On efficient computation of the 2-parts of ideal class groups of quadratic fields

By Julius M. Basilla and Hideo Wada
Department of Mathematics, Sophia University
7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554
(Communicated by Shigefumi Mori, M. J. A., Dec. 13, 2004)

Abstract

We shall show a relation between Gauss' ternary quadratic form and an ideal of a quadratic field. Using this relation, we can compute rapidly the 2-part of ideal class group of a quadratic field in narrow sense and in wide sense.

Key words: Ternary quadrartic form; quadratic field; ideal class group; 2-part.

1. Introduction. Let K be a quadratic field $\mathbf{Q}(\sqrt{m})$, where m is a square free integer and $m \not \equiv 1$ $(\bmod 4)$. Let $C l_{2}^{+}$and $C l_{2}$ be the 2-part of ideal class group in narrow sense and in wide sense respectively. When two ideals \mathbf{A}, \mathbf{B} belong to the same ideal class in narrow sense, we write $\mathbf{A} \cong \mathbf{B}$. Conjugate of $\theta \in$ K and ideal \mathbf{A} are denoted by $\bar{\theta}, \overline{\mathbf{A}}$ respectively. $N \theta$, $N \mathbf{A}$ mean $\theta \bar{\theta}, \mathbf{A} \overline{\mathbf{A}}$ respectively. Hasse [4] proposed how to calculate Cl_{2}^{+}using Legendre theorem. But we must decompose many integers to prime factors (cf. [1, 5]). So this method is not efficient. Shanks [8] and Bosma, Stevenhagen [2] calculated Cl_{2}^{+}very efficiently using Gauss' ternary quadratic form. But they did not use ideal theory directly. So they could not calculate $C l_{2}$. We shall show an ideal interpretation of Gauss' ternary quadratic form.
2. Square root of ideal class. When \mathbf{A}, \mathbf{B} are primitive ideals such that

$$
\mathbf{A}=[a, b+\sqrt{m}], \quad \mathbf{B}=[z, u+\sqrt{m}], \quad \mathbf{A} \cong \mathbf{B}^{2}
$$

where $a=N \mathbf{A}>0$. Then for some $\rho(\rho \bar{\rho}>0), \mathbf{A}=$ $\rho \mathbf{B}^{2}$. So \mathbf{A} contains $\theta=\rho z^{2}$ and

$$
\frac{\theta \bar{\theta}}{a}=\frac{\rho \bar{\rho} z^{4}}{\rho \bar{\rho} z^{2}}=z^{2}
$$

(cf. [7]). Put $\theta=a x+(b+\sqrt{m}) y$. Then
(1) $a x^{2}+2 b x y+c y^{2}=z^{2}$, where $b^{2}-m=a c$.

Conversely if \mathbf{A} contains $\theta=a x+(b+\sqrt{m}) y$ such that $N \theta=a z^{2}$ for some integer z, then we may assume $\operatorname{gcd}(x, y)=1$. So there exists primitive ideal \mathbf{C} such that $(\theta)=\mathbf{A C}, \mathbf{C} \overline{\mathbf{C}}=z^{2}$. All prime factors

[^0]of z must be decomposed and we have
\[

$$
\begin{aligned}
& \mathbf{C}=\prod_{p \mid z} \mathbf{P}^{2}=\left(\prod_{p \mid z} \mathbf{P}\right)^{2} \\
& \text { where }(p)=\mathbf{P} \overline{\mathbf{P}}, \quad \mathbf{P} \neq \overline{\mathbf{P}} .
\end{aligned}
$$
\]

So we have

$$
\mathbf{A} \cong z^{2} \mathbf{A}=\mathbf{A C} \overline{\mathbf{C}}=\theta \overline{\mathbf{C}} \cong \overline{\mathbf{C}}
$$

(cf. [7]). Put $\mathbf{B}=\prod_{p \mid z} \overline{\mathbf{P}}$. Then we have $\mathbf{A} \cong \mathbf{B}^{2}$. We can compute \mathbf{B} from \mathbf{A} and θ as follows:

$$
\begin{gathered}
(\theta) \overline{\mathbf{A}}=\mathbf{A} \overline{\mathbf{A}} \mathbf{C}=a \mathbf{C} \\
\mathbf{B}^{2}=\overline{\mathbf{C}}=\frac{1}{a} \bar{\theta} \mathbf{A}=\left[z^{2}, u+\sqrt{m}\right]=[z, u+\sqrt{m}]^{2}
\end{gathered}
$$

