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On a distribution property of the residual order of a (mod p), (2)

By Koji Chinen∗) and Leo Murata∗∗)

(Communicated by Heisuke Hironaka, m. j. a., Nov. 12, 2004)

Abstract: Let a be a positive integer which is not a perfect b-th power with b ≥ 2, and
Qa(x; k, l) be the set of primes p ≤ x such that the residual order of a (mod p) in Z/pZ∗ is congruent
to l (mod k). In this paper, which is a sequel of our previous paper [1], under the assumption of the
Generalized Riemann Hypothesis, we prove that for any residue class l (mod k) the set Qa(x; k, l)
has the natural density ∆a(k, l), and the values of ∆a(k, l) are effectively computable. We also
consider some number theoretical properties of ∆a(k, l) as a number theoretical function of k and l.

Key words: Residual order; Artin’s conjecture (for primitive root).

1. This is a sequel of our previous paper [1].
Let a (≥ 2) be a natural number which is not a

perfect b-th power with b ≥ 2, j and k be integers
with 0 ≤ j ≤ k. For a prime p with p � a, we define
the number

Da(p) = �〈a (mod p)〉
(the multiplicative order of the class a (mod p) in
(Z/pZ)×), and consider the set

Qa(x; k, j) = {p ≤ x; p � a, Da(p) ≡ j (mod k)}.
In [1], we considered the case k = 4. We as-

sumed the Generalized Riemann Hypothesis (GRH),
then in Theorem 1.1 we proved that any Qa(x; 4, j)
has the natural density ∆a(4, j), and in Theorem 1.2
we obtained their explicit values. For the full proofs,
see [2] and [7].

In this paper, we extend our previous result to
more general cases:
1◦ k = qr, a prime power,
2◦ k is a composite number which has at least two

distinct prime factors.
For these results, see also [3] and [4].

First we can prove the existence of the natural
density of Qa(x; k, j) for general residue classes:

Theorem 1. We assume GRH, and assume a

is not a perfect b-th power with b ≥ 2. Then, for any
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residue class j (mod k), the set Qa(x; k, j) has the
natural density ∆a(k, j), and the values of ∆a(k, j)
are effectively computable.

Remark. When j = 0, we can prove this re-
sult unconditionally. See also [5, 6] and [8].

When k′|k and j ≡ j′ (mod k′), then
Qa(x; k, j) ⊂ Qa(x; k′, j′). Then we are interested in
what sort of relations we can find between ∆a(k, j)
and ∆a(k′, j′).
1◦ The case k = qr , a prime power.

It is clear that, for any r ≥ 1,

∆a(qr−1, j) =
q−1∑
t=0

∆a(qr , j + tqr−1).

Then, it is natural to expect “equi-distribution prop-
erty”, i.e. for any t,

∆a(qr , j + tqr−1) =
1
q
∆a(qr−1, j).

And, when r is not “very small”, we have above
“equi-distribution property”.

Theorem 2. We assume GRH.
(I) When q is an odd prime, if r ≥ 2, then for

an arbitrary j, we have

∆a(qr , j) =
1
q
∆a(qr−1, j).

(II) When q = 2, if r ≥ 4, then for any j, we
have the same relation.

It seems an interesting phenomenon that, for the
remaining cases — when r is “very small” — we find
some irregularity. Let a1 be the square free part of
a, and for each Dirichlet character χ mod q we define
an absolute constant
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Cχ =
∏

p:prime
p	=q

p3 − p2 − p + χ(p)
(p − 1)(p2 − χ(p))

.

Theorem 3. Let q be an odd prime, 1 ≤ j ≤
q − 1, and we assume GRH.
(I) If q � a1, then

∆a(q, j) =
q2

(q − 1)(q2 − 1)
− 1

(q − 1)2
∑
χ∈Ĝ

Cχχ(−j)

×
(

1 + ηχ,a

∏
p|2a1

p(χ(p) − 1)
p3 − p2 − p + χ(p)

)
,

where

ηχ,a =




1, if a1 ≡ 1 (mod 4),

χ(2)2

16
, if a1 ≡ 2 (mod 4),

χ(2)
4

, if a1 ≡ 3 (mod 4).

