several authors (see [9–
10]).

In this paper, we investigate the existence and
attractivity of almost periodic solutions for impul-
sive cellular neural networks. It is well know that
the neural networks have successful applications in
many fields such as optimization, associative mem-
ory, signal and image procesing. Many authors have
paid much attention to research on the theory and
aplication of the cellular neural networks.

The main results related to the study of the ex-
istence almost periodic solutions for system with im-
pulses effects have been obtained in [3–8].

2. Preliminary notes. Let in n-dimen-
sional Euclidean space Rn with elements x =
col(x1, x2, . . . , xn) the norm is defined by |x| =
maxi{|xi|}, R = (−∞,∞), R+ = [0,+∞), Ω be
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a domain in Rn, Ω �= ∅.
By B, B = {{τk}∞k=−∞ : τk ∈ R, τk < τk+1,

k ∈ Z, limk→±∞ τk = ±∞} we denote the set of all
sequences unbounded and strictly increasing.

We shall investigate the problem of existence of
almost periodic solutions of the system of impulsive
cellular neural networks in the form

(1)


ẋi(t) =
n∑

j=1

aij(t)xj(t) +
n∑

j=1

αij(t)fj(xj(t))

+
n∑

j=1

βij(t)fj

(
µj

∫ ∞

0

kij(u)xj(t−u)du
)

+ γi(t),

t �= τk, i = 1, 2, . . . , n,

∆x(t) = Akx(t) + Ik(x(t)) + γk,

t = τk, k ∈ Z,

where
(i) t ∈ R, aij(t), αij(t), βij(t) ∈ C(R,R), fj(t) ∈

C(R,R), µj ∈ R+, kij(t) ∈ C(R+,R+), γi(t) ∈
C(R,R), i = 1, 2, . . . , n, j = 1, 2, . . . , n;

(ii) Ak ∈ Rn×n, Ik(x) ∈ C(Ω,Rn), γk ∈ Rn, {τk} ∈
B, k ∈ Z.

Let PC(J,Rn), J ⊂ R is the space of all piecewise
continuous functions x : J → Rn with points of dis-
continuity of first kind τk in which it is left continu-
ous, i.e. the following relations hold

x(τk−0) = x(τk), x(τk +0) = x(τk)+∆x(τk), k ∈ Z.

Recall [9] that the solution x(t) of (2) is from
PC(J,Rn).

The initial condition associated with (1) is of
the form

(2) x(t) = φ0(t), t ∈ R,
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where φ0(t) ∈ PC(R,Rn) is almost periodic func-
tion with points of discontinuity of first kind τk, k ∈
Z.

Since the solutions of (1), (2) are piecewise func-
tions we adopt from [1] the following definitions for
almost periodicity.

Definition 1 [2]. The set of sequences {τ j
k},

τ j
k = τk+j − τk, k ∈ Z, j ∈ Z, {τk} ∈ B is said to

be uniformly almost periodic if for arbitrary ε > 0
there exists relatively dense set of ε-almost periods
common for any sequences.

Definition 2 [2]. The function ϕ∈PC(R,Rn)
is said to be almost periodic, if:

a) the set of sequences {τ j
k}, τ j

k = τk+j − τk,
k ∈ Z, j ∈ Z, {τk} ∈ B and it is uniformly almost
periodic.

b) for any ε > 0 there exists a real number δ >
0 such that if the points t′ and t′′ belong to one and
the same interval of continuity of ϕ(t) and satisfy the
inequality |t′ − t′′| < δ, then |ϕ(t′) − ϕ(t′′)| < ε.

c) for any ε > 0 there exists a relatively dense
set T such that if τ ∈ T , then |ϕ(t+τ )−ϕ(t)| < ε for
all t ∈ R satisfying the condition |t− τk| > ε, k ∈ Z.

The elements of T are called ε-almost periods of
ϕ(t).

Together with the system (1) we consider the
linear system

(3)

{
ẋ(t) = A(t)x(t), t �= τk,

∆x(t) = Akx(t), t = τk, k ∈ Z,

where t ∈ R, A(t) = (aij(t)), i = 1, 2, . . . , n, j =
1, 2, . . . , n.

Introduce the following conditions:
H1. A(t) ∈ C(R,Rn) and is almost periodic in the
sense of Bohr.
H2. det(E+Ak) �= 0 and the sequence {Ak}, k ∈ Z
is almost periodic, E ∈ Rn×n.
H3. The set of sequences {τ j

k}, τ j
k = τk+j − τk, k ∈

Z, j ∈ Z, {τk} ∈ B is uniformly almost periodic and
there exists θ > 0 such that infk τ1

k = θ > 0.
Recall [9] that if Uk(t, s, ) is the Cauchy matrix

for the system

ẋ(t)dt = A(t)x(t), τk−1 < t ≤ τk, {τk} ∈ B

then the Cauchy matrix for the system (3) is in the
form

W (t, s) =




Uk(t, s), τk−1 < s ≤ t ≤ τk,

Uk+1(t, τk + 0)(E +Ak)Uk(t, s),
τk−1 < s ≤ τk < t ≤ τk+1,

Uk+1(t, τk + 0)(E +Ak)Uk(τk, τk + 0)
· · · (E + Ai)Ui(τi, s),

τi−1 < s ≤ τi < τk < t ≤ τk+1

and the solutions of (3) are writen in the form

x(t; t0, x0) = W (t, t0)x0.