As $a z^{2}=\theta \bar{\theta}=(a x+b y)^{2}-m y^{2}$ we have integer solutions U, V, W such that $a U^{2}+m V^{2}=W^{2}$. We may assume $\operatorname{gcd}(U, V)=1$. For an odd prime divisor p of m, if $p \nmid a$ then $p \nmid U$ because m is square free. If $p \mid a$ then $p \mid W, p^{2} \nmid a, p \nmid U, p \nmid V$ because $b^{2}-a c=$ m. So we have the local conditions (cf. [6]) $\chi_{p}(a)=1$ for all odd prime divisors p of m where $\chi_{p}(a)$ is

$$
\chi_{p}(a)= \begin{cases}\left(\frac{a}{p}\right) & p \nmid a \\ \left(\frac{-a m / p^{2}}{p}\right)=\left(\frac{c}{p}\right) & p \mid a\end{cases}
$$

If we have a prime decomposition of m, we can examine these local conditions and if these local conditions are satisfied, Gauss ([3], 286) showed a very rapid algorithm for computing the global solution of (1). We shall explain Gauss' method.

We can compute rapidly X, Y such that

$$
\begin{aligned}
a & \equiv X^{2} & & (\bmod m) \\
-b & \equiv X Y & & (\bmod m) \\
c & \equiv Y^{2} & & (\bmod m)
\end{aligned}
$$

(cf. [2]). Let $L \in M_{3}(\mathbf{Z})$ be

$$
L=\left(\begin{array}{ccc}
\left(Y^{2}-c\right) / m & (X Y+b) / m & Y \\
(X Y+b) / m & \left(X^{2}-a\right) / m & X \\
Y & X & m
\end{array}\right)
$$

Then $|L|=-1$ and $M=L^{-1}$ is of the form (cf. [2])

$$
M=\left(\begin{array}{lll}
a & b & * \\
b & c & * \\
* & * & *
\end{array}\right),{ }^{t} M=M,|M|=-1 .
$$

We can find rapidly $S \in S L_{3}(\mathbf{Z})$ such that

$$
{ }^{t} S M S=\left(\begin{array}{lll}
& & 1 \tag{2}\\
& 1 & \\
1 & &
\end{array}\right)
$$

(cf. [3], 277). Let F be the right hand of (2) and put

$$
\begin{gathered}
S=\left(\begin{array}{ccc}
* & * & * \\
* & * & * \\
A & B & C
\end{array}\right), \quad S^{-1}=\left(\begin{array}{ccc}
\alpha & \beta & \gamma \\
\alpha^{\prime} & \beta^{\prime} & \gamma^{\prime} \\
\alpha^{\prime \prime} & \beta^{\prime \prime} & \gamma^{\prime \prime}
\end{array}\right) \\
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=S^{-1}\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right)=\left(\begin{array}{c}
\alpha x+\beta y \\
\alpha^{\prime} x+\beta^{\prime} y \\
\alpha^{\prime \prime} x+\beta^{\prime \prime} y
\end{array}\right) .
\end{gathered}
$$

Then we have

$$
A=\left|\begin{array}{cc}
\alpha^{\prime} & \beta^{\prime} \tag{3}\\
\alpha^{\prime \prime} & \beta^{\prime \prime}
\end{array}\right|, \quad-B=\left|\begin{array}{cc}
\alpha & \beta \\
\alpha^{\prime \prime} & \beta^{\prime \prime}
\end{array}\right| .
$$

$$
\begin{equation*}
M={ }^{t} S^{-1} F S^{-1}, \quad c=\beta^{\prime 2}+2 \beta \beta^{\prime \prime} . \tag{4}
\end{equation*}
$$

(5) $L=M^{-1}=S F^{t} S, \quad m=B^{2}+2 A C$.

