The quadratic fields with discriminant divisible by exactly two primes and with "narrow" class number divisible by 8

By Julius M. Basilla*)
Department of Mathematics, Sophia University
7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554
(Communicated by Shigefumi Mori, m. J. A., Dec. 13, 2004)

Abstract

Let K be the quadratic field $\mathbf{Q}(\sqrt{m})$ with discirimant $d=p q$. Using Legendre's theorem on the solvability of the equation $a x^{2}+b y^{2}=z^{2}$, we give necessary and sufficient conditions for the class number of K in the narrow sense to be divisible by 8 . The approach recovers known criteria but is simpler and can be extended to compute the sylow 2 -subgroup of the ideal class group of quadratic fields.

Key words: Legendre's theorem; 2-part; Gauss genus theorem.

1. Preliminaries. Let m be a square free integer and K be the quadratic field $\mathbf{Q}(\sqrt{m})$ with discriminant d. Denote the narrow class number of K by h^{+}. For ideals \mathfrak{a} and \mathfrak{b}, we write $\mathfrak{a} \cong \mathfrak{b}$ if \mathfrak{a} and \mathfrak{b} belong to the same ideal class in the narrow sense.

For integers a and b, we write $\left(\frac{a}{b}\right)_{n}=1$ if $x^{n} \equiv$ $a(\bmod b)$ has a solution and $\left(\frac{a}{b}\right)_{n}=-1$ if $x^{n} \equiv a$ $(\bmod b)$ has no solution.

The sylow-2 subgroup of the ideal class group of K in the narrow sense is a nontrivial cyclic group in the following cases.

- Real Cases

1. $m=p q, p \equiv q(\bmod 4)$,
2. $m=p, p \equiv 3(\bmod 4)$,
3. $m=2 p, p \neq 2$.

- Imaginary Cases

4. $m=-p q, p \equiv-q \equiv 1(\bmod 4)$,
5. $m=-p, p \equiv 1(\bmod 4)$,
6. $m=-2 p, p \neq 2$,
where p and q denote some prime numbers.
It is known that:
Theorem 1. 1. For $m=p q, p \equiv q$ $(\bmod 4): 8$ divides h^{+}if and only if $\left(\frac{p}{q}\right)_{4}=$ $\left(\frac{q}{p}\right)_{4}=1(c f .[10])$.
7. For $m=p, p \equiv 3(\bmod 4)$: The class number in wide sense h is odd and h^{+}is divisible by 2 but not by 4 .
8. For $m=2 p, p \neq 2: 8$ divides h^{+}if and only

[^0]if $p=a^{2}+b^{2} \equiv 1(\bmod 8), a \equiv \pm 1(\bmod 8)$, $b \equiv 0(\bmod 8)$, or equivalently, 8 divides h^{+}if and only if $\left(\frac{2}{p}\right)_{4}=1, p \equiv 1(\bmod 16) .(c f .[6])$.
4. For $m=-p q, p \equiv-q(\bmod 4): 8 \mid h^{+}$if and only if $\left(\frac{-q}{p}\right)_{4}=1$.
5. For $m=-p, p \equiv 1(\bmod 4): 8 \mid h^{+}$if and only if $p \equiv a^{2}+b^{2} \equiv 1(\bmod 8)$ and $a+b \equiv \pm 1$ $(\bmod 8)(c f .[6])$, or equivalently, $8 \mid h^{+}$if and only if $p \equiv 1(\bmod 8)$ and $\left(\frac{-4}{p}\right)_{8}=1(c f$. [1]).
6. And for $m=-2 p, p \neq 2: 8 \mid h^{+}$if and only if $p \equiv$ $-1(\bmod 16)$, or if $\left(\frac{2}{p}\right)_{4}=1, p \equiv 1(\bmod 8)$.
Results for case 1 (cf. [10]) and case 4 (cf. [1]) were obtained using class field theory. By looking at the properties of quadratic forms, Kaplan (cf. [6]) was able to confirm cases $1,4,5$, and 6 , in addition to his criteria for case 3.

Using Ideal Theory and Legendre's theorem on the solvability of the diophantine equation $a x^{2}+$ $b y^{2}=z^{2}$ (cf. [5]), Nemenzo (cf. [7]) was able to arrive at Scholz result. In this paper, we shall give an elementary proof of Kaplan's assertion following Nemenzo's approach.