(II) If q|a1, then

∆a(q, j) =
q2

(q − 1)(q2 − 1)
− 1

(q − 1)2

×
[ ∑

χ∈Ĝ

Cχ

{
χ(−j) −

(
χ(−j) + 2

∑
r

χ(r)−1
)
ηχ,a

×
∏

p|2a1

p(χ(p) − 1)
p3 − p2 − p + χ(p)

}]
,

where
∑

r means a sum over all r (1 ≤ r ≤ q − 1)
such that

(
jr+1

q

)
= 1 (

(
x
q

)
is the Legendre symbol)

and a1 is the q-free part of a1 (i.e. a1 = a1/q).
Theorem 4. When q = 2 and r = 3, under

GRH, we have

∆a(8, 2) = ∆a(4, 3), ∆a(8, 6) = ∆a(4, 1)

and unless j = 2, 6,

∆a(8, j) =
1
2
∆a(4, j).

For q = 2 and r = 2, see [1].
It is most likely that the constants Cχ which ap-

pear in Theorem 3 are not real numbers, and we are
interested in the fact that the real constant ∆a(qr , j)
is expressed as a combination of these complex con-
stants.
2◦ k is a composite number which has at least two

distinct prime factors.
In the general case, we proved in Theorem 1

that, under GRH, the natural density ∆a(k, j) ex-

ists, and when k and j are given, we can compute
the density effectively. But, taking account of The-
orem 3, we can recognize that the explicit form of
those densities are very complicated. So here we de-
scribe some typical points on the distribution prop-
erties of ∆a(k, j)’s.

Now we take k = 12 = 22 · 3.
Theorem 5. We assume GRH, and we take

a = 5. We define the absolute constant C by

C =
∏

p:prime
p	=2,3

p3 − p2 − p + χ(p)
(p − 1)(p2 − χ(p))

≈ 0.86989,

where χ is the nontrivial Dirichlet character mod 6.
Then we have

∆5(12, 0) =
1
8
,

∆5(12, 1) = ∆5(12, 7) =
5
96

− 21
940

C,

∆5(12, 2) =
5
48

− 109
1880

C,

∆5(12, 3) = ∆5(12, 9) =
1
16

∆5(12, 4) =
1
6
− 5

376
C,

∆5(12, 5) = ∆5(12, 11) =
5
96

+
21
940

C,

∆5(12, 6) =
1
8
,

∆5(12, 8) =
1
24

+
5

376
C,

∆5(12, 10) =
5
48

+
109
1880

C.

We compare these theoretical densities with ex-
perimental densities π(x)−1Q5(x; 12, j) with x =
179424673 —– π(179424673) = 107 (p. 184, Table I).

We find that these theoretical densities are quite
well-matched with experimental densities.

On the other hand, we notice that the distribu-
tion property of ∆5(12, j) are very complicated.

When

j (mod 12) = j1 (mod 4) × j2 (mod 3)

in Z/12Z ∼= Z/4Z× Z/3Z, we näıvely expect

∆5(12, j) = ∆5(4, j1)∆5(3, j2)

(local multiplicity), but the following examples show
that the distribution is not so simple.
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Table I.

j 0 1 2 3 4 5

theoretical 0.125000 0.032650 0.053732 0.062500 0.155099 0.071517

experimental 0.124955 0.032617 0.053689 0.062416 0.154655 0.071531

j 6 7 8 9 10 11

theoretical 0.125000 0.032650 0.053234 0.062500 0.154601 0.071517

experimental 0.125067 0.032665 0.053736 0.062595 0.154542 0.071532

∆5(1, 0) = 1

∆5(3, 0) =
3
8

∆5(3, 1) =
3
8

;

∆5(3, 2) =
1
4

�
�

�
��

�
�

�
��

∆5(4, 1) =
1
6

∆5(12, 9) =
1
16

∆5(12, 1) =
5
96

− 21
940

C

∆5(12, 5) =
5
96

+
21
940

C.

