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The quadratic fields with discriminant divisible by exactly two primes

and with “narrow” class number divisible by 8

By Julius M. Basilla∗)

Department of Mathematics, Sophia University

7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554

(Communicated by Shigefumi Mori, m. j. a., Dec. 13, 2004)

Abstract: Let K be the quadratic field Q(
√
m) with discirimant d = pq. Using Legendre’s

theorem on the solvability of the equation ax2+by2 = z2, we give necessary and sufficient conditions
for the class number of K in the narrow sense to be divisible by 8. The approach recovers known
criteria but is simpler and can be extended to compute the sylow 2-subgroup of the ideal class
group of quadratic fields.
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1. Preliminaries. Let m be a square free in-
teger and K be the quadratic field Q(

√
m) with dis-

criminant d. Denote the narrow class number of K
by h+. For ideals a and b, we write a ∼= b if a and b

belong to the same ideal class in the narrow sense.
For integers a and b, we write

(
a
b

)
n

= 1 if xn ≡
a (mod b) has a solution and

(
a
b

)
n

= −1 if xn ≡ a

(mod b) has no solution.
The sylow-2 subgroup of the ideal class group of

K in the narrow sense is a nontrivial cyclic group in
the following cases.
• Real Cases

1. m = pq, p ≡ q (mod 4),
2. m = p, p ≡ 3 (mod 4),
3. m = 2p, p �= 2.

• Imaginary Cases
4. m = −pq, p ≡ −q ≡ 1 (mod 4),
5. m = −p, p ≡ 1 (mod 4),
6. m = −2p, p �= 2,

where p and q denote some prime numbers.
It is known that:

Theorem 1. 1. For m = pq, p ≡ q

(mod 4) : 8 divides h+ if and only if
(

p
q

)
4

=(
q
p

)
4

= 1 (cf. [10]).

2. For m = p, p ≡ 3 (mod 4) : The class number
in wide sense h is odd and h+ is divisible by 2
but not by 4.

3. For m = 2p, p �= 2: 8 divides h+ if and only
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if p = a2 + b2 ≡ 1 (mod 8), a ≡ ±1 (mod 8),
b ≡ 0 (mod 8), or equivalently, 8 divides h+ if
and only if

(
2
p

)
4

= 1, p ≡ 1 (mod 16). (cf. [6]).
4. For m = −pq, p ≡ −q (mod 4) : 8|h+ if and

only if
(−q

p

)
4

= 1.
5. For m = −p, p ≡ 1 (mod 4) : 8|h+ if and only

if p ≡ a2 + b2 ≡ 1 (mod 8) and a + b ≡ ±1
(mod 8) (cf. [6]), or equivalently, 8|h+ if and
only if p ≡ 1 (mod 8) and

(−4
p

)
8

= 1 (cf. [1]).
6. And for m = −2p, p �= 2: 8|h+ if and only if p ≡

−1 (mod 16), or if
(

2
p

)
4

= 1, p ≡ 1 (mod 8).

Results for case 1 (cf. [10]) and case 4 (cf. [1])
were obtained using class field theory. By looking
at the properties of quadratic forms, Kaplan (cf. [6])
was able to confirm cases 1, 4, 5, and 6, in addition
to his criteria for case 3.

Using Ideal Theory and Legendre’s theorem on
the solvability of the diophantine equation ax2 +
by2 = z2 (cf. [5]), Nemenzo (cf. [7]) was able to ar-
rive at Scholz result. In this paper, we shall give
an elementary proof of Kaplan’s assertion following
Nemenzo’s approach.

In passing, we also verify the Rédei-Reichard
theorem (cf. [9]):

Theorem 2. Rédei-Reichard Theorem.
1. For m = pq, p ≡ q (mod 4), 4 divides h+ if and

only if
(

p
q

)
=

(
q
p

)
= 1.

2. For m= p, p≡ 3 (mod 4), 4 does not divide h+.
3. For m = 2p, p �= 2, 4 divides h+ if and only if
p ≡ 1 (mod 8).

4. For m = −pq, p ≡ −q ≡ 1 (mod 4), 4 divides
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h+ if and only if
(

p
q

)
= 1.