In passing, we also verify the Redei-Reichard theorem (cf. [9]):

Theorem 2. Rédei-Reichard Theorem.

1. For $m=p q, p \equiv q(\bmod 4), 4$ divides h^{+}if and only if $\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)=1$.
2. For $m=p, p \equiv 3(\bmod 4), 4$ does not divide h^{+}.
3. For $m=2 p, p \neq 2,4$ divides h^{+}if and only if $p \equiv 1(\bmod 8)$.
4. For $m=-p q, p \equiv-q \equiv 1(\bmod 4), 4$ divides
h^{+}if and only if $\left(\frac{p}{q}\right)=1$.
5. For $m=-p, p \equiv 1(\bmod 4), 4$ divides h^{+}if and only if $p \equiv 1(\bmod 8)$.
6. For $m=-2 p, p \neq 2,4$ divides h^{+}if and only if $p \equiv \pm 1(\bmod 8)$.
The main idea is to find necessary and sufficient conditions for a given ideal to be equivalent to the square of some ideals in K. We determine how many of the four primitive integral ambiguous ideals in K are fourth powers. Observe that if $\mathfrak{i}, \mathfrak{a}, \mathfrak{b}, \mathfrak{a b}$ are the four primitive integeral ambiguous ideals, $8 \mid h^{+}$if and only if \mathfrak{a} and \mathfrak{b} are fourth powers. It is interesting to note that this approach can be extended to compute the Sylow 2 subgroup of the ideal class group of quadratic fields (cf. [2-4]).

In this paper, we use the lowercase roman letters to denote rational integers and the German letters $\mathfrak{a}, \mathfrak{b}, \cdots$ to denote ideals. We will reserve German letter \mathfrak{i} for the unit ideal.
2. The ideals which are equivalent to a square. If a and b are nonzero integers, we write $a R b$ if a is a square modulo b. We denote the square free part of a by a_{1}.

Lemma 3. Let $\mathfrak{a}=\left[a, \frac{b+\sqrt{d}}{2}\right], N \mathfrak{a}=a>0$, $a \mid\left(b^{2}-d\right) / 4$. The ideal \mathfrak{a} is equivalent to the square of some ideal, written $\mathfrak{a} \cong \square$, if and only if for all odd prime p dividing m, we have

$$
\begin{aligned}
\left(\frac{a_{1}}{p}\right) & =1 \text { if } p \nmid a_{1}, \quad \text { and } \\
\left(\frac{-a_{1} m / p^{2}}{p}\right) & =1 \text { if } p \mid a_{1} .
\end{aligned}
$$

Proof. The ideal $\mathfrak{a} \cong \square$ if and only if

$$
\begin{equation*}
(2 a x+b y)^{2}-d_{1} y^{2}=a_{1} z^{2} \tag{1}
\end{equation*}
$$

has a nontrivial solution (cf. [8]). Since m is square free, we have $d_{1}=m$. If $m>0,(1)$ has a nontrivial solution if and only if $m R a_{1}, a_{1} R m, \frac{-a_{1} m}{\left(a_{1}, m\right)^{2}} R\left(a_{1}, m\right)$ (cf. [5]). If $m<0,(1)$ has a nontrivial solution if and only if $a_{1}(2 a x+b y)^{2}+\left(-a_{1} m\right) y^{2}=z^{2}$ has a nontrivial solution, which in turn has a nontrivial solution if and only if $a_{1} R \frac{-a_{1} m}{\left(a_{1}, m\right)^{2}}, \frac{-a_{1} m}{\left(a_{1}, m\right)^{2}} R a_{1}$, and $m R a_{1}$.

Since $a \mid\left(b^{2}-d\right) / 4$, it follows that $m R a_{1}$. Observe also that

$$
\begin{aligned}
a_{1} R m & \Leftrightarrow a_{1} R \frac{-a_{1} m}{\left(a_{1}, m\right)^{2}} \\
& \Leftrightarrow \text { for all odd prime } p \mid m, p \nmid a_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{a_{1}}{p}\right)=1 \\
\frac{-a_{1} m}{\left(a_{1}, m\right)^{2}} R a_{1} \Leftrightarrow & \frac{-a_{1} m}{\left(a_{1}, m\right)^{2}} R\left(a_{1}, m\right) \\
\Leftrightarrow & \text { for all odd prime } p \mid\left(a_{1}, m\right) \\
& \left(\frac{-a_{1} m / p^{2}}{p}\right)=1
\end{aligned}
$$

