On a holomorphic curve extremal for the defect relation

By Nobushige TodA ${ }^{*)}$
Professor Emeritus, Nagoya Institute of Technology
(Communicated by Shigefumi Mori, M. J. A., Nov. 12, 2004)

Abstract

Let f be a transcendental holomorphic curve from the complex plane into the two dimensional complex projective space of which defect relation over a set X in N-subgeneral position is extremal. Then, there are $N-1$ vectors in X whose deficiency with respect to f is equal to 1 .

Key words: Holomorphic curve; defect relation; extremal; subgeneral position.

1. Introduction. Let $f=\left[f_{1}, \ldots, f_{n+1}\right]$ be a holomorphic curve from \boldsymbol{C} into the n-dimensional complex projective space $P^{n}(\boldsymbol{C})$ with a reduced representation

$$
\left(f_{1}, \ldots, f_{n+1}\right): \boldsymbol{C} \rightarrow \boldsymbol{C}^{n+1}-\{\mathbf{0}\}
$$

where n is a positive integer. We use the following notations:

$$
\|f(z)\|=\left(\left|f_{1}(z)\right|^{2}+\cdots+\left|f_{n+1}(z)\right|^{2}\right)^{1 / 2}
$$

and for a vector $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n+1}\right) \in \boldsymbol{C}^{n+1}-\{\mathbf{0}\}$

$$
\begin{aligned}
\|\boldsymbol{a}\| & =\left(\left|a_{1}\right|^{2}+\cdots+\left|a_{n+1}\right|^{2}\right)^{1 / 2} \\
(\boldsymbol{a}, f(z)) & =a_{1} f_{1}(z)+\cdots+a_{n+1} f_{n+1}(z) \\
(\boldsymbol{a}, f) & =a_{1} f_{1}+\cdots+a_{n+1} f_{n+1}
\end{aligned}
$$

The characteristic function $T(r, f)$ of f is defined as follows (see [10]):

$$
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|f\left(r e^{i \theta}\right)\right\| d \theta-\log \|f(0)\|
$$

We suppose throughout the paper that f is transcendental: $\lim _{r \rightarrow \infty} T(r, f) / \log r=\infty$ and that f is linearly non-degenerate over \boldsymbol{C}; namely, f_{1}, \ldots, f_{n+1} are linearly independent over \boldsymbol{C}.

For meromorphic functions in the complex plane we use the standard notations of the Nevanlinna theory of meromorphic functions $([4,5])$.

For $\boldsymbol{a} \in \boldsymbol{C}^{n+1}-\{\mathbf{0}\}$, we write

$$
\begin{aligned}
& m(r, \boldsymbol{a}, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \frac{\|\boldsymbol{a}\|\left\|f\left(r e^{i \theta}\right)\right\|}{\left|\left(\boldsymbol{a}, f\left(r e^{i \theta}\right)\right)\right|} d \theta \\
& N(r, \boldsymbol{a}, f)=N(r, 1 /(\boldsymbol{a}, f))
\end{aligned}
$$

[^0]We call the quantity
$\delta(\boldsymbol{a}, f)=1-\limsup _{r \rightarrow \infty} \frac{N(r, \boldsymbol{a}, f)}{T(r, f)}=\liminf _{r \rightarrow \infty} \frac{m(r, \boldsymbol{a}, f)}{T(r, f)}$
the deficiency of \boldsymbol{a} with respect to f. It is known that $0 \leq \delta(\boldsymbol{a}, f) \leq 1$.

Let X be a subset of $\boldsymbol{C}^{n+1}-\{\mathbf{0}\}$ in N-subgeneral position; that is to say,
(i) $\# X \geq 2 N-n+2$ and
(ii) any $N+1$ elements of X generate \boldsymbol{C}^{n+1}, where N is an integer satisfying $N \geq n$.

Cartan $([1], N=n)$ and Nochka $([6], N>n)$ gave the following

Theorem A (Defect Relation). For any q elements $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{q}$ of X

$$
\sum_{j=1}^{q} \delta\left(\boldsymbol{a}_{j}, f\right) \leq 2 N-n+1
$$

$(2 N-n+1 \leq q \leq \infty)($ see also [2] or [3]).
We are interested in the holomorphic curve f extremal for the defect relation:

$$
\begin{equation*}
\sum_{j=1}^{q} \delta\left(\boldsymbol{a}_{j}, f\right)=2 N-n+1 \tag{1}
\end{equation*}
$$

In [9] we proved the following theorem.
Theorem B. Suppose that there are vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{q}$ in X such that (1) holds, where $2 N-n+$ $1<q \leq \infty$. If $N>n$ and n is even, then there are at least $[(2 N-n+1) /(n+1)]+1$ vectors $\boldsymbol{a} \in$ $\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{q}\right\}$ satisfying $\delta(\boldsymbol{a}, f)=1$.