5. For m = −p, p ≡ 1 (mod 4), 4 divides h+ if
and only if p ≡ 1 (mod 8).

6. For m = −2p, p �= 2, 4 divides h+ if and only if
p ≡ ±1 (mod 8).
The main idea is to find necessary and sufficient

conditions for a given ideal to be equivalent to the
square of some ideals in K. We determine how many
of the four primitive integral ambiguous ideals in K
are fourth powers. Observe that if i, a, b, ab are the
four primitive integeral ambiguous ideals, 8|h+ if and
only if a and b are fourth powers. It is interesting
to note that this approach can be extended to com-
pute the Sylow 2 subgroup of the ideal class group
of quadratic fields (cf. [2–4]).

In this paper, we use the lowercase roman letters
to denote rational integers and the German letters
a, b, · · · to denote ideals. We will reserve German
letter i for the unit ideal.

2. The ideals which are equivalent to a
square. If a and b are nonzero integers, we write
aRb if a is a square modulo b. We denote the square
free part of a by a1.

Lemma 3. Let a =
[
a, b+

√
d

2

]
, Na = a > 0,

a|(b2 − d)/4. The ideal a is equivalent to the square
of some ideal, written a ∼= �, if and only if for all
odd prime p dividing m, we have(

a1

p

)
= 1 if p |/ a1, and

(−a1m/p
2

p

)
= 1 if p | a1.

Proof. The ideal a ∼= � if and only if

(1) (2ax+ by)2 − d1y
2 = a1z

2

has a nontrivial solution (cf. [8]). Since m is square
free, we have d1 = m. If m > 0, (1) has a nontrivial
solution if and only if mRa1, a1Rm, −a1m

(a1,m)2
R(a1, m)

(cf. [5]). If m < 0, (1) has a nontrivial solution if
and only if a1(2ax + by)2 + (−a1m)y2 = z2 has a
nontrivial solution, which in turn has a nontrivial
solution if and only if a1R

−a1m
(a1,m)2

, −a1m
(a1,m)2

Ra1, and
mRa1.

Since a|(b2 − d)/4, it follows that mRa1. Ob-
serve also that

a1Rm⇔ a1R
−a1m

(a1, m)2

⇔ for all odd prime p | m, p |/ a1,

(
a1

p

)
= 1.

−a1m

(a1, m)2
Ra1 ⇔ −a1m

(a1, m)2
R(a1, m)

⇔ for all odd prime p | (a1, m),(−a1m/p
2

p

)
= 1.

3. The case m = p, p ≡ 3 (mod 4). The
four primitive integral ambiguous of K are i, p =
[p,

√
p ], q = [2, 1 +

√
p ] and pq. Since

(−1
p

)
= −1,

p �∼= �. If follows that 2||h+ for all m = p ≡ 3
(mod 4).

4. The case m = 2p, p �= 2. The four
primitive integral ambiguous ofK are i, p = [p,

√
2p ],

q = [2,
√

2p] and pq = (
√

2p). From Lemma 3, we
have q ∼= � if and only if

(
2
p

)
= 1 or p ≡ ±1 (mod 8);

and p ∼= � if and only if
(−2

p

)
= 1 (i.e., p ≡ 1 or 3

(mod 8)). Thus, 4|h+ if and only if p ≡ 1 (mod 8).
Let a = [a, b+

√
2p ], a|b2 − 2p, and (a, 8p) = 1.

From Lemma 3, a ∼= � if and only if
(

a1
p

)
= 1.

Let p ≡ 1 (mod 8) so that p and q are equivalent
to squares. If a2 ∼= p, there exist relatively prime
integers x and y such that px2 − 2y2 = a2 (cf. [8]).
Write y = 2ky′, y′ odd. From this equation, we get(

a1

p

)
=

(−2y2

p

)
4

=
(

2
p

)
4

(
y

p

)
,(

y

p

)
=

(
y′

p

)
=

(
p

y′

)
=

(
a2
1

p

)
= 1.