3. The case $m=p, p \equiv 3(\bmod 4)$. The four primitive integral ambiguous of K are $\mathfrak{i}, \mathfrak{p}=$ $[p, \sqrt{p}], \mathfrak{q}=[2,1+\sqrt{p}]$ and $\mathfrak{p q}$. Since $\left(\frac{-1}{p}\right)=-1$, $\mathfrak{p} \not \approx \square$. If follows that $2 \| h^{+}$for all $m=p \equiv 3$ $(\bmod 4)$.
4. The case $m=2 p, p \neq 2$. The four primitive integral ambiguous of K are $\mathfrak{i}, \mathfrak{p}=[p, \sqrt{2 p}]$, $\mathfrak{q}=[2, \sqrt{2 p}]$ and $\mathfrak{p q}=(\sqrt{2 p})$. From Lemma 3, we have $\mathfrak{q} \cong \square$ if and only if $\left(\frac{2}{p}\right)=1$ or $p \equiv \pm 1(\bmod 8)$; and $\mathfrak{p} \cong \square$ if and only if $\left(\frac{-2}{p}\right)=1$ (i.e., $p \equiv 1$ or 3 $(\bmod 8))$. Thus, $4 \mid h^{+}$if and only if $p \equiv 1(\bmod 8)$.

Let $\mathfrak{a}=[a, b+\sqrt{2 p}], a \mid b^{2}-2 p$, and $(a, 8 p)=1$. From Lemma $3, \mathfrak{a} \cong \square$ if and only if $\left(\frac{a_{1}}{p}\right)=1$.

Let $p \equiv 1(\bmod 8)$ so that \mathfrak{p} and \mathfrak{q} are equivalent to squares. If $\mathfrak{a}^{2} \cong \mathfrak{p}$, there exist relatively prime integers x and y such that $p x^{2}-2 y^{2}=a^{2}$ (cf. [8]). Write $y=2^{k} y^{\prime}, y^{\prime}$ odd. From this equation, we get

$$
\begin{aligned}
\left(\frac{a_{1}}{p}\right) & =\left(\frac{-2 y^{2}}{p}\right)_{4}=\left(\frac{2}{p}\right)_{4}\left(\frac{y}{p}\right), \\
\left(\frac{y}{p}\right) & =\left(\frac{y^{\prime}}{p}\right)=\left(\frac{p}{y^{\prime}}\right)=\left(\frac{a_{1}^{2}}{p}\right)=1 .
\end{aligned}
$$

Therefore,

$$
\left(\frac{a_{1}}{p}\right)=1 \Leftrightarrow\left(\frac{2}{p}\right)_{4}=1 \Leftrightarrow p=c^{2}+64 f^{2}
$$

for some integers c and f, by Dirichlet Theorem on the biquadratic character of 2 (cf. [5]).

If $\mathfrak{a}^{2} \cong \mathfrak{q}$, there exist integers x and y such that $2 x^{2}-p y^{2}=a^{2}$. Since $a \mid b^{2}-2 p$, we have $\left(\frac{a}{p}\right)=$ $\left(\frac{2}{a}\right)$. Thus, $\left(\frac{a}{p}\right)=1$ if and only if $a \equiv \pm 1(\bmod 8)$. Hence $\mathfrak{a} \cong \square$ if and only if $a^{2} \equiv 1(\bmod 16)$. By inspecting $2 x^{2}-p y^{2}=a^{2}$, we see that y is odd and therefore $2 x^{2}-1 \equiv 1(\bmod 8)$. Thus, x is also odd. If t is a prime dividing y, we have that $\left(\frac{2}{t}\right)=1$. And therefore, we have $y^{2} \equiv 1(\bmod 16)$. Since x is odd, we have $2 x^{2} \equiv 2(\bmod 16)$. It follows that $\mathfrak{a} \cong \square$ if and only if $p \equiv 1(\bmod 16)$.