The purpose of this paper is to improve Theorem B when $n=2$:

Theorem. Suppose that $N>n=2$ and that there are vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{q}$ in X such that (1) holds,
where $2 N-1<q \leq \infty$. Then there are at least $N-1$ vectors $\boldsymbol{a} \in\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{q}\right\}$ satisfying $\delta(\boldsymbol{a}, f)=1$.
2. Preliminaries. We shall give some lemmas in this section for later use. Let $f=$ $\left[f_{1}, \ldots, f_{n+1}\right], X$ etc. be as in Section $1, q$ any integer satisfying $2 N-n+1<q<\infty$ and we put $Q=\{1,2, \ldots, q\}$.

Let $\left\{\boldsymbol{a}_{j} \mid j \in Q\right\}$ be a family of vectors in X. For a non-empty subset P of Q, we denote
$V(P)=$ the vector space spanned by $\left\{\boldsymbol{a}_{j} \mid j \in P\right\}$, $d(P)=\operatorname{dim} V(P)$
and we put $\mathcal{O}=\{P \subset Q \mid 0<\# P \leq N+1\}$.
Lemma 2.1 ((2.4.3) in [3, p.68]). For $P \in \mathcal{O}$, $\# P-d(P) \leq N-n$.

Lemma 2.2 ($[9$, Proposition 10 (II)]). Suppose that there exists a function $\tau: Q \rightarrow(0,1]$ which satisfies the following condition $(*)$:
$(*) \quad$ For any $P \in \mathcal{O}, \sum_{j \in P} \tau(j) \leq d(P)$.
Then, for vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{q} \in X$, we have the inequality:

$$
\sum_{j=1}^{q} \tau(j) \delta\left(\boldsymbol{a}_{j}, f\right) \leq n+1
$$

3. Theorem. From now on throughout this paper we suppose that $N>n=2$. Then, the holomorphic curve $f=\left[f_{1}, f_{2}, f_{3}\right]$ is transcendental from \boldsymbol{C} into the two dimensional projective space $P^{2}(\boldsymbol{C})$, X is a subset of $\boldsymbol{C}^{3}-\{\mathbf{0}\}$ in N-subgeneral position.

From Theorem A it is easy to see that the set $\{\boldsymbol{a} \in X \mid \delta(\boldsymbol{a}, f)>0\}$ is at most countable and

$$
\sum_{\boldsymbol{a} \in X} \delta(\boldsymbol{a}, f) \leq 2 N-1
$$

We call this inequality the defect relation of f over X.
(A) First we consider the extremal holomorphic curve f with a finite number of vectors $\boldsymbol{a} \in$ X satisfying $\delta(\boldsymbol{a}, f)>0$.

Suppose that there are vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{q}$ in X satsfying

$$
\begin{equation*}
\sum_{j=1}^{q} \delta\left(\boldsymbol{a}_{j}, f\right)=2 N-1 \tag{2}
\end{equation*}
$$

where $2 N-1<q<\infty$.
As in Section 2, we put $Q=\{1,2, \ldots, q\}$, for a non-empty subset P of $Q, V(P)$ is the vector space spanned by $\left\{\boldsymbol{a}_{j} \mid j \in P\right\}, d(P)=\operatorname{dim} V(P)$ and
we put $\mathcal{O}=\{P \subset Q \mid 0<\# P \leq N+1\}$.
Definition 3.1 ([8, Definition 1]). We put

$$
\lambda=\min _{P \in \mathcal{O}} d(P) / \# P
$$

Proposition 3.1. $1 /(N-1) \leq \lambda<3 /(2 N-1)$.
In fact, we obtain the first inequality from [8, Proposition 2] for $n=2$ and the second one from [9, p. 295] for $n=2$.

