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On a distribution property of the residual order of a (mod p), (2)
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Abstract:

Let a be a positive integer which is not a perfect b-th power with b > 2, and

Qo(z; E, 1) be the set of primes p < x such that the residual order of a (mod p) in Z/pZ* is congruent
to ! (mod k). In this paper, which is a sequel of our previous paper [1], under the assumption of the
Generalized Riemann Hypothesis, we prove that for any residue class I (mod k) the set Qq(x; k,1)
has the natural density A,(k,), and the values of A, (k,l) are effectively computable. We also
consider some number theoretical properties of A, (k, ) as a number theoretical function of k£ and I.
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1. This is a sequel of our previous paper [1].

Let a (> 2) be a natural number which is not a
perfect b-th power with b > 2, j and k be integers
with 0 < j < k. For a prime p with p { a, we define
the number

Da(p) = #{a (mod p))

(the multiplicative order of the class a (mod p) in
(Z/pZ)*), and consider the set

Qo(z;kyj)={p<z;pta, Do(p)=j (mod k)}.

In [1], we considered the case k = 4. We as-
sumed the Generalized Riemann Hypothesis (GRH),
then in Theorem 1.1 we proved that any Q. (z;4, j)
has the natural density A,(4, j), and in Theorem 1.2
we obtained their explicit values. For the full proofs,
see [2] and [7].

In this paper, we extend our previous result to
more general cases:

1° k= q", a prime power,
2° k is a composite number which has at least two
distinct prime factors.
For these results, see also [3] and [4].

First we can prove the existence of the natural
density of Qq(x; k, j) for general residue classes:

Theorem 1. We assume GRH, and assume a
is not a perfect b-th power with b > 2. Then, for any
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residue class j (mod k), the set Qq(x;k,j) has the
natural density Aq(k, j), and the values of A, (k, 7)
are effectively computable.

Remark. When j = 0, we can prove this re-
sult unconditionally. See also [5, 6] and [8].

When Kk'lk and j = j (mod k'), then
Qo(z; k) C Qu(x; k', 4'). Then we are interested in
what sort of relations we can find between A,(k, j)
and Aq (K, 7).

1° The case k = ¢", a prime power.
It is clear that, for any r > 1,

Ju
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Adlqd M) =D Nalq",j+tqd" ).

t
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Then, it is natural to expect “equi-distribution prop-
erty”, i.e. for any t,

) _ 1 .
Au(q",j+tq" 1)=5Aa(q’“ L)

And, when r is not “very small”, we have above
“equi-distribution property”.

Theorem 2. We assume GRH.

(I) When q is an odd prime, if r > 2, then for
an arbitrary j, we have

) 1 .
Au(q",j) = aAa(q’“ )

(IT) When q = 2, if r > 4, then for any j, we
have the same relation.

It seems an interesting phenomenon that, for the
remaining cases — when r is “very small” — we find
some irregularity. Let a; be the square free part of
a, and for each Dirichlet character y mod ¢ we define
an absolute constant
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Theorem 3. Let q be an odd prime, 1 < j <
q— 1, and we assume GRH.
(@ If qtar, then
2

N q 1 .
Aa(qa]) - (q_l)(qg_l) (q—1)2 ZCXX( ])
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where
1, if a1 =1 (mod 4),
x(2)? .
Nyoa = (16 , if a1 =2 (mod 4),
2
%, if a1 =3 (mod 4).
(I1) If gla1, then
2
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where Y, means a sum over all v (1 < r < q—1)
such that (%) =1 ((%) is the Legendre symbol)
and a; is the q-free part of ay (i.e. a1 = a1/q).

Theorem 4.
GRH, we have

Aa(& 2) = Aa(4a 3),

When q = 2 and r = 3, under

Aa(& 6) = Aa(4a 1)

and unless j = 2,6,

. 1 .
Aa(&]) = §Aa(4a])'

For ¢ = 2 and r = 2, see [1].

It is most likely that the constants C, which ap-
pear in Theorem 3 are not real numbers, and we are
interested in the fact that the real constant A, (¢", 7)
is expressed as a combination of these complex con-
stants.