Hence, $8 \mid h^{+}$if and only if $p=c^{2}+f^{2} \equiv 1$ $(\bmod 8)$ with $c \equiv \pm 1(\bmod 8)$ and $f \equiv 0(\bmod 8)$.
5. The case $m=-p q, p \equiv-q \equiv 1$ $(\bmod 4)$. The four primitive integral ambiguous of $K, \mathfrak{i}, \mathfrak{p}=\left[p, \frac{p+\sqrt{-p q}}{2}\right], \mathfrak{q}=\left[q, \frac{q+\sqrt{-p q}}{2}\right]$ and $\mathfrak{p q}=$ $(\sqrt{-p q})$ satisfy $\mathfrak{i} \cong \mathfrak{p q} \not \equiv \mathfrak{p} \cong \mathfrak{q}$. Thus it suffices to consider the ideal \mathfrak{p} only. From Lemma $3, \mathfrak{p} \cong \square$ if and only if $\left(\frac{p}{q}\right)=1$. That is, $4 \mid h^{+}$if and only if $\left(\frac{p}{q}\right)=1$.

Assume that $\left(\frac{p}{q}\right)=1$ so that $\mathfrak{p} \cong \mathfrak{a}^{2}$, for some ideal \mathfrak{a}. Put $\mathfrak{a}=\left[a, \frac{b+\sqrt{-p q}}{2}\right], a \mid\left(b^{2}+p q\right) / 4$, $(a, 2 p q)=1$ and all prime divisors of a split. From Lemma 3, $\mathfrak{a} \cong \square$ if and only if $\left(\frac{a_{1}}{p}\right)=\left(\frac{a_{1}}{q}\right)=1$. Observe that

$$
\begin{aligned}
\left(\frac{a_{1}}{p}\right)\left(\frac{a_{1}}{q}\right) & =\left(\frac{p}{a_{1}}\right)\left(\frac{-1}{a_{1}}\right)\left(\frac{q}{a_{1}}\right) \\
& =\left(\frac{-p q}{a_{1}}\right)=1
\end{aligned}
$$

since all prime divisors of a_{1} split. Thus $\left(\frac{a_{1}}{p}\right)=\left(\frac{a_{1}}{q}\right)$ and therefore, it suffices for us to find necessary and sufficient conditions for $\left(\frac{a_{1}}{p}\right)=1$.

Since $\mathfrak{a}^{2} \cong \mathfrak{p}$, there exist relatively prime integers x and y such that $p(2 x+y)^{2}+q y^{2}=4 a^{2}(c f$. [8]). Note that since $p \equiv 1(\bmod 4)$, we have $\left(\frac{2}{p}\right)=$ $\left(\frac{-1}{p}\right)_{4}$. It follows that

$$
\begin{aligned}
\left(\frac{a_{1}}{p}\right) & =\left(\frac{2}{p}\right)\left(\frac{2 a}{p}\right)=\left(\frac{-1}{p}\right)_{4}\left(\frac{q y^{2}}{p}\right)_{4} \\
& =\left(\frac{-1}{p}\right)_{4}\left(\frac{q}{p}\right)_{4}\left(\frac{y}{p}\right)=\left(\frac{-q}{p}\right)_{4}\left(\frac{y}{p}\right)
\end{aligned}
$$

If $y=2^{k} y^{\prime}$, where y^{\prime} is odd, it follows that $\left(\frac{y^{\prime}}{p}\right)=\left(\frac{p}{y^{\prime}}\right)=1$. Thus $\left(\frac{y}{p}\right)=\left(\frac{2}{p}\right)^{k}$. If $k=0$, then $\left(\frac{y}{p}\right)=1$. Suppose y is even so that x is odd. Expanding we get $p x^{2}+p x y+y^{2}\left(\frac{p+q}{4}\right)=a^{2}$. It follows that $p x y \equiv 0(\bmod 4)$. If $p \equiv 1(\bmod 8)$, then $\left(\frac{y}{p}\right)=1$. If $p \equiv 5(\bmod 8)$, we get $5+5 x y \equiv 1$ $(\bmod 8)$, so $5 x y \not \equiv 0(\bmod 8)$. That is, $k=0$ of $k=$ 2 and therefore $\left(\frac{y}{p}\right)=1$.

Therefore, $\left(\frac{a_{1}}{p}\right)=1$ if and only if $\left(\frac{-q}{p}\right)_{4}=1$. Hence, $8 \mid h^{+}$if and only if $\left(\frac{-q}{p}\right)_{4}=1$.
6. The case $m=-p, p \equiv 1(\bmod 4)$. The four primitive integral ambiguous of $K, \mathfrak{i}, \mathfrak{p}=$ $(\sqrt{-p}), \mathfrak{q}=[2,1+\sqrt{-p}]$ and $\mathfrak{p q}=[2 p, p+\sqrt{-p}]$ satisfy $\mathfrak{i} \cong \mathfrak{p} \not \equiv \mathfrak{q} \cong \mathfrak{p q}$. This, it suffices to consider \mathfrak{q} only. From Lemma $3, \mathfrak{q} \cong \square$ if and only if $\left(\frac{2}{p}\right)=$ 1 or $p \equiv 1(\bmod 8)$, i.e. $4 \mid h^{+}$if and only if $p \equiv 1$ $(\bmod 8)$.