Let P_{0} be an element of \mathcal{O} satisfying $d\left(P_{0}\right) / \# P_{0}=\lambda$. Then, we have the following

Proposition 3.2. $d\left(P_{0}\right)=1$ and $\# P_{0} \leq N-1$.
Proof. As $P_{0} \neq \phi, d\left(P_{0}\right) \geq 1$. By Proposition 3.1 and Lemma 2.1, we have the inequality

$$
d\left(P_{0}\right)<\frac{3}{2 N-1} \# P_{0} \leq \frac{3}{2 N-1}\left(N-2+d\left(P_{0}\right)\right)
$$

so that we have $d\left(P_{0}\right)<3 / 2$, which means that $d\left(P_{0}\right)=1$. This implies that $\# P_{0} \leq N-1$ by Lemma 2.1.

Proposition 3.3 ([9, Remark 1, Theorem 1]). For $j \in P_{0}, \delta\left(\boldsymbol{a}_{j}, f\right)=1$.

To prove our theorem when q is finite, we have only to prove that $\# P_{0}=N-1$ by Proposition 3.3. Let $\# P_{0}=N-x+1$. Then, $x \geq 2$ by Proposition 3.2 and

$$
\lambda=\min _{P \in \mathcal{O}} \frac{d(P)}{\# P}=\frac{d\left(P_{0}\right)}{\# P_{0}}=\frac{1}{N-x+1}
$$

Proposition 3.4. $\quad x<(N+4) / 3$.
Proof. As $\lambda<3 /(2 N-1)$ by Proposition 3.1, we have the inequality

$$
1 /(N-x+1)<3 /(2 N-1)
$$

which reduces to $x<(N+4) / 3$.
Proposition 3.5. Let $P \in \mathcal{O}$. If $P \subset Q \backslash P_{0}$ and $\# P \geq x$, then $d(P) \geq 2$ and $d\left(P \cup P_{0}\right)=3$.

Proof. As X is in N-subgeneral position and $\#\left(P_{0} \cup P\right) \geq N+1$, we have that $d\left(P_{0} \cup P\right)=3$. Further as $d\left(P_{0}\right)=1$, we have that $d(P) \geq 2$.

Proposition 3.6. Let $P \in \mathcal{O}$. If $P \backslash P_{0} \neq \phi$ and $P \cap P_{0} \neq \phi$, then $d(P) / \# P \geq 2 / N$.

Proof. First, we prove that $d(P) \geq 2$. Suppose to the contrary that $d(P)=1$. Then $d\left(P_{0} \cup P\right)=1$ because $P \cap P_{0} \neq \phi$ and $d\left(P_{0}\right)=1$. Further, we have that

$$
N-x+1<\#\left(P_{0} \cup P\right) \leq N-1
$$

since $\# P_{0}=N-x+1, P \backslash P_{0} \neq \phi, d\left(P_{0} \cup P\right)=$ 1 and X is in N-subgeneral positon. We then have that $P_{0} \cup P \in \mathcal{O}$ and

$$
d\left(P_{0} \cup P\right) / \#\left(P_{0} \cup P\right)<1 /(N-x+1)=\lambda,
$$

which contradicts the definition of λ. We have that $d(P) \geq 2$.

When $d(P)=2$, we have that $\# P \leq N$ and $d(P) / \# P \geq 2 / N$.

When $d(P)=3, d(P) / \# P \geq 3 /(N+1)>2 / N$ since $\# P \leq N+1$.

Proposition 3.7. Let $P \in \mathcal{O}$. If $P \cap P_{0}=\phi$, then $d(P) / \# P \geq 2 / N$.

Proof. (i) When $d(P)=1, \# P \leq x-1$ by Proposition 3.5 since if $\# P \geq x$, then $d(P) \geq 2$. In this case we have the inequality

$$
\frac{d(P)}{\# P}=\frac{1}{\# P} \geq \frac{1}{x-1}>\frac{3}{N+1}
$$

by Proposition 3.4.
(ii) When $d(P) \geq 2$, we have the inequality $d(P) / \# P \geq 2 / N$ as in Proposition 3.6.

As $3 /(N+1)>2 / N$, we have this proposition from (i) and (ii).

Remark 3.1. We note that $P \backslash P_{0} \neq \phi$ in Proposition 3.7.