Lemma 1 [2]. Let the following conditions be
fulfilled :

1. Conditions H1–H3 are fulfilled.
2. For the Cauchy matrix W (t, s) of the system

(3) there exist positive constants K and λ such that

|W (t, s)| ≤ Ke−λ(t−s), t ≥ s, t, s ∈ R.

Then for any ε > 0, t ∈ R, s ∈ R, t ≥ s, |t−τk| > ε,

|s − τk| > ε, k ∈ Z there exists a relatively dense
set T of ε-almost periods of the matrix A(t) and a
positive constant Γ such that for τ ∈ T it follows

|W (t+ τ, s+ τ ) −W (t, s)| ≤ εΓe−(λ/2)(t−s).

Introduce the following conditions:
H4. The functions αij(t) are almost periodic in the
sense of Bohr, and

0 < sup
t∈R

|αij(t)| = αij <∞.

H5. The functions βij(t), i = 1, 2, . . . , n, j =
1, 2, . . . , n are almost periodic in the sense of Bohr,
and

0 < sup
t∈R

|βij(t)| = βij <∞.

H6. The functions fj(t) are almost periodic in the
sense of Bohr,

0 < sup
t∈R

|fj(t)| <∞, fj(0) = 0,

and there exists L1 > 0 such that for t, s ∈ R

max
j

|fj(t) − fj(s)| < L1|t− s|, j = 1, 2, . . . , n.

H7. The functions kij(t) satisfies∫ ∞

0

kij(s)ds = 1,
∫ ∞

0

skij(s)ds <∞,

i, j = 1, 2, . . . , n.

H8. The functions γi(t), i = 1, 2, . . . , n are almost
periodic in the sense of Bohr, {γk}k∈Z is almost pe-
riodic sequence and there exists C0 > 0 such that
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max
{

max
i

|γi(t)|,max
k

|γk|
}
≤ C0.

H9. The sequence of functions Ik(x) is almost peri-
odic uniformly with respect to x ∈ Ω and there exists
L2 > 0 such that

|Ik(x) − Ik(y)| ≤ L2|x− y|
for k ∈ Z, x, y ∈ Ω.

Lemma 2 [2]. Let the conditions H1–H6, H8
be fulfilled. Then for each ε > 0 there exist ε1, 0 <
ε1 < ε and relatively dense sets T of real numbers
and Q of whole numbers, such that the following re-
lations are fulfilled :
(a) |A(t+ τ ) − A(t)| < ε, t ∈ R, τ ∈ T ;
(b) |αij(t+ τ )−αij (t)| < ε, t ∈ R, τ ∈ T, |t− τk| >

ε, k ∈ Z, i, j = 1, 2, . . . , n;
(c) |βij(t+ τ )−βij(t)| < ε, t ∈ R, τ ∈ T, |t− τk| >

ε, k ∈ Z, i, j = 1, 2, . . . , n;
(d) |fj(t+τ )−fj (t)| < ε, t ∈ R, τ ∈ T, |t−τk| > ε,

k ∈ Z, j = 1, 2, . . . , n;
(e) |Ak+q −Ak| < ε, t ∈ R, q ∈ Q, k ∈ Z;
(f) |γj(t+τ )−γj (t)| < ε, t ∈ R, τ ∈ T, |t−τk| > ε,

k ∈ Z, j = 1, 2, . . . , n;
(g) |γk+q − γk| < ε, t ∈ R, q ∈ Q, k ∈ Z;
(h) |τq

k − τ | < ε1, q ∈ Q, τ ∈ T, k ∈ Z.

Lemma 3 [2]. Let the set of sequences {τ j
k} be

uniformly almost periodic. Then for each p > 0 there
exists a positive integer N such that on each interval
of length p no more than N elements of the sequence
{τk}, i.e.,

i(s, t) ≤ N(t− s) +N,

where i(s, t) is the number of points τk in the interval
(s, t).

3. Main results

Theorem 1. Let the following conditions be
fulfilled :

1. Conditions H1–H8 are fulfilled.
2. The number

r = K
{
max

i
λ−1L1

n∑
j=1

(αij + βijµj) +
L2

1 − e−λ

}
< 1.