2° k is a composite number which has at least two
distinct prime factors.

In the general case, we proved in Theorem 1

that, under GRH, the natural density A,(k,j) ex-
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ists, and when k£ and j are given, we can compute
the density effectively. But, taking account of The-
orem 3, we can recognize that the explicit form of
those densities are very complicated. So here we de-
scribe some typical points on the distribution prop-
erties of A, (k, j)’s.

Now we take k = 12 =22 . 3.

Theorem 5. We assume GRH, and we take
a =5. We define the absolute constant C' by

o= 11

p:prime
p#2,3

where x is the nontrivial Dirichlet character mod 6.
Then we have

p*—p* —p+x(p)
(r—1)@* - x()

~ 0.86989,

1
A5(12,0):§,
5 21

As(12,1) = A5(12,7) = — — =—
5( ’ ) 5( 57) 96 940 P

5 109
As(12,2) = — — ——
5(12.2) 48 1880

1
A5(12,3) = A5(12,9) = 7

As(12,4) = é _ 3‘%0,

A5(12,5) = Ag(12,11) = % + % c,
A5(12,6) =

As(12,8) = 21—4 + % c,

As(12,10) = 45—8 + %

We compare these theoretical densities with ex-
perimental densities 7(z)71Qs5(x;12,5) with z =
179424673 — 7(179424673) = 107 (p. 184, Table I).

We find that these theoretical densities are quite
well-matched with experimental densities.

On the other hand, we notice that the distribu-
tion property of A5(12,5) are very complicated.

When

j (mod 12) = j; (mod 4) X j2 (mod 3)
in Z/12Z = Z/AZ x Z/3Z, we naively expect
A5(12a]) = A5(4aj1)A5(35j2)

(local multiplicity), but the following examples show
that the distribution is not so simple.
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Table 1.
j 0 1 2 3 4 5
theoretical ~ 0.125000 0.032650 0.053732 0.062500 0.155099 0.071517
experimental  0.124955 0.032617 0.053689 0.062416 0.154655 0.071531
7 6 7 8 9 10 11
theoretical ~ 0.125000 0.032650 0.053234 0.062500 0.154601 0.071517
experimental  0.125067 0.032665 0.053736 0.062595 0.154542 0.071532
3 We can prove a similar result for other values of a.
A5(3,0) = ] For other examples, see [4].
3 2. We sketch our proofs briefly. Let
As(1,0) =1 As(3,1) = = e1 er
5()) 5()) g k:pl"'pr
As(3,2) = 1 be the primary decomposition of k, where p;’s
R are distinct primes, e; > 1, and consider the set
Qu(z; k, 7). Further we put
1
A5(12,9) = — ,
16 j=h][pl,  (hEk)=1
1 5 21 =
As5(4,1) = 6 As(12,1) = 96 940 c Making use of these expressions of k and j, here we
. o1 define a set of integers uniquely defined by k:
AlZ9)=g6 T 500 J={eN 0<j<k fi<e -1
for all ¢ (1 <i<nr)},
1
A5(4,0) = 3 i.e. J is the set of j’s satisfying the condition “pi* { j
for any ¢”.
1 1st step. When 5 € J.
As(4,1) = 6 Let I,(p) be the residual index of a (mod p),
A5(1,0)=1 : ie. In(p) = [(Z/pZ)* : {(a (mod p))|. In [2] and
1 7], we use the following method: in order to calcu-
A5(4a 2) -
3 late the density A, (4,1), first we decompose the set
Qu(z;4,1) into the form
A5(4,3) = !
5\ % - 5
6 1Qa(r:4,1) = > > " #{p < s L(p) = 27 +1- 2772,
) . f>11>0
= f f+2
A5(12,8) = — + —C p=1+2 (mod 2772)}
5(12:8) = 51 + 37
+3 Y t{p<ailap) =3-27 +1. 2772,
5 21 f>11>0
X As(12,5) = o= + 515 p=1+3-2f (mod 2/+2)}.
A 2) =~
5(3,2) 4 5 109 We calculated all cardinal numbers of those sets
As5(12,2) = 18 1380 C which appeared in the right hand side.
In this 1st step, this method is effective again.
A5(12,11) = 5 + EC. Here we introduce some new notations. For
96 940 (91,---,9-) with g1 > f1,...,9r > fr, we put
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T
k= Hpi%
i=1

and for m,n € N, we define the following two types
of number fields:

Gm,n,d = Q(al/mna Cmda Cn)a
Gm,n,d = Gm,n,d(Ckk’)-

We take an automorphism o, € Gal(Q((kr)/Q)
determined uniquely by the condition o, : (i —

k}j”k’ (0 <v <k, (v,k) =1), and we consider the

automorphism o} € Gal(ém7n7d/Gm7n7d) which sat-
isfies 0| q(¢, /) = 0w We can verify that such a o7 is
unique if it exists (see [1, Lemma 4.3]). Furthermore

we put

m =
r s r
{h/U(mOd pr7_f7) +thf7_f7} .Hpim_fm,
1=1 =1 i=1

where t > 0 and hh = 1 (mod IT_, pf7'_f7'). Then
we can prove, similarly to [2, §4], the following result:
Proposition 6. We assume GRH. We have

X
a 7 I ] :Aa I ] 1 1 11
1Qa(; K, j) (k, jliz + O <1ng10g10gx>

as x — oo, where

CRINNUNED SR SIS

g12fi gr2fr 0<u<k £20
(v,k)=1
m Z w(d) i M(Tf)cv(m,n, d)
<p(m) dlm d n=1 [vanvd : Q] ,

where

{1, if o exists,
co(m,mn,d) = v
0, otherwise.
The series in the right hand side of (2.1) always con-
verge.

We apply this proposition to the special case
k = ¢", then we obtain Theorems 2—4. For detailed
calculations of [Grn.na @ Q) and ¢, (m,n, d), see [3].
2nd Step. When j & J.

For such an j, we can prove the following result:

Proposition 7. We assume GRH. When j &
J, then Qu(x;k,j) has a natural density A, (k, ),
and Ag(k, j) is expressed as a linear combination of

Aok, j) with j € J and Aq(K',j) with k' < k.
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We state the outline of proof. When k = pi*,
then our assertion is true by [3]. When k = [],_, p{*
— the general case — then we assume, without loss
of generality,

IIr=ptpe, ei>1.
p;'li

We denote this number by jo.
express j in the form

If j ¢ J, we can

k k
J=mo+ng— (0§m0<.—,0§n0§jo—1)
Jo Jo

and we consider the identity

Qa (x; f—o, mo) = J:L:_JOI Qa (x; k,mo + nj%)

We can show that, by induction on the number of
distinct prime factors of k, all the densities except
for Ay(k,mo + no(k/jo)) exist and are computable
from Proposition 6, and so is A, (k, mg + no(k/jo))
from the identity above.

Combining Propositions 6 and 7, we complete
the proof of Theorem 1.

Now, as a typical example, we take a = 5, k =
12, and let us calculate the densities A5(12,7), j =
0,1,...,11.
1° Unconditionally we have A5(12,0) = 1/4.
2° For such an j with 224 j and 31 j, we can apply
Proposition 6, and get the densities

A5(125 1); A5(12a 2); A5(12a 5); A5(12a 7);
As(12,10), As(12, 11).

Here we need the exact values of the extension

degrees [Gm,n,d Q], and we must determine

¢y(m,n, d) completely.
3° For the remaining values of j, we have by Propo-
sition 7,
Ag(3,1) = Ag(12,1) + Ag(12,4) + Ay(12,7)
+ A4(12,10),
Aa(3,2) = Ag(12,2) + Ag(12,5) + Ay(12,8)
+ Ag(12,11),
Ag(4,1) = Ay (12,1) + Ag(12,5) + Ay(12,9),
Ag(4,2) = Ag(12,2) + Ag(12,6) + A,(12,10),
Ag(4,3) = Ag(12,3) + Ag(12,7) + Ag(12,11).
The densities to be found are the underlined ones,
and they can be computed from this system of equa-

tions. Consequently, we can determine all densities,
which proves our Theorem 5.
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