Definition 3.2. We put
$\mathcal{O}_{1}=\left\{P \in \mathcal{O} \mid P \backslash P_{0} \neq \phi\right\}$ and $\lambda_{1}=\min _{P \in \mathcal{O}_{1}} \frac{d(P)}{\# P}$.
Remark 3.2. $\quad \lambda_{1} \geq 2 / N$ by Propositions 3.6 and 3.7.

Proposition 3.8. $\quad \lambda<\lambda_{1}$.
Proof. By Remark 3.2, we have the inequality

$$
\lambda_{1}-\lambda \geq \frac{2}{N}-\frac{1}{N-x+1}=\frac{N-2 x+2}{N(N-x+1)}>0
$$

since $N \geq 3$ and $(N+2) / 2>(N+4) / 3>x$ by Proposition 3.4.

Definition 3.3. We put

$$
\sigma(j)= \begin{cases}\lambda & \left(j \in P_{0}\right) \\ \lambda_{1} & \left(j \in Q \backslash P_{0}\right)\end{cases}
$$

Note that $0<\sigma(j) \leq 1(j \in Q)$ from Definitions 3.1, 3.2 and 3.3.

Proposition 3.9. For any $P \in \mathcal{O}$, we have the inequality $\sum_{j \in P} \sigma(j) \leq d(P)$.

Proof. (i) When $P \subset P_{0}$,

$$
\sum_{j \in P} \sigma(j)=\lambda \# P \leq \frac{d(P)}{\# P} \# P=d(P)
$$

(ii) When $P \backslash P_{0} \neq \phi$,

$$
\sum_{j \in P} \sigma(j) \leq \lambda_{1} \# P \leq \frac{d(P)}{\# P} \# P=d(P)
$$

Proposition 3.10. $\quad \sum_{j=1}^{q} \sigma(j) \delta\left(\boldsymbol{a}_{j}, f\right) \leq 3$.
Proof. We obtain this inequality from Proposition 3.9 and Lemma 2.2 for $n=2$.

Proposition 3.11. $\quad \# P_{0}=N-1$.
Proof. From Proposition 3.10 we have the inequality
(3) $\sum_{j \in P_{0}} \sigma(j) \delta\left(\boldsymbol{a}_{j}, f\right)+\sum_{j \in Q \backslash P_{0}} \sigma(j) \delta\left(\boldsymbol{a}_{j}, f\right) \leq 3$.

As $\delta\left(\boldsymbol{a}_{j}, f\right)=1\left(j \in P_{0}\right)$ (Proposition 3.3), from (3) we have the inequality

$$
\frac{1}{N-x+1}(N-x+1)+\sum_{j \in Q \backslash P_{0}} \sigma(j) \delta\left(\boldsymbol{a}_{j}, f\right) \leq 3 .
$$

As $\sigma(j)=\lambda_{1} \geq 2 / N\left(j \in Q \backslash P_{0}\right)$ (Remark 3.2), we have the inequality

$$
\frac{2}{N} \sum_{j \in Q \backslash P_{0}} \delta\left(\boldsymbol{a}_{j}, f\right) \leq 2, \quad \text { or } \quad \sum_{j \in Q \backslash P_{0}} \delta\left(\boldsymbol{a}_{j}, f\right) \leq N
$$

On the other hand, from (2) we have the equality

$$
\begin{aligned}
\sum_{j \in Q \backslash P_{0}} \delta\left(\boldsymbol{a}_{j}, f\right) & =2 N-1-(N-x+1) \\
& =N+x-2
\end{aligned}
$$

so that we have $N+x-2 \leq N$ or $x \leq 2$, which means that $\# P_{0}=N-x+1 \geq N-1$.

Combining this with Proposition 3.2, we have that $\# P_{0}=N-1$.
(B) Next, we consider the extremal holomorphic curve f with an infinite number of vectors $\boldsymbol{a}_{j} \in$ X such that $\delta\left(\boldsymbol{a}_{j}, f\right)>0$ and

$$
\sum_{j=1}^{\infty} \delta\left(\boldsymbol{a}_{j}, f\right)=2 N-1
$$

Let

$$
\begin{aligned}
\boldsymbol{N} & =\{1,2,3, \ldots\} \text { (the set of positive integers) } \\
Y & =\left\{\boldsymbol{a}_{j} \mid j \in \boldsymbol{N}\right\} \\
\mathcal{O}_{\infty} & =\{P \subset \boldsymbol{N} \mid 0<\# P<N+1\}
\end{aligned}
$$

and for any subset P of \boldsymbol{N}, we use the notations $V(P)$ and $d(P)$ as in Section 2.