And we have the quadratic forms

$$
\left.\begin{array}{l}
a x^{2}+2 b x y+c y^{2}=(x, y, 0) M\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right) \\
=(X, Y, Z)\left(\begin{array}{ll}
& \\
& 1
\end{array}\right. \\
1
\end{array}\right]\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=Y^{2}+2 X Z . .
$$

When $\operatorname{gcd}\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right)=d$, we put $x=\beta^{\prime \prime} / d, y=$ $-\alpha^{\prime \prime} / d$. Then $Z=0, X=-B / d, Y=A / d$ and

$$
a x^{2}+2 b x y+c y^{2}=Y^{2}, \operatorname{gcd}(x, y)=1
$$

Namely we get the global solution of (1) and $N \mathbf{B}=$ $|Y|$.

From (4) we have

$$
\begin{aligned}
& \left(\begin{array}{c}
a x+b y \\
b x+c y \\
*
\end{array}\right)=M\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right)={ }^{t} S^{-1} F S^{-1}\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right) \\
& ={ }^{t} S^{-1}\left(\begin{array}{ll}
& 1 \\
1 &
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
0
\end{array}\right)=\left(\begin{array}{c}
\alpha^{\prime} Y+\alpha^{\prime \prime} X \\
\beta^{\prime} Y+\beta^{\prime \prime} X \\
*
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{B}^{2} & =\frac{\bar{\theta}}{a} \mathbf{A}=\frac{a x+(b-\sqrt{m}) y}{a}[a, b+\sqrt{m}] \\
& =[a x+(b-\sqrt{m}) y,(b+\sqrt{m}) x+c y] \\
& =\left[\alpha^{\prime} Y+\alpha^{\prime \prime} X-\sqrt{m} y, \beta^{\prime} Y+\beta^{\prime \prime} X+\sqrt{m} x\right] \\
& =\left[\alpha^{\prime} Y-(-B+\sqrt{m}) y, \beta^{\prime} Y+(-B+\sqrt{m}) x\right] .
\end{aligned}
$$

As $\mathbf{B} \ni Y$ and $\operatorname{gcd}(x, y)=1$, we have $\mathbf{B} \ni(-B+$ $\sqrt{m})$, namely $\mathbf{B}=[Y,-B+\sqrt{m}]$. From (3), (5) we have $d|m, A| B^{2}-m$. Therefore we get

$$
\mathbf{A} \cong\left[\frac{A}{d},-B+\sqrt{m}\right]^{2} \cong[A,-B+\sqrt{m}]^{2}
$$

3. The case $m \equiv 1(\bmod 4)$. When square free integer $m \equiv 1(\bmod 4)$, then we must make a few modifications. We start from the following forms:

$$
\begin{aligned}
& \mathbf{A}=\left[a, \frac{b+\sqrt{m}}{2}\right], \quad \mathbf{B}=\left[z, \frac{u+\sqrt{m}}{2}\right] \\
& b^{2}-m=a c, 4 \mid c, \quad \theta=a x+\frac{b+\sqrt{m}}{2} y .
\end{aligned}
$$

Then we have the quadratic form
(6) $z^{2}=\frac{\theta \bar{\theta}}{a}=a x^{2}+b x y+\frac{c}{4} y^{2}, \quad \operatorname{gcd}(x, y)=1$.

Multiplying 4, we get

$$
a(2 x)^{2}+2 b(2 x) y+c y^{2}=(2 z)^{2} .
$$

If we have a solution x_{0}, y_{0}, z_{0} such that

$$
a x_{0}^{2}+2 b x_{0} y_{0}+c y_{0}^{2}=z_{0}^{2}, \quad \operatorname{gcd}\left(x_{0}, y_{0}\right)=1
$$

then there are two cases.
Case 1. $x_{0}=$ even. Put $x=x_{0} / 2, y=y_{0}, z=z_{0} / 2$.
Case 2. $x_{0}=$ odd. Put $x=x_{0}, y=2 y_{0}, z=z_{0}$.
Then we have a solution of (6). From (4), β^{\prime} must be even. So we have
Case 1. $\beta^{\prime \prime}=$ even,

$$
\mathbf{B}^{2}=\left[a x+\frac{b-\sqrt{m}}{2} y, \frac{b+\sqrt{m}}{2} x+\frac{c}{4} y\right]
$$

$$
\begin{aligned}
& =\left[\frac{a x_{0}+b y_{0}}{2}-\frac{\sqrt{m}}{2} y, \frac{b x_{0}+c y_{0}}{4}+\frac{\sqrt{m}}{2} x\right] \\
& =\left[\alpha^{\prime} \frac{Y}{2}-\frac{-B+\sqrt{m}}{2} y, \frac{\beta^{\prime}}{2} \frac{Y}{2}+\frac{-B+\sqrt{m}}{2} x\right] \\
& =\left[\frac{Y}{2}, \frac{-B+\sqrt{m}}{2}\right]^{2} .
\end{aligned}
$$

