On the rank of elliptic curves with three rational points of order 2. III

By Shoichi Kihara
Department of Neuropsychiatry, School of Medicine, Tokushima University
3-18-15, Kuramoto-cho, Tokushima 770-8503

(Communicated by Shokichi Iyanaga, M. J. A., March 12, 2004)

Abstract

We construct an elliptic curve of rank at least 6 over $Q(t)$ with three non-trivial rational points of order 2 .

Key words: Elliptic curve; rank.

In this paper we show the following two theorems.

Theorem 1. There is an elliptic curve over $Q(t)$ of rank ≥ 6, which have 3 non-trivial rational points of order 2.

Theorem 2. There are infinitely many elliptic curves over Q of rank ≥ 6, which have 3 nontrivial rational points of order 2 .

We follow the Kulesz's idea [4] (see also [1, 2] and [3]), let

$$
\begin{equation*}
x^{4}+y^{4}+z^{4}=a\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right) \tag{1}
\end{equation*}
$$

Then by $X=\left(2 y^{2}-a x^{2}-a z^{2}\right)^{2} /(x z)^{2}$ and $Y=$ $\left(a^{2}-4\right)\left(z^{4}-x^{4}\right)\left(2 y^{2}-a x^{2}-a z^{2}\right) /(x z)^{3}$. We have
(2) $Y^{2}=X(X-4 a-8)\left(X-4 a^{2}-4 a+8\right)$.

By the permutations of x, y, and z we have 3 points on (2). We solve the Diophantine equations

$$
\begin{align*}
& p^{2}=a x^{2}+b y^{2}+c z^{2}, \tag{3}\\
& q^{2}=b x^{2}+c y^{2}+a z^{2}, \tag{4}\\
& r^{2}=c x^{2}+a y^{2}+b z^{2}, \tag{5}
\end{align*}
$$

where

$$
\begin{gathered}
a=(2 s+2) /\left(s^{2}+3\right), \quad b=\left(s^{2}-1\right) /\left(s^{2}+3\right) \\
\text { and } \quad c=(-2 s+2) /\left(s^{2}+3\right) .
\end{gathered}
$$

Because (3), (4) and (5) imply

$$
x^{4}+y^{4}+z^{4}=p^{4}+q^{4}+r^{4}
$$

and

$$
x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}=p^{2} q^{2}+q^{2} r^{2}+r^{2} p^{2} .
$$

Now let

$$
x=1 \quad y-1+u \quad z=1+t u \quad \text { and } \quad p=1+w u
$$

[^0]then from (3) we can solve for u. From (4) we have $q^{2}=H(s, t, w) / G(s, t, w)^{2}$ where $H \in Z[s, t, w]$ and H is a degree 4 polynomial of w and the coefficient of w^{4} is $\left(s^{2}+3\right)^{2}$. By the well known classical method we have the unique expression
$$
\left(s^{2}+3\right)^{2} H(s, t, w)=K(s, t, w)^{2}+L(s, t) w+M(s, t)
$$
where $K \in Z[s, t, w]$ and K is a degree 2 polynomial of w and $L, M \in Z[s, t]$. We see that the polynomial $s\left(t^{2}-1\right)-t^{2}+4 t-1$ is a common-factor of L and M.

So we take $s=\left(t^{2}-4 t+1\right) /\left(t^{2}-1\right)$, to make H a square. From (5) we have $r^{2}=J(t, w) / I(t, w)^{2}$ where J is again a degree 4 polynomial of w and the coefficient of w^{4} is a square. It is easy to see that there are infinitely many w 's that make J squares. We take $w=-(2 t-1)\left(t^{3}+6 t-2\right) /\left(3\left(t^{3}-6 t^{2}+3 t+\right.\right.$ 1)). By multiplying the denominators we have

$$
\begin{gathered}
x=(t+1)\left(2 t^{8}-14 t^{7}+146 t^{6}-473 t^{5}+674 t^{4}\right. \\
\left.\quad-473 t^{3}+146 t^{2}-14 t+2\right), \\
y=(t-2)\left(2 t^{8}-2 t^{7}+104 t^{6}-221 t^{5}+149 t^{4}\right. \\
\left.\quad-35 t^{3}-7 t^{2}+16 t-4\right), \\
z=(2 t-1)\left(4 t^{8}-16 t^{7}+7 t^{6}+35 t^{5}-149 t^{4}\right. \\
\left.\quad+221 t^{3}-104 t^{2}+2 t-2\right), \\
p=2 t^{9}+18 t^{8}-144 t^{7}+411 t^{6}-477 t^{5}+225 t^{4} \\
\quad-75 t^{3}+72 t^{2}-36 t+2, \\
q=(t-2)^{3}(t+1)^{3}(2 t-1)^{3}, \\
r=2 t^{9}-36 t^{8}+72 t^{7}-75 t^{6}+225 t^{5}-477 t^{4} \\
\\
\quad+411 t^{3}-144 t^{2}+18 t+2 .
\end{gathered}
$$

Now let $a=\left(x^{4}+y^{4}+z^{4}\right) /\left(x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}\right)$ then we have 6 points on (2). These are independent points. For let $t=3$ then we have

$$
a=27394784328959906 / 9864480201714353 .
$$

The determinant of the Grammian height-pairing matrix of these 6 points is 5197720554.13 . Since this is not 0 these points are independent. So we have Theorem 1 and Theorem 2.

References

[1] Dujella, A.: Diophantine triples and construction of high-rank elliptic curves over Q with three non-trivial 2-torsion points. Rocky Mountain J. Math., 30, 157-164 (2000).
[2] Kihara, S.: On the rank of elliptic curves with three rational points of order 2. Proc. Japan Acad., 73A, 77-78 (1997).
[3] Kihara, S.: On the rank of elliptic curves with three rational points of order 2. II. Proc. Japan Acad., 73A, 151 (1997).
[4] Kulesz, L.: Courbes elliptiques de rang ≥ 5 sur $Q(t)$ avec un groupe de torsion isomorphe á $Z / 2 Z \times Z / 2 Z$. C. R. Acad. Sci. Paris Sér. I Math., 329, 503-506 (1999).

[^0]: 2000 Mathematics Subject Classification. Primary 11G05.