Then:
1. There exists unique almost periodic solution x(t)

of (1).
2. If the following inequalities hold

1 +KL2 < e,

λ −KL1 max
i

n∑
j=1

(αij + βijµj) −N ln(1 +KL2) > 0

then the solution x(t) is exponentially stable.
Proof of assertion 1. We denote with D, D ⊂

PC(R,Rn) the set of all almost periodic functions
ϕ(t) satisfying the inequality ||ϕ|| < K, ||ϕ|| =
supt∈R |ϕ(t)|, K = KC0

(
1
λ + 1

1−e−λ

)
.

Set

G(t, x) = col
{
G1(t, x), G2(t, x), . . . , Gn(t, x)

}
,

γ(t) = col(γ1(t), γ2(t), . . . , γn(t)),

where

Gi(t, x) =
n∑

j=1

αijfj(xj(t))

+
n∑

j=1

βij(t)fj

(
µj

∫ ∞

0

kij(u)xj(t−u)du
)
,

i = 1, 2, . . . , n.

Define in D an operator S,

Sϕ =
∫ t

−∞
W (t, s)[G(s, ϕ(s)) + γ(s)]ds(4)

+
∑
τk<t

W (t, τk)[Ik(ϕ(τk)) + γk],

and subset D∗, D∗ ⊂ D,

D∗ =
{
ϕ ∈ D : ||ϕ− ϕ0|| ≤ rK

1 − r

}
,

where

ϕ0 =
∫ t

−∞
W (t, s)γ(s)ds +

∑
tk<t

W (t, τk)γk.

We have

||ϕ0|| = sup
t∈R

{
max

i

(∫ t

−∞
|W (t, s)||γi(s)|ds

)
(5)

+
∑
τk<t

|W (t, τk)||γk|
}

≤ sup
t∈R

{
max

i

(∫ t

−∞
Ke−λ(t−s)|γi(s)|ds

)
+

∑
τk<t

Ke−λ(t−τk)|γk|
}

≤ K
(C0

λ
+

C0

1 − e−λ

)
= K.

Then for arbitrary ϕ ∈ D∗ from (4) and (5) we
have
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||ϕ|| ≤ ||ϕ− ϕ0||+ ||ϕ0|| ≤ rK

1 − r
+K =

K

1 − r
.

Now we prove that S is self-mapping from D∗ to D∗.
For arbitrary ϕ ∈ D∗ it follows

||Sϕ− ϕ0||(6)

= sup
t∈R

{
max

i

∫ t

−∞
|W (t, s)|

( n∑
j=1

|αij(s)fj (xj(s))|

+
n∑

j=1

|βij(s)|
∣∣∣fj

(
µj

∫ ∞

0

kij(u)ϕj(s− u)du
)∣∣∣ds)

+
∑
τk<t

|W (t, τk)||Ik(ϕ(τk))|
}

≤
{

max
i

( ∫ t

−∞
Ke−λ(t−s)L1

n∑
j=1

(αij + βijµj)ds
)

+
∑
τk<t

Ke−λ(t−τk)L2

}
||ϕ||

≤ K
{

max
i
λ−1L1

n∑
j=1

(αij + βijµj) +
L2

1−e−λ

}
||ϕ||

= r||ϕ|| ≤ rK

1 − r
.

Let τ ∈ T , q ∈ Q where the sets T and Q are
determined in Lemma 2.

Then

||Sϕ(t+ τ ) − Sϕ(t)||(7)

≤ sup
t∈R

{
max

i

( ∫ t

−∞
|W (t+ τ, s+ τ ) −W (t, s)|

×
∣∣∣ n∑
j=1

αij(s)fj(ϕj(s+ τ ))

+
n∑

j=1

βij(s+τ )fj

(
µj

∫ ∞

0

kij(u)ϕj(s+ τ−u)du
)∣∣∣ds

+
∫ t

−∞
|W (t, s)|

∣∣∣ n∑
j=1

αij(s)fj (ϕj(s+ τ ))

+
n∑

j=1

βij(s+τ )fj

(
µj

∫ ∞

0

kij(u)ϕj(s+ τ−u)du
)

−
n∑

j=1

αij(s)fj (ϕj(s))

−
n∑

j=1

βij(s)fj

(
µj

∫ ∞

0

kij(u)ϕj(s− u)du
)∣∣∣ds)

+
∑
τk<t

|W (t+ τ, τk+q) −W (t, τk)||Ik+q(ϕ(τk+q))|

+
∑
τk<t

|W (t, τk)||Ik+q(ϕ(τk+q)) − Ik(ϕ(τk))|
}

≤ εC1

where

C1 =
L1

λ

(
max

i

( n∑
j=1

(2Γ+K)βijµj

)
+K

)
+

L2ΓN
1 − e−λ

.