�
�

�
��

�
�

�
��

∆5(1, 0) = 1

∆5(4, 0) =
1
3

∆5(4, 1) =
1
6

∆5(4, 2) =
1
3

∆5(4, 3) =
1
6

;
�

�
�

�
��

�����

�����
�

�
�

�
��

∆5(3, 2) =
1
4

∆5(12, 8) =
1
24

+
5

376
C

∆5(12, 5) =
5
96

+
21
940

C

∆5(12, 2) =
5
48

− 109
1880

C

∆5(12, 11) =
5
96

+
21
940

C.

�
�

�
�

��

�����

�����
�

�
�

�
��

We can prove a similar result for other values of a.
For other examples, see [4].

2. We sketch our proofs briefly. Let

k = pe1
1 · · · per

r

be the primary decomposition of k, where pi’s
are distinct primes, ei ≥ 1, and consider the set
Qa(x; k, j). Further we put

j = h

r∏
i=1

pfi

i , (h, k) = 1.

Making use of these expressions of k and j, here we
define a set of integers uniquely defined by k:

J = {j ∈ N; 0 ≤ j < k, fi ≤ ei − 1

for all i (1 ≤ i ≤ r)},
i.e. J is the set of j’s satisfying the condition “pei

i � j

for any i”.
1st step. When j ∈ J .

Let Ia(p) be the residual index of a (mod p),
i.e. Ia(p) = |(Z/pZ)× : 〈a (mod p)〉|. In [2] and
[7], we use the following method: in order to calcu-
late the density ∆a(4, 1), first we decompose the set
Qa(x; 4, 1) into the form

�Qa(x; 4, 1) =
∑
f≥1

∑
l≥0

�
{
p ≤ x; Ia(p) = 2f + l · 2f+2,

p ≡ 1 + 2f (mod 2f+2)
}

+
∑
f≥1

∑
l≥0

�
{
p ≤ x; Ia(p) = 3 · 2f + l · 2f+2,

p ≡ 1 + 3 · 2f (mod 2f+2)
}
.

We calculated all cardinal numbers of those sets
which appeared in the right hand side.

In this 1st step, this method is effective again.
Here we introduce some new notations. For

(g1, . . . , gr) with g1 ≥ f1, . . . , gr ≥ fr, we put
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k′ =
r∏

i=1

pgi

i

and for m, n ∈ N, we define the following two types
of number fields:

Gm,n,d = Q(a1/mn, ζmd, ζn),

G̃m,n,d = Gm,n,d(ζkk′).

We take an automorphism σv ∈ Gal(Q(ζkk′)/Q)
determined uniquely by the condition σv : ζkk′ �→
ζ 1+vk′
kk′ (0 < v < k, (v, k) = 1), and we consider the

automorphism σ∗
v ∈ Gal(G̃m,n,d/Gm,n,d) which sat-

isfies σ∗
v|Q(ζkk′) = σv. We can verify that such a σ∗

v is
unique if it exists (see [1, Lemma 4.3]). Furthermore
we put

m ={
hv

(
mod

r∏
i=1

pei−fi

i

)
+ t

r∏
i=1

pei−fi

i

}
·

r∏
i=1

pgi−fi

i ,

where t ≥ 0 and hh ≡ 1
(
mod

∏r
i=1 pei−fi

i

)
. Then

we can prove, similarly to [2, §4], the following result:
Proposition 6. We assume GRH. We have

�Qa(x; k, j) = ∆a(k, j)lix + O

(
x

log x log logx

)
as x → ∞, where

∆a(k, l) =
∑

g1≥f1

· · ·
∑

gr≥fr

∑
0<v<k
(v,k)=1

∑
t≥0

(2.1)

m

ϕ(m)

∑
d|m

µ(d)
d

∞∑
n=1

µ(n)cv(m, n, d)
[G̃m,n,d : Q]

,

where

cv(m, n, d) =

{
1, if σ∗

v exists,
0, otherwise.

