A note on Poincaré sums for finite groups

By Takashi Ono
Department of Mathematics, The Johns Hopkins University, Baltimore, Maryland 21218-2689, U. S. A.

(Communicated by Shokichi Iyanaga, m. J. A., April 14, 2003)

Abstract

A simple and beautiful idea of Poincaré on Poincaré series in automorphic functions can be applied to an arbitrary ring R acted by a group G. When G is finite, the key is to look at the 0-dimensional Tate cohomology of (G, R) twisted by the 1-cohomology class of the group of units of R. As a simplest case, we examine when R is the ring of integers of a quadratic field.

Key words: Finite group; cohomology set; cohomology group; Poincaré sum; quadratic field.

1. Introduction. Let R be the ring of holomorphic functions on the upperhalf plane and G be a modular group. The action of G on the ring R and on the group R^{\times}of units enables one to speak of the the space M_{c} of modular forms belonging to a cocycle c (a weight) of the G-group R^{\times}. Poincaré constructed the subspace P_{c} of Poincaré series and showed that $M_{c}=P_{c}$ for many important cases. Since this story is quite algebraic, it is natural to generalize Poincaré's construction starting from arbitrary ring R acted by a group G. As a simplest case, I examined the case where R is the ring of integers of a quadratic field acted by the Galois group of order two. In this case the group M_{c} / P_{c} is of order 1 or 2 , but even here it's determination for real quadratic fields seems to be a nontrivial question. (See [3] for Poincaré sums attached to Galois representations).
2. $\boldsymbol{H}^{\mathbf{1}}\left(\boldsymbol{G}, \boldsymbol{R}^{\times}\right)$. Let G be a finite group, R a ring and R^{\times}the group of units of R. We assume that G acts on the ring R to the left: $a \mapsto{ }^{s} a, s \in G$, $a \in R$. Then G acts naturally on the group R^{\times}and we can speak of the cohomology set $H^{1}\left(G, R^{\times}\right)$. A 1-cocycle is a map $c: G \rightarrow R^{\times}$such that

$$
c_{s t}=c_{s}^{s} c_{t}, \quad s, t \in G
$$

We denote by $Z^{1}\left(G, R^{\times}\right)$the set of all 1-cocycles. Two cocycles c, c^{\prime} are equivalent: $c \sim c^{\prime}$ if there is an element $u \in R^{\times}$such that

$$
c_{s}^{\prime}=u^{-1} c_{s}^{s} u, \quad s \in G
$$

The cohomology set is, by definition,

[^0]$$
H^{1}\left(G, R^{\times}\right)=Z^{1}\left(G, R^{\times}\right) / \sim .
$$

We shall denote by $[c]$ the cohomology class containing a cocycle c. The trivial class [1] consists of c^{\prime} s such that $c_{s}=u^{-1 s} u, u \in R^{\times}$.
3. $\boldsymbol{M}_{\boldsymbol{c}}$ and $\boldsymbol{P}_{\boldsymbol{c}}$. To each cocycle $c \in$ $Z^{1}\left(G, R^{\times}\right)$, we set

$$
\begin{aligned}
M_{c} & =\left\{a \in R ; c_{s}^{s} a=a, \quad s \in G\right\} \\
P_{c} & =\left\{p_{c}(x):=\sum_{t \in G} c_{t}^{t} x, \quad x \in R\right\} .
\end{aligned}
$$

M_{c}, P_{c} are \mathbf{Z}-modules in the ring R. The definition of cocycles implies that

$$
|G| M_{c} \subseteq P_{c} \subseteq M_{c}
$$

Here the first inequality follows from the equality:

$$
p_{c}(a)=|G| a, \quad \text { when } a \in M_{c} .
$$

If, in particular, $|G| 1_{R}$ is invertible in R then we have

$$
P_{c}=M_{c} \text { for any cocycle } c \in Z^{1}\left(G, R^{\times}\right)
$$

4. $\boldsymbol{M}_{\boldsymbol{c}} / \boldsymbol{P}_{\boldsymbol{c}}$. We shall verify that the structure of the $|G|$-torsion module M_{c} / P_{c} depends only on the cohomology class $[c] \in H^{1}\left(G, R^{\times}\right)$. So let $c^{\prime} \sim c$, i.e.,

$$
c_{s}^{\prime}=u^{-1} c_{s}^{s} u, \quad u \in R^{\times}
$$

Then one verifies that

$$
\begin{equation*}
u M_{c^{\prime}}=M_{c}, \quad u P_{c^{\prime}}=P_{c} . \tag{4.1}
\end{equation*}
$$