Therefore,(
a1

p

)
= 1 ⇔

(
2
p

)
4

= 1 ⇔ p = c2 + 64f2,

for some integers c and f , by Dirichlet Theorem on
the biquadratic character of 2 (cf. [5]).

If a2 ∼= q, there exist integers x and y such that
2x2 − py2 = a2. Since a|b2 − 2p, we have

(
a
p

)
=(

2
a

)
. Thus,

(
a
p

)
= 1 if and only if a ≡ ±1 (mod 8).

Hence a ∼= � if and only if a2 ≡ 1 (mod 16). By
inspecting 2x2 − py2 = a2, we see that y is odd and
therefore 2x2 − 1 ≡ 1 (mod 8). Thus, x is also odd.
If t is a prime dividing y, we have that

(
2
t

)
= 1. And

therefore, we have y2 ≡ 1 (mod 16). Since x is odd,
we have 2x2 ≡ 2 (mod 16). It follows that a ∼= � if
and only if p ≡ 1 (mod 16).

Hence, 8|h+ if and only if p = c2 + f2 ≡ 1
(mod 8) with c ≡ ±1 (mod 8) and f ≡ 0 (mod 8).
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5. The case m = −pq, p ≡ −q ≡ 1
(mod 4). The four primitive integral ambiguous of
K, i, p =

[
p, p+

√−pq
2

]
, q =

[
q, q+

√−pq
2

]
and pq =

(
√−pq) satisfy i ∼= pq �∼= p ∼= q. Thus it suffices to

consider the ideal p only. From Lemma 3, p ∼= �
if and only if

(
p
q

)
= 1. That is, 4|h+ if and only if(

p
q

)
= 1.
Assume that

(
p
q

)
= 1 so that p ∼= a2, for

some ideal a. Put a =
[
a, b+

√−pq
2

]
, a|(b2 + pq)/4,

(a, 2pq) = 1 and all prime divisors of a split. From
Lemma 3, a ∼= � if and only if

(
a1
p

)
=

(
a1
q

)
= 1.

Observe that(
a1

p

) (
a1

q

)
=

(
p

a1

)(−1
a1

)(
q

a1

)

=
(−pq
a1

)
= 1,

since all prime divisors of a1 split. Thus
(

a1
p

)
=

(
a1
q

)
and therefore, it suffices for us to find necessary and
sufficient conditions for

(
a1
p

)
= 1.

Since a2 ∼= p, there exist relatively prime inte-
gers x and y such that p(2x + y)2 + qy2 = 4a2 (cf.
[8]). Note that since p ≡ 1 (mod 4), we have

(
2
p

)
=(−1

p

)
4
. It follows that(
a1

p

)
=

(
2
p

) (
2a
p

)
=

(−1
p

)
4

(
qy2

p

)
4

=
(−1
p

)
4

(
q

p

)
4

(
y

p

)
=

(−q
p

)
4

(
y

p

)
.

If y = 2ky′, where y′ is odd, it follows that(
y′
p

)
=

(
p
y′

)
= 1. Thus

(
y
p

)
=

(
2
p

)k. If k = 0,
then

(
y
p

)
= 1. Suppose y is even so that x is odd.

Expanding we get px2 + pxy + y2
(

p+q
4

)
= a2. It

follows that pxy ≡ 0 (mod 4). If p ≡ 1 (mod 8),
then

(
y
p

)
= 1. If p ≡ 5 (mod 8), we get 5 + 5xy ≡ 1

(mod 8), so 5xy �≡ 0 (mod 8). That is, k = 0 of k =
2 and therefore

(
y
p

)
= 1.

Therefore,
(

a1
p

)
= 1 if and only if

(−q
p

)
4

= 1.
Hence, 8|h+ if and only if

(−q
p

)
4

= 1.

6. The case m = −p, p ≡ 1 (mod 4).
The four primitive integral ambiguous of K, i, p =
(
√−p), q = [2, 1 +

√−p ] and pq = [2p, p +
√−p ]

satisfy i ∼= p �∼= q ∼= pq. This, it suffices to consider
q only. From Lemma 3, q ∼= � if and only if

(
2
p

)
=

1 or p ≡ 1 (mod 8), i.e. 4|h+ if and only if p ≡ 1
(mod 8).