Definition 3.4 ([8, p. 144]). We put

$$
\mu=\min _{P \in \mathcal{O}_{\infty}} d(P) / \# P
$$

Note that the set $\left\{d(P) / \# P \mid P \in \mathcal{O}_{\infty}\right\}$ is a finite set.

Proposition 3.1'. $1 /(N-1) \leq \mu<3 /(2 N-1)$.
In fact, we have the first inequality from [8, p. 144] for $n=2$ and the second one from [9, pp. 298-299] for $n=2$.

Let P_{0} be an element of \mathcal{O}_{∞} satisfying $\mu=$ $d\left(P_{0}\right) / \# P_{0}$. As in the case of Proposition 3.2, we have the following

Proposition 3.2'. $d\left(P_{0}\right)=1$ and $\# P_{0} \leq N-1$.
Further we have the following
Proposition 3.3' ([9, Proof of Theorem 2, pp. 299-300]). For $j \in P_{0}, \delta\left(\boldsymbol{a}_{j}, f\right)=1$.

To prove our theorm when q is infinite, we have only to prove that $\# P_{0}=N-1$ by Proposition 3.3^{\prime}. Let $\# P_{0}=N-x+1$. Then, $x \geq 2$ by Proposition 3.2^{\prime} and

$$
\mu=\min _{P \in \mathcal{O}_{\infty}} \frac{d(P)}{\# P}=\frac{d\left(P_{0}\right)}{\# P_{0}}=\frac{1}{N-x+1}
$$

Remark 3.3. As in the case (A), we obtain the same propositions as in Propositions 3.4, 3.5, 3.6 and 3.7 for P_{0} in this case.

For any positive number $0<\epsilon<1$, we choose an integer q satisfying $Q=\{1,2, \ldots, q\} \supset P_{0}, q>$ $2 N-1$ and

$$
\begin{equation*}
2 N-1-\epsilon<\sum_{j=1}^{q} \delta\left(\boldsymbol{a}_{j}, f\right) \tag{4}
\end{equation*}
$$

We put $\mathcal{P}=\{P \subset Q \mid 0<\# P \leq N+1\}$.
Note that $\mu=\min _{P \in \mathcal{P}} d(P) / \# P$ since $\mathcal{P} \ni P_{0}$ and $\mu=d\left(P_{0}\right) / \# P_{0}$.

Definition 3.5. We put $\mathcal{P}_{1}=\left\{P \in \mathcal{P} \mid P \backslash P_{0} \neq \phi\right\}$ and $\mu_{1}=\min _{P \in \mathcal{P}_{1}} \frac{d(P)}{\# P}$.

Note that $\mathcal{P}_{1} \neq \phi$ since $\# Q>2 N-1$ and $\# P_{0} \leq N-1$.

Remark 3.4. $\mu_{1} \geq 2 / N$ as in Remark 3.2.
As in the case of Proposition 3.8, we have the following

Proposition 3.8'. $\quad \mu<\mu_{1}$.
Definition 3.6. We put

$$
\tau(j)= \begin{cases}\mu & \left(j \in P_{0}\right) \\ \mu_{1} & \left(j \in Q \backslash P_{0}\right)\end{cases}
$$

From Definitions 3.4, 3.5 and 3.6, we have that $\tau: Q \rightarrow(0,1]$. As in the case of Proposition 3.9, we
have the following
Proposition 3.9'. For any $P \in \mathcal{P}$, we have the inequality $\sum_{j \in P} \tau(j) \leq d(P)$.

By using this proposition, we have the following proposition as in Proposition 3.10:

Proposition 3.10'. $\quad \sum_{j=1}^{q} \tau(j) \delta\left(\boldsymbol{a}_{j}, f\right) \leq 3$.
Finally, we obtain the following proposition corresponding to Proposition 3.11.

Proposition 3.11'. $\quad \# P_{0}=N-1$.
Proof. From Proposition 3.10^{\prime} we have the inequality
(5) $\quad \sum_{j \in P_{0}} \tau(j) \delta\left(\boldsymbol{a}_{j}, f\right)+\sum_{j \in Q \backslash P_{0}} \tau(j) \delta\left(\boldsymbol{a}_{j}, f\right) \leq 3$.