From

$$
\frac{Y}{2}=\frac{1}{d} \frac{A}{2}, \quad \frac{A}{2} \left\lvert\, \frac{B^{2}-m}{4}\right.
$$

we have

$$
\mathbf{A} \cong\left[\frac{Y}{2}, \frac{-B+\sqrt{m}}{2}\right]^{2} \cong\left[\frac{A}{2}, \frac{-B+\sqrt{m}}{2}\right]^{2}
$$

Case 2. $\beta^{\prime \prime}=\mathrm{odd}$,

$$
\begin{aligned}
\mathbf{B}^{2} & =\left[\alpha^{\prime} Y-\frac{-B+\sqrt{m}}{2} y, \frac{\beta^{\prime}}{2} Y+\frac{-B+\sqrt{m}}{2} x\right] \\
& =\left[Y, \frac{-B+\sqrt{m}}{2}\right]^{2}
\end{aligned}
$$

From

$$
d\left|m, Y=\frac{1}{d} A, \quad 2 Y\right| \frac{B^{2}-m}{2}, \quad A \left\lvert\, \frac{B^{2}-m}{2}\right.
$$

we have $d=$ odd,

$$
(2 Y, A)=Y, \quad 2 A \left\lvert\, \frac{B^{2}-m}{2}\right.
$$

and

$$
\mathbf{A} \cong\left[Y, \frac{-B+\sqrt{m}}{2}\right]^{2} \cong\left[A, \frac{-B+\sqrt{m}}{2}\right]^{2}
$$

Using these we can find a system of generators of $C l_{2}^{+}$(cf. [2]). So we can find the relation between (\sqrt{m}) and the generators. Therefore we can compute $C l_{2}$. When

$$
\begin{aligned}
m= & 433\left(10^{100}+949\right)\left(10^{100}+1293\right)\left(10^{100}+2809\right) \\
& \times\left(10^{100}+6637\right)\left(10^{100}+22261\right)
\end{aligned}
$$

we get

$$
\begin{aligned}
C l_{2}^{+} & =(2,4,4,4,64) \mathrm{type} \\
C l_{2} & =(2,2,4,4,64) \mathrm{type}
\end{aligned}
$$

(cf. [2]). It took only 2 seconds using a personal computer. We made the program using Ubasic.

References

[1] Basilla, J. M.: On the solution of $x^{2}+d y^{2}=m$. Proc. Japan Acad., 80A, 40-41 (2004).
[2] Bosma, W., and Stevenhagen, P.: On the computation of quadratic 2 -class groups. J. Théor. Nombres Bordeaux, 8, 283-313 (1996).
[3] Gauss, C. F.: Disquisitiones Arithmeticae. Gerhard Fleischer, Leipzig (1801).
[4] Hasse, H.: An algorithm for determining the structure of the 2-Sylow-subgroup of the divisor class group of a quadratic number field. Symposia Mathematica (Convegno di Strutture in Corpi Algebrici, INDAM, Roma 1973), vol. XV, Academic Press, London, pp. 341-352 (1975).
[5] Ireland, K., and Rosen, M.: A Classical Introduction to Modern Number Theory. Grad. Texts in Math., 84, Springer-Verlag, New York, pp. 272275 (1982).
[6] Nemenzo, F. R.: On a theorem of Scholz on the class number of quadratic fields. Proc. Japan Acad., 80A, 9-11 (2004).
[7] Nemenzo, F., and Wada, H.: An elementary proof of Gauss' genus theorem. Proc. Japan Acad., 68A, 94-95 (1992).
[8] Shanks, D.: Gauss's ternary form reduction and the 2 -Sylow subgroup. Math. Comp., 25, 837853 (1971).

[^0]: 2000 Mathematics Subject Classification. Primary 11E20, 11R29; Secondary 11R11, 11Y16.