The series in the right hand side of (2.1) always con-
verge.

We apply this proposition to the special case
k = qr , then we obtain Theorems 2–4. For detailed
calculations of [G̃mn,nd : Q] and cv(m, n, d), see [3].

2nd Step. When j 	∈ J .
For such an j, we can prove the following result:
Proposition 7. We assume GRH. When j 	∈

J , then Qa(x; k, j) has a natural density ∆a(k, j),
and ∆a(k, j) is expressed as a linear combination of

∆a(k, j) with j ∈ J and ∆a(k′, j) with k′ < k.

We state the outline of proof. When k = pe1
1 ,

then our assertion is true by [3]. When k =
∏r

i=1 pei

i

— the general case — then we assume, without loss
of generality,∏

p
ei
i |j

pei

i = pe1
1 · · · pes

s , ei ≥ 1.

We denote this number by j0. If j 	∈ J , we can
express j in the form

j = m0 + n0
k

j0

(
0 ≤ m0 <

k

j0
, 0 ≤ n0 ≤ j0 − 1

)
and we consider the identity

Qa

(
x;

k

j0
, m0

)
=

j0−1⋃
n=0

Qa

(
x; k, m0 + n

k

j0

)
.

We can show that, by induction on the number of
distinct prime factors of k, all the densities except
for ∆a(k, m0 + n0(k/j0)) exist and are computable
from Proposition 6, and so is ∆a(k, m0 + n0(k/j0))
from the identity above.

Combining Propositions 6 and 7, we complete
the proof of Theorem 1.

Now, as a typical example, we take a = 5, k =
12, and let us calculate the densities ∆5(12, j), j =
0, 1, . . . , 11.
1◦ Unconditionally we have ∆5(12, 0) = 1/4.
2◦ For such an j with 22 � j and 3 � j, we can apply
Proposition 6, and get the densities

∆5(12, 1), ∆5(12, 2), ∆5(12, 5), ∆5(12, 7),

∆5(12, 10), ∆5(12, 11).

Here we need the exact values of the extension
degrees [G̃m,n,d : Q], and we must determine
cv(m, n, d) completely.
3◦ For the remaining values of j, we have by Propo-
sition 7,

∆a(3, 1) = ∆a(12, 1) + ∆a(12, 4) + ∆a(12, 7)

+ ∆a(12, 10),

∆a(3, 2) = ∆a(12, 2) + ∆a(12, 5) + ∆a(12, 8)

+ ∆a(12, 11),

∆a(4, 1) = ∆a(12, 1) + ∆a(12, 5) + ∆a(12, 9),

∆a(4, 2) = ∆a(12, 2) + ∆a(12, 6) + ∆a(12, 10),

∆a(4, 3) = ∆a(12, 3) + ∆a(12, 7) + ∆a(12, 11).

The densities to be found are the underlined ones,
and they can be computed from this system of equa-
tions. Consequently, we can determine all densities,
which proves our Theorem 5.



186 K. Chinen and L. Murata [Vol. 80(A),

References

[ 1 ] Chinen, K., and Murata, L.: On a distribution
property of the residual order of a (mod p). Proc.
Japan Acad., 79A, 28–32 (2003).

[ 2 ] Chinen, K., and Murata, L.: On a distribution
property of the residual order of a (mod p). J.
Number Theory, 105, 60–81 (2004).

[ 3 ] Chinen, K., and Murata, L.: On a distribution
property of the residual order of a (mod p). III.
(Preprint).

[ 4 ] Chinen, K., and Murata, L.: On a distribution
property of the residual order of a (mod p). IV.
(Preprint).
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