As $\delta\left(\boldsymbol{a}_{j}, f\right)=1\left(j \in P_{0}\right)$ (Proposition 3.3'), from (5) we have the inequality

$$
\frac{1}{N-x+1}(N-x+1)+\sum_{j \in Q \backslash P_{0}} \tau(j) \delta\left(\boldsymbol{a}_{j}, f\right) \leq 3
$$

As $\tau(j)=\mu_{1} \geq 2 / N\left(j \in Q \backslash P_{0}\right)$ (Remark 3.4), we have the inequality

$$
\frac{2}{N} \sum_{j \in Q \backslash P_{0}} \delta\left(\boldsymbol{a}_{j}, f\right) \leq 2, \quad \text { or } \quad \sum_{j \in Q \backslash P_{0}} \delta\left(\boldsymbol{a}_{j}, f\right) \leq N
$$

On the other hand, from (4) we have the inequality

$$
\begin{aligned}
\sum_{j \in Q \backslash P_{0}} \delta\left(\boldsymbol{a}_{j}, f\right) & >2 N-1-\epsilon-(N-x+1) \\
& =N+x-2-\epsilon
\end{aligned}
$$

so that we have $N+x-2-\epsilon<N$ or $x \leq 2+\epsilon$. This means that $\# P_{0}=N-x+1 \geq N-1-\epsilon$, and so we have that $\# P_{0} \geq N-1$ as P_{0} is an integer and $0<\epsilon<1$. Combining this with Proposition 3.2^{\prime} we have this proposition.

Summarizing the results obtained in this section we have our Theorem:

Theorem 3.1. Suppose that $N>2$ and that there are vectors $\boldsymbol{a}_{j}(j=1, \ldots, q) \in X(2 N-1<$ $q \leq \infty)$ satisfying

$$
\sum_{j=1}^{q} \delta\left(\boldsymbol{a}_{j}, f\right)=2 N-1
$$

Then, there exists a subset P_{0} of $\{1,2, \ldots, q\}$ such that
(i) $d\left(P_{0}\right)=1$ and $\# P_{0}=N-1$;
(ii) $\delta\left(\boldsymbol{a}_{j}, f\right)=1$ for $j \in P_{0}$.
4. Example. Let f, X and $N>n=2$ be as in Section 3. Theorem 3.1 implies that for f to be extremal for the defect relation it is necessary that there exists a subset S_{0} of X satisfying

$$
\begin{equation*}
\# S_{0}=N-1 \quad \text { and } \quad d\left(S_{0}\right)=1 \tag{6}
\end{equation*}
$$

where $d\left(S_{0}\right)$ is the dimension of the vector space spanned by the elements of S_{0}.

This shows that if X does not have any subset satisfying (6), any transcendental holomorphic curve is not extremal for the defect relation over X. In this section, we shall give an example of f and X which satisfy Theorem 3.1 and an example of maximal subset of $\boldsymbol{C}^{3}-\{\mathbf{0}\}$ in N-subgeneral position having no subset satisfying (6). We use $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$ as the standard basis of \boldsymbol{C}^{3}.

Example 4.1. Let $f_{1}=\left[e^{z}, z, 1\right]$. For $N>2$ we put

$$
\begin{aligned}
X_{1}= & \left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{2 N-1}\right\} \\
& \cup\left\{\left(a^{2}, a, 1\right) \mid a \in \boldsymbol{C}, a \neq 0,1, \ldots, N-2\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
\boldsymbol{a}_{j} & =j \boldsymbol{e}_{1}(1 \leq j \leq N-1) \\
\boldsymbol{a}_{N+k} & =k \boldsymbol{e}_{2}+\boldsymbol{e}_{3}(0 \leq k \leq N-2) \\
\boldsymbol{a}_{2 N-1} & =\boldsymbol{e}_{2}
\end{aligned}
$$

Then, f_{1} is transcendental; X_{1} is in N-subgeneral position and the defect relation of f_{1} over X_{1} is extremal.

