By Hideo WADA

Department of Mathematics, Sophia University, 7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554 (Communicated by Shokichi IYANAGA, M. J. A., May 12, 2003)

Abstract: We consider the Diophantine equation as mentioned in the title and solve it completely, i.e., show that there exist no integer solution satisfying this equation.

Key word: Diophantine equation.

1. Introduction. Erdös and Selfridge [2] proved that the Diophantine equation $x(x + 1) \cdots (x + n) = y^2$ has no positive integer solution. Abe [1] considered the following modified equation. Let **N** be the set of all positive integers. Abe found all $(x, y) \in \mathbf{N}^2$ satisfying the Diophantine equation $x(x+1)\cdots (x+n)+1 = y^2$ for odd integer n such that $1 \leq n \leq 15$. His results are as follows: For n = 3, $x(x+1)(x+2)(x+3)+1 = (x^2+3x+1)^2$. So for any $x \in \mathbf{N}$, (x, x^2+3x+1) are solutions. For n = 5, there is only one solution (2, 71). For n = 1 or $7 \leq n \leq 15$, there exist no solution. In this paper we shall extend this for the case $17 \leq n \leq 27$ and prove that there exist no positive integer solution using computer.

2. A principle and results. Let n be an odd positive integer and F(x) be

$$F(x) = x(x+1)(x+2)\cdots(x+n) + 1.$$

Then F(x) is a monic integral polynomial of an even degree 2m, where m = (n + 1)/2. We can obtain a monic polynomial

$$G(x) = x^m + a_1 x^{m-1} + \dots + a_m \in \mathbf{Q}[x]$$

and another polynomial $R(x) \in \mathbf{Q}[x]$ whose degree deg R(x) < m, such that

$$F(x) = G(x)^2 + R(x).$$

In fact the denominator of the coefficient of G(x) is a power of 2. We shall denote by ε the inverse number of the maximum of these denominators. Using computer we get next result

$$\begin{array}{cccc} n & G(x) & \varepsilon \\ 17 & \{2H(x)+1\}/2^{16} & 1/2^{16} \\ 19 & \{2H(x)+x(x+1)+1\}/2^3 & 1/2^3 \\ 21 & \{2H(x)+1\}/2^{19} & 1/2^{19} \\ 23 & H(x) & 1 \\ 25 & \{2H(x)+1\}/2^{23} & 1/2^{23} \\ 27 & \{2H(x)+x(x+1)+1\}/2^4 & 1/2^4 \end{array}$$

for some $H(x) \in \mathbb{Z}[x]$. When $\varepsilon < 1$ we have G(x) = (odd number) $\cdot \varepsilon$ for any integer x. We shall put $G_r(x)$ and $Y_r(x)$ as

$$G_r(x) = G(x) - (2r - 1)\varepsilon$$
, when $\varepsilon < 1$
 $G_r(x) = G(x) - r$, when $\varepsilon = 1$
 $Y_r(x) = [G_r(x)]$

for integer r such that $0 \leq r \leq \max r$ where $\max r$ are

n	$\max r$
17	76560
19	1
21	2262103
23	1
25	194885048
27	1289

In this range all coefficients of $G_r(x)$ are positive. When $\varepsilon < 1$ we have $G_r(x) = (\text{even number}) \cdot \varepsilon$ for any integer x. Therefore for any positive integer xwe have

(1)

$$Y_r(x) \le G_r(x) < G_{r-1}(x) = G_r(x) + 2\varepsilon \le Y_r(x) + 1$$

when $\varepsilon < 1$.

No. 5]

²⁰⁰⁰ Mathematics Subject Classification. 11Y50.

(2)

$$Y_r(x) = G_r(x) < G_{r-1}(x) = G_r(x) + 1 = Y_r(x) + 1$$

when $\varepsilon = 1$.

Using computer we have all coefficients of $F(x) - G_0(x)^2$ are negative and for $1 \le r \le \max r$

$$F(x) - G_r(x)^2 = b_0 x^m - b_1 x^{m-1} - \dots - b_m$$

when $n = 17, 21, 25.$
$$F(x) - G_r(x)^2 = b_0 x^m + b_1 x^{m-1} - \dots - b_m$$

when $n = 19, 23, 27.$

for some positive rational numbers b_i . Therefore there exists only one positive real root α_r for the equation $F(x) - G_r(x)^2 = 0$ by Descartes' rule. Using Newton's method we find that all α_r are not integers. We shall put $x_r = [\alpha_r]$. Then we have for positive integer x

(3)
$$x_1 < x \Rightarrow G_1(x)^2 < F(x) < G_0(x)^2.$$

(4)
$$x_r < x \le x_{r-1} \Rightarrow G_r(x)^2 < F(x) < G_{r-1}(x)^2.$$

From (1)~(4) we get for positive integer x

$$x_1 < x \Rightarrow Y_1(x)^2 < F(x) < (Y_1(x) + 1)^2.$$

$$x_r < x \le x_{r-1} \Rightarrow Y_r(x)^2 < F(x) < (Y_r(x) + 1)^2.$$

Therefore we have no positive integer solution of $F(x) = y^2$ for $x > x_{\max r}$. Using computer we have

n	x_1	$x_{\max r}$
17	153119304151	999993
19	56145	56145
21	452420485347120	99999986
23	464066	464066
25	3897700942901197318	99999999969
27	50749688	999701
29	23060745354661304625864	

When $x \leq x_{\max r}$, we can prove that $F(x) = y^2$ has no positive integer solution using computer.

When n = 25, we used a personal computer about two weeks for getting the result. For n =29, we found that x_1 is too large. So we could not continue.

References

- [1] Abe, N.: On the Diophantine equation $x(x + 1)\cdots(x+n) + 1 = y^2$. Proc. Japan Acad., **76A**, 16–17 (2000).
- [2] Erdös, P., and Selfridge, J. L.: The product of consecutive integers is never a power. Illinois J. Math., 19, 292–301 (1975).