From (6) and (7) we obtain that Sϕ ∈ D∗.
Let ϕ ∈ D∗, ψ ∈ D∗. We get

||Sϕ − Sψ||(8)

≤ sup
t∈R

{
max

i

(∫ t

−∞
|W (t, s)|

[ n∑
j=1

|αij(s)||fj(ϕj(s)) − fj(ψj(s))|

+
n∑

j=1

|βij(s)|
∣∣∣fj

(
µj

∫ ∞

0

kij(u)ϕj(s− u)du
)

− fj

(
µj

∫ ∞

0

kij(u)ψj(s− u)du
)∣∣∣ ]

ds
)

+
∑
τk<t

|W (t, τk)||Ik(ϕ(τk)) − Ik(ψ(τk))|
}

≤ K
(

max
i

(
λ−1L1

n∑
j=1

βijµj

)
+

L2

1 − e−λ

)
||ϕ− ψ||

= r||ϕ− ψ||.
Then from (8)it follows that S is contracting op-

erator in D∗. So there exists unique almost periodic
solution of (1).

Proof of assertion 2. Let y(t) be arbitrary so-
lution of (1) with initial condition y(t0 +0, t0, �0) =
�0, �0 ∈ PC(t0). Then from (3) we obtain

y(t) − x(t) = W (t, t0)(�0 − ϕ0)

+
∫ t

t0

W (t, s)[G(s, y(s)) −G(s, x(s))]ds

+
∑

t0<τk<t

W (t, τk)[Ik(y(τk)) −Ik(x(τk))].

Then

|y(t) − x(t)| ≤ Ke−λ(t−t0)|�0 − ϕ0|

+ max
i

(∫ t

t0

Ke−λ(t−s)L1

×
n∑

j=1

(αij + βijµj)|yi(s) − xi(s)|ds
)

+
∑

t0<τk<t

Ke−λ(t−τk)L2|y(τk) − x(τk)|.
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Set u(t) = |y(t) − x(t)|eλt and from Gronwall-
Bellman’s lemma [2] we have

|y(t) − x(t)|
≤ K|�0 − ϕ0|(1 +KL2)i(t0,t)

× exp
(
−λ+KL1 max

i

n∑
j=1

(αij + βijµj)
)
(t − t0).

Thus Theorem 1 is complete.
We note that the main inequalities which are

used in proof of Theorem 1 are connect with the
properies of the matrixW (t, s) for a system (3). Now
we will consider special case in which these properties
are accomplished.

Example 1. Now consider the classical model
of impulsive Hopfield neural networks
(9)


ẋi(t) = −ai(t)xi(t) +
n∑

j=1

αijfj(xj(t))

+
n∑

j=1

βijfj

(
µj

∫ ∞

0

kij(u)xj(t−u)du
)
+ γi(t),

t �= τk, i = 1, 2, . . . , n,

∆x(t) = Akx(t) + Ik(x(t)) + γk, t = τk, k ∈ Z,

where
(i) t ∈ R, ai(t) ∈ C(R,R), αij, βij ∈ R, fj(t) ∈

C(R,R), µj ∈ R+, kij(t) ∈ C(R+,R+), γi(t) ∈
C(R,R), i = 1, 2, . . . , n, j = 1, 2, . . . , n;

(ii) Ak ∈ Rn×n, Ik(x) ∈ C(Ω,Rn), γk ∈ Rn, {τk} ∈
B, k ∈ Z.
Lemma 4. Let the following conditions be ful-

filled :
1. For the matrix A(t) = diag[−a1(t),−a2(t),

. . . ,−a1(t)] it follows that ai(t) i = 1, 2, . . . , n is al-
most periodic function in the sense of Bohr and

lim
T→∞

1
T

∫ t+T

t

ai(t)dt > 0, i = 1, 2, . . . , n.

2. The conditions H2, H3 are fulfilled.
Then for the Cauchy’s matrix W (t, s) it follows

|W (t, s)| ≤ Ke−λ(t−s),

where t ∈ R, s ∈ R t ≥ s, K, λ are positive con-
stants.

Proof. The proof of Lemma 4 is analogous with
the proof of Lemma 2 from [3].

Theorem 2. Let the following conditions be
fulfilled :

1. Conditions of Lemma 4 are fulfilled.
2. Conditions H6–H9 are fulfilled.
3. The number

r = K
{
λ−1L1

n∑
j=1

(αij + βijµj) +
L2

1 − e−λ

}
< 1.

Then there exists unique almost periodic solu-
tion x(t) of (9).

If the following inequalities hold

1 +KL2 < e,

λ −KL1

n∑
j=1

(αij + βijµj) −N ln(1 +KL2) > 0

then the solution x(t) is exponentially stable.
Proof. The proof of Theorem 2 it follows from

Lemma 4, the proof of Lemma 2 and the proof of
Theorem 1.
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