Proof. The characteristic function $T\left(r, f_{1}\right)$ satisfies the inequality

$$
\text { (7) } \quad r / \pi+O(1) \leq T\left(r, f_{1}\right) \leq r / \pi+\log r+O(1)
$$

by [7, Lemme 1] and [4, pp. 6-7]. This implies that f_{1} is transcendental. By the definition we have the estimates

$$
\begin{aligned}
& N\left(r, \boldsymbol{a}_{j}, f_{1}\right) \\
& \quad= \begin{cases}0 & (j=1, \ldots, N) \\
\log r+O(1) & (j=N+1, \ldots, 2 N-1)\end{cases}
\end{aligned}
$$

and so from (7) we obtain that

$$
\delta\left(\boldsymbol{a}_{j}, f_{1}\right)=1(j=1, \ldots, 2 N-1)
$$

It is easy to see that X_{1} is in N-subgeneral position, and so by Theorem A $\delta\left(\boldsymbol{a}, f_{1}\right)=0$ for $\boldsymbol{a} \in$ $X_{1}-\left\{\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{2 N-1}\right\}$ and we have the equality

$$
\sum_{\boldsymbol{a} \in X_{1}} \delta(\boldsymbol{a}, f)=2 N-1
$$

Definition 4.1. We say that X is maximal if for any W in N-subgeneral position such that

$$
X \subset W \subset C^{3}-\{\mathbf{0}\}, \quad \text { then } W=X
$$

We consider the following subset X_{2} of $\boldsymbol{C}^{3}-\{\mathbf{0}\}$.
Example 4.2. We put

$$
\begin{aligned}
X_{2}= & \left\{j \boldsymbol{e}_{1} \mid j=1, \ldots, N-2\right\} \\
& \cup\left\{\boldsymbol{e}_{2}, 2 \boldsymbol{e}_{2}\right\} \cup\left\{k\left(a^{2}, a, 1\right) \mid a \in \boldsymbol{C} ; k=1,2\right\} .
\end{aligned}
$$

Proposition 4.1. If $N \geq 6, X_{2}$ is in N subgeneral position.

Proof. Let S be any subset of X_{2} such that $\# S=N+1$. We have only to prove that there are three elements in S which are linearly independent.
(a) The case when S contains at least one $j_{1} \boldsymbol{e}_{1}$ $\left(1 \leq j_{1} \leq N-2\right)$ and $\alpha \boldsymbol{e}_{2}(\alpha=1$ or 2$)$.
S must contain a vector $k\left(a^{2}, a, 1\right)(k=1$ or 2 ; $a \in \boldsymbol{C})$. Then it is easy to see that three vectors $j_{1} \boldsymbol{e}_{1}, \alpha \boldsymbol{e}_{2}$ and $k\left(a^{2}, a, 1\right)$ are linearly independent.
(b) The case when S contains $j_{1} e_{1}\left(1 \leq j_{1} \leq\right.$ $N-2)$, but does not contain $\alpha \boldsymbol{e}_{2}(\alpha=1,2)$.
S must contain two vectors

$$
\begin{aligned}
& k_{1}\left(a_{1}^{2}, a_{1}, 1\right), \quad k_{2}\left(a_{2}^{2}, a_{2}, 1\right) \\
& \left(k_{1}, k_{2}=1 \quad \text { or } \quad 2 ; a_{1} \neq a_{2} \in \boldsymbol{C}\right)
\end{aligned}
$$

Then, three vectors $j_{1} \boldsymbol{e}_{1}, k_{1}\left(a_{1}^{2}, a_{1}, 1\right), k_{2}\left(a_{2}^{2}, a_{2}, 1\right)$ are linearly independent.
(c) The case when S does not contain any one of $\left\{j e_{1} \mid j=1, \ldots, N-2\right\}$.

As $N \geq 6, S$ must contain the following three vectors:

$$
k_{1}\left(a_{1}^{2}, a_{1}, 1\right), \quad k_{2}\left(a_{2}^{2}, a_{2}, 1\right), \quad k_{3}\left(a_{3}^{2}, a_{3}, 1\right)
$$

where $k_{1}, k_{2}, k_{3}=1$ or 2 and a_{1}, a_{2} and a_{3} are distinct complex numbers. Then, these three vectors are linearly independent.

From (a), (b) and (c), S contains three independent vectors. This means that X_{2} is in N-subgeneral position.

Remark 4.1. It is easy to see that X_{2} is not in $N-1$ subgeneral position as N vectors $\left\{j e_{1} \mid\right.$ $j=1, \ldots, N-2\} \cup\left\{\boldsymbol{e}_{2}, 2 \boldsymbol{e}_{2}\right\}$ do not contain three independent vectors.