Assume $p \equiv 1(\bmod 8)$ so that $\mathfrak{q} \cong \mathfrak{a}^{2}$ for some ideal $\mathfrak{a}=[a, b+\sqrt{-p}], a \mid b^{2}+p,(a, 4 p)=1$. From Lemma $3, \mathfrak{a} \cong \square$ if and only if $\left(\frac{a_{1}}{p}\right)=1$. Since $\mathfrak{a}^{2} \cong$ \mathfrak{q}, there exist relatively prime integers x and y such that $(2 x+y)^{2}+p y^{2}=2 a^{2}$. Put $u=2 x+y$. We have

$$
\begin{aligned}
\left(\frac{a_{1}}{p}\right) & =\left(\frac{2 a}{p}\right)=\left(\frac{4 a^{2}}{p}\right)_{4}=\left(\frac{2 u^{2}}{p}\right)_{4} \\
& =\left(\frac{2}{p}\right)_{4}\left(\frac{u}{p}\right)
\end{aligned}
$$

If y is even, we get $u^{2}+p y^{2} \equiv 0(\bmod 4)$ but $2 a^{2} \equiv 2(\bmod 4)$. Thus y is odd, and so is u. Using the same argument in section $\S 4$, we can show that $y^{2} \equiv 1(\bmod 16)$.

Since u is odd, we have $\left(\frac{u}{p}\right)=\left(\frac{p}{u}\right)=\left(\frac{2 a^{2}}{u}\right)=$ $\left(\frac{2}{u}\right)$. Therefore, $\left(\frac{u}{p}\right) \equiv 1$ if and only if $u \equiv \pm 1$ $(\bmod 8)$.

Write $p=c^{2}+16 f^{2}$ where c is odd (cf. [1]). Since a is odd, $a^{2} \equiv 1(\bmod 8)$ and $2 a^{2} \equiv 2(\bmod 16)$. Considering the equation $u^{2}+p y^{2}=2 a^{2}$ modulo 16 , we get

$$
\begin{aligned}
u^{2}+\left(c^{2}+16 f^{2}\right) y^{2} & \equiv 2 a^{2} \quad(\bmod 16) \\
u^{2}+c^{2} & \equiv 2 \quad(\bmod 16) \\
u^{2} & \equiv c^{2} \equiv 1 \text { or } 9 \quad(\bmod 16)
\end{aligned}
$$

Applying Dirichlet's theorem on the biquadratic character of 2 , we get

$$
\begin{aligned}
\left(\frac{2}{p}\right)_{4}=\left(\frac{u}{p}\right)=1 \Leftrightarrow & c^{2} \equiv u^{2} \equiv 1 \quad(\bmod 16) \\
& 2 \mid f \\
\Leftrightarrow & p=c^{2}+64 f^{\prime 2} \\
& p \equiv 1 \quad(\bmod 16) \\
\Rightarrow & \left(\frac{-1}{p}\right)_{8}=1
\end{aligned}
$$

for some integer f^{\prime}, and on the other hand,

$$
\begin{aligned}
\left(\frac{2}{p}\right)_{4}=\left(\frac{u}{p}\right)=-1 \Leftrightarrow & c^{2} \equiv u^{2} \equiv 9 \quad(\bmod 16), \\
& f \text { odd } \\
\Leftrightarrow & p \equiv 9(\bmod 16), \\
& f \text { odd } \\
\Rightarrow & \left(\frac{-1}{p}\right)_{8}=-1 .
\end{aligned}
$$

In any case, we have

$$
\left(\frac{-4}{p}\right)_{8}=\left(\frac{-1}{p}\right)_{8}\left(\frac{2}{p}\right)_{4}=1
$$