Consequently, we find that the quotient module M_{c} / P_{c} depends only on the class [$\left.c\right]$. If, in particular, $c \sim 1$, then we have

$$
M_{c} / P_{c}=M_{1} / P_{1}=R^{G} / N_{G} R=\widehat{H}^{0}(G, R) .
$$

In general, for any $\gamma=[c] \in H^{1}\left(G, R^{\times}\right)$, we can modify the above interpretation in the following way.
5. $\widehat{\boldsymbol{H}}^{0}(\boldsymbol{G}, \boldsymbol{R})_{\gamma}$. Using a cocycle $c \in$ $Z^{1}\left(G, R^{\times}\right)$, we introduce a new G-module $(G, R)_{c}$ by

$$
s^{\prime} a=c_{s}^{s} a, \quad s \in G
$$

Denote by G^{\prime} the group G with this new action on R. Then we have

$$
\begin{gathered}
M_{c}=\left\{a \in R ; c_{s}^{s} a=a\right\}=\left\{a \in R ; s^{s^{\prime}} a=a\right\}=R^{G^{\prime}}, \\
P_{c}=\left\{p_{c}(x)=\sum_{t \in G} c_{t}^{t} x, \quad x \in R\right\} \\
=\left\{\sum_{t^{\prime} \in G^{\prime}} t^{\prime} x\right\}=N_{G^{\prime}} R .
\end{gathered}
$$

Hence

$$
M_{c} / P_{c}=\widehat{H}^{0}(G, R)_{c}
$$

In view of (4.1), we have a G-module isomorphism $(G, R)_{c} \approx(G, R)_{c^{\prime}}$. So the G-module (class) $(G, R)_{\gamma}$, $\gamma=[c] \in H^{1}\left(G, R^{\times}\right)$makes sence.

In other words, we have

$$
M_{c} / P_{c}=\widehat{H}^{0}(G, R)_{\gamma}, \quad \gamma=[c] \in H^{1}\left(G, R^{\times}\right)
$$

6. Quadratic fields. Let m be a square free integer, $K=\mathbf{Q}(\sqrt{m})$ the quadratic field and $R=$ O_{K} the ring of integers of K. Let $G=\operatorname{Gal}(K / \mathbf{Q})$ be generated by the automorphism s of order 2. G acts naturally on R and the group R^{\times}of units of K. Let us first list the structure of the group $H^{1}\left(G, R^{\times}\right)$:

$$
\mathbf{Z} / 2 \mathbf{Z} \text { if } m<0 \text { or } m>0 \text { with } N \varepsilon=-1
$$

and

$$
\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z} \text { if } m>0 \text { with } N \varepsilon=1
$$

where (and from now on) ε means the fundamental unit of K when $m>0$. As for cocycles c representing the cohomology group, we can choose the following:

$$
\begin{aligned}
& c=1, i \text { if } m=-1, c= \pm 1 \text { if } m<-1 \\
& \quad \text { or } m>0 \text { with } N \varepsilon=-1 \\
& c= \pm 1 \text { or } \pm \varepsilon \text { if } m>0 \text { with } N \varepsilon=1
\end{aligned}
$$

As G is cyclic (of order 2) we may identify a cocycle $c: G \rightarrow R^{\times}$with a unit $c \in R^{\times}$with $N c=1$. To each such c, we have a module

$$
M_{c}=\left\{\alpha \in R ; c^{s} \alpha=\alpha\right\}
$$

and its submodule

$$
P_{c}=\left\{p_{c}(z):=z+c^{s} z, \quad z \in R\right\}
$$

such that the quotient M_{c} / P_{c} is a 2-torsion group. As we saw, this group depends only on the class $\gamma=$ $[c] \in H^{1}\left(G, R^{\times}\right)$and can be considered as a group $\widehat{H}^{0}(G, R)_{\gamma}$, a twisted Tate group.