Proposition 4.2. If $N \geq 6, X_{2}$ is maximal.
Proof. We have only to prove that for any vector $(\alpha, \beta, \gamma) \in C^{3}-\{\mathbf{0}\}$ not belonging to X_{2}, the set $X_{2} \cup\{(\alpha, \beta, \gamma)\}$ is not in N-subgeneral position.
(a) The case when $\gamma=0$. It is easy to see that $N+1$ vectors

$$
\boldsymbol{e}_{1}, 2 \boldsymbol{e}_{1}, \ldots,(N-2) \boldsymbol{e}_{1}, \boldsymbol{e}_{2}, 2 \boldsymbol{e}_{2},(\alpha, \beta, 0)
$$

do not contain three independent vectors.
(b) The case when $\gamma \neq 0$. Put $\beta / \gamma=a$. Then, it is easy to see that $N+1$ vectors
$\boldsymbol{e}_{1}, 2 \boldsymbol{e}_{1}, \ldots,(N-2) \boldsymbol{e}_{1},\left(a^{2}, a, 1\right), 2\left(a^{2}, a, 1\right),(\alpha, \beta, \gamma)$
do not contain three independent vectors.
From (a) and (b) we have that $X_{2} \cup\{(\alpha, \beta, \gamma)\}$ is not in N-subgeneral position.

Theorem 4.1. If $N \geq 6$, for any transcendental holomorphic curve f from \boldsymbol{C} into $P^{2}(\boldsymbol{C})$, the defect relation of f over X_{2} is not extremal.

Proof. Suppose that there exists a transcendental holomorphic curve f from \boldsymbol{C} into $P^{2}(\boldsymbol{C})$ satisfying

$$
\sum_{\boldsymbol{a} \in X_{2}} \delta(\boldsymbol{a}, f)=2 N-1
$$

Then, by Theorem 3.1, there must exist $N-1$ vectors $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{N-1}$ in X_{2} such that
(i) the vector space spanned by $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{N-1}$ is of dimension 1 and
(ii) $\delta\left(\boldsymbol{a}_{j}, f\right)=1(j=1, \ldots, N-1)$.

But, X_{2} does not contain $N-1$ vectors satisfying (i). This is a contradiction. We have our theorem.

Acknowledgements. The author was supported in part by Grant-in-Aid for Scientific Research (C) (1) 16540202, Japan Society for the Promotion of Science during the preparation of this paper.

References

[1] Cartan, H.: Sur les combinaisons linéaires de p fonctions holomorphes données. Mathematica 7, 5-31 (1933).
[2] Chen, W.: Defect relations for degenerate meromorphic maps. Trans. Amer. Math. Soc., 319(2), 499-515 (1990).
[3] Fujimoto, H.: Value Distribution Theory of the Gauss Map of Minimal Surfaces in \boldsymbol{R}^{m}. Aspects of Mathematics, E21, Friedr. Vieweg and Sohn, Braunschweig (1993).
[4] Hayman, W. K.: Meromorphic Functions. Oxford Mathematical Monographes, Clarendon Press, Oxford (1964).
[5] Nevanlinna, R.: Le théorème de Picard-Borel et la théorie des fonctions méromorphes. GauthierVillars, Paris (1929).
[6] Nochka, E. I.: On the theory of meromorphic functions. Soviet Math. Dokl., 27(2), 377-381 (1983).
[7] Toda, N.: Sur une relation entre la croissance et le nombre de valeurs déficientes de fonctions algébroïdes ou de systèmes. Kodai Math. Sem. Rep., 22, 114-121 (1970).
[8] Toda, N.: On the deficiency of holomorphic curves with maximal deficiency sum. Kodai Math. J., 24(1), 134-146 (2001).
[9] Toda, N.: On the deficiency of holomorphic curves with maximal deficiency sum, II. Progress in Analysis, vol. I (Proceedings of the 3rd ISAAC Congress, Berlin 2001), (eds. Begehr, H. G. W. et al.), World Sci. Publishing, Singapore, pp. 287300 (2003).
[10] Weyl, H.: Meromorphic Functions and Analytic Curves. Annals of Mathematics Studies, no.12, Princeton Univ. Press, Princeton, N.J. (1943).

[^0]: 2000 Mathematics Subject Classification. Primary 32H30; Secondary 30D35.
 ${ }^{*}$) Present address: Chiyoda 3-16-15-302, Naka-ku, Nagoya, Aichi 460-0012.