We note that the $c^{2} \equiv u^{2} \equiv 1(\bmod 16)$ if and only if $c \equiv \pm 1(\bmod 8)$ and $c^{2} \equiv u^{2} \equiv 9(\bmod 16)$ if and only if $c \equiv \pm 3(\bmod 8)$. Thus, we can equivalently claim that $8 \mid h^{+}$if and only if there exist integers c and p, c odd such that $p=c^{2}+f^{2} \equiv 1(\bmod 8)$ and $c+f \equiv \pm 1(\bmod 8)$.
7. The case $m=-2 p, p \neq 2$. The four primitive integral ambiguous of $K, \mathfrak{i}, \mathfrak{p}=[p, \sqrt{-2 p}]$, $\mathfrak{q}=[2, \sqrt{-2 p}]$ and $\mathfrak{p q}=(\sqrt{-2 p})$, satisfy $\mathfrak{i} \cong \mathfrak{p q} \neq$ $\mathfrak{p} \cong \mathfrak{q}$. Thus, it suffices to consider \mathfrak{q} only. From Lemma $3, \mathfrak{q} \cong \square$ if and only if $\left(\frac{2}{p}\right)=1$ or $p \equiv \pm 1$ $(\bmod 8)$, i.e. $4 \mid h^{+}$if and only if $p \equiv \pm 1(\bmod 8)$.

Suppose $\mathfrak{a}=[a, b+\sqrt{-2 p}]$ such that $(a, 8 p)=1$, $a \mid b^{2}+2 p$ and $\mathfrak{a}^{2} \cong \mathfrak{q}$. From Lemma $3, \mathfrak{a} \cong \square$ if and only if $\left(\frac{a_{1}}{p}\right)=1$. Since $\mathfrak{a}^{2} \cong \mathfrak{q}$, there exist integers x and y such that

$$
\begin{equation*}
2 x^{2}+p y^{2}=a^{2} \tag{2}
\end{equation*}
$$

If $p \equiv 1(\bmod 8)$, using the same argument as in $\S 4$ and the Dirichlet's Theorem on the biquadratic character of 2 , we get

$$
\begin{aligned}
\left(\frac{a_{1}}{p}\right)=1 & \Leftrightarrow\left(\frac{2}{p}\right)_{4}=1 \\
& \Leftrightarrow p=c^{2}+f^{2} \equiv 1 \quad(\bmod 8)
\end{aligned}
$$

where c is odd and $8 \mid f$.
If $p \equiv-1(\bmod 8)$, we can follow the argument that proves $p \equiv 1(\bmod 16)$ in $\S 4$, to show that $p \equiv$ $-1(\bmod 16)$.

These give us all the quadratic fiels with discriminant divisible by exactly two primes and with "narrow" class number divisible by 8 .

References

[1] Barrucand, P., and Cohn, H.: Notes on primes of type $x^{2}+32 y^{2}$, class number, and residuacity. J. Reine Angew. Math., 238, 67-70 (1969).
[2] Basilla, J. M.: Doctoral Thesis. Sophia University. (Preprint).
[3] Basilla, J. M., and Wada, H.: On efficient computation of the 2-parts of the ideal class groups of quadratic fields. Proc. Japan Acad., 80A, 191193 (2004).
[4] Hasse, H.: An algorithm for determining the structure of the 2-Sylow-subgroups of the divisor class group of a quadratic number field. Symposia Mathematica (Convegno di Strutture in Corpi Algebrici, INDAM, Roma 1973), vol. XV, Academic Press, London, pp. 341-352 (1975).
[5] Ireland, K., and Rosen, M.: A Classical Introduction to Modern Number Theory. 2nd ed. Grad. Texts in Math., 84, Springer-Verlag, New York, pp. 64, 272-275 (1990).
[6] Kaplan, P.: Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2-groupe des classes est cyclique, et réciprocité biquadratique. J. Math. Soc. Japan, 25, 596-608 (1973).
[7] Nemenzo, F. R.: On a Theorem of Scholz on the class number of quadratic fields. Proc. Japan Acad., 80A, 9-11 (2004).
[8] Nemenzo, F., and Wada, H.: An elementary proof of Gauss' genus theorem. Proc. Japan Acad., 68A, 94-95 (1992).
[9] Rédei, L., and Reichardt, H.: Die Anzahl der durch 4 teilbaren invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörpers. J. Reine Angew. Math., 170, 69-74 (1934).
[10] Scholz, A.: Über die Lösbarket der Gleichung $t^{2}-$ $D u^{2}=-4$. Math. Z., 39, 95-111 (1934).

[^0]: 2000 Mathematics Subject Classification. Primary 11R29; Secondary 11R11.
 *) On study leave from the Department of Mathematics, University of the Philippines-Diliman.

