On the Diophantine equation $x(x+1) \cdots(x+n)+1=y^{2}$ $(17 \leq n=$ odd $\leq 27)$

By Hideo Wada
Department of Mathematics, Sophia University, 7-1, Kioicho, Chiyoda-ku, Tokyo 102-8554
(Communicated by Shokichi Iyanaga, M. J. A., May 12, 2003)

Abstract

We consider the Diophantine equation as mentioned in the title and solve it completely, i.e., show that there exist no integer solution satisfying this equation.

Key word: Diophantine equation.

1. Introduction. Erdös and Selfridge [2] proved that the Diophantine equation $x(x+1)$ $\cdots(x+n)=y^{2}$ has no positive integer solution. Abe [1] considered the following modified equation. Let \mathbf{N} be the set of all positive integers. Abe found all $(x, y) \in \mathbf{N}^{2}$ satisfying the Diophantine equation $x(x+1) \cdots(x+n)+1=y^{2}$ for odd integer n such that $1 \leq n \leq 15$. His results are as follows: For $n=3$, $x(x+1)(x+2)(x+3)+1=\left(x^{2}+3 x+1\right)^{2}$. So for any $x \in \mathbf{N},\left(x, x^{2}+3 x+1\right)$ are solutions. For $n=5$, there is only one solution $(2,71)$. For $n=1$ or $7 \leq n \leq 15$, there exist no solution. In this paper we shall extend this for the case $17 \leq n \leq 27$ and prove that there exist no positive integer solution using computer.
2. A principle and results. Let n be an odd positive integer and $F(x)$ be

$$
F(x)=x(x+1)(x+2) \cdots(x+n)+1 .
$$

Then $F(x)$ is a monic integral polynomial of an even degree $2 m$, where $m=(n+1) / 2$. We can obtain a monic polynomial

$$
G(x)=x^{m}+a_{1} x^{m-1}+\cdots+a_{m} \in \mathbf{Q}[x]
$$

and another polynomial $R(x) \in \mathbf{Q}[x]$ whose degree $\operatorname{deg} R(x)<m$, such that

$$
F(x)=G(x)^{2}+R(x)
$$

In fact the denominator of the coefficient of $G(x)$ is a power of 2 . We shall denote by ε the inverse number of the maximum of these denominators. Using computer we get next result

$$
\begin{array}{ccc}
n & G(x) & \varepsilon \\
17 & \{2 H(x)+1\} / 2^{16} & 1 / 2^{16} \\
19 & \{2 H(x)+x(x+1)+1\} / 2^{3} & 1 / 2^{3} \\
21 & \{2 H(x)+1\} / 2^{19} & 1 / 2^{19} \\
23 & H(x) & 1 \\
25 & \{2 H(x)+1\} / 2^{23} & 1 / 2^{23} \\
27 & \{2 H(x)+x(x+1)+1\} / 2^{4} & 1 / 2^{4}
\end{array}
$$

for some $H(x) \in \mathbf{Z}[x]$. When $\varepsilon<1$ we have $G(x)=$ (odd number) $\cdot \varepsilon$ for any integer x. We shall put $G_{r}(x)$ and $Y_{r}(x)$ as

$$
\begin{aligned}
G_{r}(x) & =G(x)-(2 r-1) \varepsilon, \text { when } \varepsilon<1 \\
G_{r}(x) & =G(x)-r, \text { when } \varepsilon=1 \\
Y_{r}(x) & =\left[G_{r}(x)\right]
\end{aligned}
$$

for integer r such that $0 \leq r \leq \max r$ where $\max r$ are

n	$\max r$
17	76560
19	1
21	2262103
23	1
25	194885048
27	1289

In this range all coefficients of $G_{r}(x)$ are positive. When $\varepsilon<1$ we have $G_{r}(x)=$ (even number) $\cdot \varepsilon$ for any integer x. Therefore for any positive integer x we have
(1)

$$
\begin{aligned}
& Y_{r}(x) \leq G_{r}(x)<G_{r-1}(x)=G_{r}(x)+2 \varepsilon \leq Y_{r}(x)+1 \\
& \text { when } \varepsilon<1
\end{aligned}
$$

[^0](2)
$Y_{r}(x)=G_{r}(x)<G_{r-1}(x)=G_{r}(x)+1=Y_{r}(x)+1$ when $\varepsilon=1$.

Using computer we have all coefficients of $F(x)$ $G_{0}(x)^{2}$ are negative and for $1 \leq r \leq \max r$

$$
\begin{aligned}
F(x)-G_{r}(x)^{2}= & b_{0} x^{m}-b_{1} x^{m-1}-\cdots-b_{m} \\
& \text { when } n=17,21,25 \\
F(x)-G_{r}(x)^{2}= & b_{0} x^{m}+b_{1} x^{m-1}-\cdots-b_{m} \\
& \text { when } n=19,23,27
\end{aligned}
$$

for some positive rational numbers b_{i}. Therefore there exists only one positive real root α_{r} for the equation $F(x)-G_{r}(x)^{2}=0$ by Descartes' rule. Using Newton's method we find that all α_{r} are not integers. We shall put $x_{r}=\left[\alpha_{r}\right]$. Then we have for positive integer x
(3) $\quad x_{1}<x \Rightarrow G_{1}(x)^{2}<F(x)<G_{0}(x)^{2}$.
(4) $\quad x_{r}<x \leq x_{r-1} \Rightarrow G_{r}(x)^{2}<F(x)<G_{r-1}(x)^{2}$.

From (1)~(4) we get for positive integer x

$$
\begin{aligned}
x_{1}<x & \Rightarrow Y_{1}(x)^{2}<F(x)<\left(Y_{1}(x)+1\right)^{2} . \\
x_{r}<x \leq x_{r-1} & \Rightarrow Y_{r}(x)^{2}<F(x)<\left(Y_{r}(x)+1\right)^{2} .
\end{aligned}
$$

Therefore we have no positive integer solution of $F(x)=y^{2}$ for $x>x_{\max r}$. Using computer we have

n	x_{1}	$x_{\max r}$
17	153119304151	999993
19	56145	56145
21	452420485347120	99999986
23	464066	464066
25	3897700942901197318	9999999969
27	50749688	999701
29	23060745354661304625864	

When $x \leq x_{\text {max } r}$, we can prove that $F(x)=y^{2}$ has no positive integer solution using computer.

When $n=25$, we used a personal computer about two weeks for getting the result. For $n=$ 29 , we found that x_{1} is too large. So we could not continue.

References

[1] Abe, N.: On the Diophantine equation $x(x+$ 1) $\cdots(x+n)+1=y^{2}$. Proc. Japan Acad., $\mathbf{7 6 A}$, 16-17 (2000).
[2] Erdös, P., and Selfridge, J. L.: The product of consecutive integers is never a power. Illinois J. Math., 19, 292-301 (1975).

[^0]: 2000 Mathematics Subject Classification. 11Y50.