Assume p ≡ 1 (mod 8) so that q ∼= a2 for some
ideal a = [a, b+

√−p ], a|b2 + p, (a, 4p) = 1. From
Lemma 3, a ∼= � if and only if

(
a1
p

)
= 1. Since a2 ∼=

q, there exist relatively prime integers x and y such
that (2x+y)2 +py2 = 2a2. Put u = 2x+y. We have(

a1

p

)
=

(
2a
p

)
=

(
4a2

p

)
4

=
(

2u2

p

)
4

=
(

2
p

)
4

(
u

p

)
.

If y is even, we get u2 + py2 ≡ 0 (mod 4) but
2a2 ≡ 2 (mod 4). Thus y is odd, and so is u. Using
the same argument in section §4, we can show that
y2 ≡ 1 (mod 16).

Since u is odd, we have
(

u
p

)
=

(
p
u

)
=

(
2a2

u

)
=(

2
u

)
. Therefore,

(
u
p

) ≡ 1 if and only if u ≡ ±1
(mod 8).

Write p = c2+16f2 where c is odd (cf. [1]). Since
a is odd, a2 ≡ 1 (mod 8) and 2a2 ≡ 2 (mod 16).
Considering the equation u2 + py2 = 2a2 modulo 16,
we get

u2 + (c2 + 16f2)y2 ≡ 2a2 (mod 16)

u2 + c2 ≡ 2 (mod 16)

u2 ≡ c2 ≡ 1 or 9 (mod 16).

Applying Dirichlet’s theorem on the biquadratic
character of 2, we get(

2
p

)
4

=
(
u

p

)
= 1 ⇔ c2 ≡ u2 ≡ 1 (mod 16),

2|f
⇔ p = c2 + 64f ′2,

p ≡ 1 (mod 16)

⇒
(−1
p

)
8

= 1,

for some integer f ′, and on the other hand,(
2
p

)
4

=
(
u

p

)
= −1 ⇔ c2 ≡ u2 ≡ 9 (mod 16),

f odd

⇔ p ≡ 9 (mod 16),

f odd

⇒
(−1
p

)
8

= −1.

In any case, we have(−4
p

)
8

=
(−1
p

)
8

(
2
p

)
4

= 1.
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We note that the c2 ≡ u2 ≡ 1 (mod 16) if and only
if c ≡ ±1 (mod 8) and c2 ≡ u2 ≡ 9 (mod 16) if and
only if c ≡ ±3 (mod 8). Thus, we can equivalently
claim that 8|h+ if and only if there exist integers c
and p, c odd such that p = c2 + f2 ≡ 1 (mod 8) and
c+ f ≡ ±1 (mod 8).

7. The case m = −2p, p �= 2. The four
primitive integral ambiguous of K, i, p = [p,

√−2p ],
q = [2,

√−2p ] and pq = (
√−2p), satisfy i ∼= pq �∼=

p ∼= q. Thus, it suffices to consider q only. From
Lemma 3, q ∼= � if and only if

(
2
p

)
= 1 or p ≡ ±1

(mod 8), i.e. 4|h+ if and only if p ≡ ±1 (mod 8).
Suppose a = [a, b+

√−2p ] such that (a, 8p) = 1,
a|b2 + 2p and a2 ∼= q. From Lemma 3, a ∼= � if and
only if

(
a1
p

)
= 1. Since a2 ∼= q, there exist integers x

and y such that

(2) 2x2 + py2 = a2.

If p ≡ 1 (mod 8), using the same argument as
in §4 and the Dirichlet’s Theorem on the biquadratic
character of 2, we get(

a1

p

)
= 1 ⇔

(
2
p

)
4

= 1

⇔ p = c2 + f2 ≡ 1 (mod 8),

where c is odd and 8|f .
If p ≡ −1 (mod 8), we can follow the argument

that proves p ≡ 1 (mod 16) in §4, to show that p ≡
−1 (mod 16).

These give us all the quadratic fiels with dis-
criminant divisible by exactly two primes and with
“narrow” class number divisible by 8.
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