To describe the structure of groups M_{c} / P_{c}, we set following notations:

$$
\omega=\sqrt{m} \text { or } \frac{1+\sqrt{m}}{2}
$$

for standard integral basis $1, \omega$ for R,

$$
c=u+v \omega, u, v \in \mathbf{Z} \text { for a cocycle } c
$$

and

$$
\alpha=a+b \omega, \quad z=x+y \omega, \quad \alpha, z \in R
$$

Here are some basic relations. First of all, for a cocycle c, we have

$$
\begin{equation*}
1=N c=u^{2}+v^{2} N \omega+u v T \omega \tag{6.1}
\end{equation*}
$$

where T means the trace. We find it convenient to put

$$
\begin{equation*}
t=u T \omega+v N \omega \tag{6.2}
\end{equation*}
$$

Then we can rewrite (6.1) as

$$
\begin{equation*}
1-u^{2}=t v \tag{6.3}
\end{equation*}
$$

Using (6.2), we find that
(6.4) $\alpha \in M_{c} \Longleftrightarrow a(1-u)=b t \quad$ and $a v=b(u+1)$ and
(6.5) $z+c^{s} z=(1+u) x+t y+(v x+(1-u) y) \omega$.

Notice, by (6.3), that the second equality in (6.4) implies the first one whenever $v \neq 0$. If $v=0$, then (6.3) implies that $u= \pm 1$. In other words $c= \pm 1$, and $\alpha \in M_{c}$ means α is symmetric or antisymmetric with respect to the involution s. In this case one verifies that

$$
\frac{M_{c}}{P_{c}}= \begin{cases}0 & \text { when } m \equiv 1 \quad(\bmod 4) \tag{6.6}\\ \mathbf{Z} / 2 \mathbf{Z} & \text { otherwise }\end{cases}
$$

Now back to the more interesting case $v \neq 0$, let us put

$$
\begin{align*}
& A=(1+u) x+t y \tag{6.7}\\
& B=v x+(1-u) y \tag{6.8}
\end{align*}
$$

Then one verifies that

$$
\begin{equation*}
v A=(1+u) B \tag{6.9}
\end{equation*}
$$

As we assume that $v \neq 0$, we have from (6.9)

$$
A+B \omega=\frac{B}{v}((1+u)+v \omega)
$$

and hence, in view of (6.3), (6.5), (6.8), (6.9), we find that

$$
\begin{gathered}
M_{c} \approx\left\{(a, b) \in \mathbf{Z}^{2} ; a v=b(u+1)\right\} \\
P_{c} \approx\left\{(A, B) \in \mathbf{Z}^{2} ; A v=B(u+1), d \mid B\right\} \\
d=(v, u-1)
\end{gathered}
$$

In other words, if we put $e=(v, u+1)$ and define C, D by $u+1=C e, v=D e$, then we find that

$$
M_{c}=D \mathbf{Z} \supseteq P_{c}=D \mathbf{Z} \cap d \mathbf{Z}
$$

and we end up with the isomorphism

$$
\begin{equation*}
\frac{M_{c}}{P_{c}} \approx \frac{\mathbf{Z}}{d /(D, d) \mathbf{Z}} \tag{6.10}
\end{equation*}
$$

7. Comments. Since M_{c} is Z-free of rank 1 and $\left(M_{c} / P_{c}\right)$ is 2-torsion, the index $\left[M_{c}: P_{c}\right]$ in (6.10) is either 1 or 2 . Our problem is to determine it in terms of the quadratic field k. In view of the structure of $H^{1}\left(G, R^{\times}\right)$, it is enough to consider cocycles of the form $c= \pm \epsilon$ of real quadratic field with $N \epsilon=1$. In fact, one verifies easily that the index is unchanged if c is replaced by $-c$.

I owe Seok-Min Lee [2] the determination of the index

$$
\Delta_{m}=\left[M_{\epsilon}: P_{\epsilon}\right], \quad k=\mathbf{Q}(\sqrt{m}), \quad \text { with } m<1000
$$

His table seems to support the following conjectural statement:
(i) $\quad m \equiv 1 \quad(\bmod 4) \Rightarrow \Delta_{m}=1$,
(ii) $\quad m \equiv 2 \quad(\bmod 4) \Rightarrow \Delta_{m}=2$.

As for the remaining case $m \equiv 3(\bmod 4)$, both values 1 and 2 occur; they begin as follows:

$$
\begin{aligned}
\Delta_{m}=1 \text { for } m= & 3,7,11,15,19,23,31,35,43,47,51 \\
& 59,67,71,79,83,87,91,103
\end{aligned}
$$

$\Delta_{m}=2$ for $m=39,55,95,111,155,183,203,259$, 295, 299, 327, 355, 371, 395.

As you see, the second case appears much less frequently.

References

[1] Gunning, R. C.: Lectures on modular forms. Annals of Mathematics Studies, no. 48, Princeton University Press, Princeton (1962).
[2] Lee, S. M.: A Table of Δ_{m}. Feb. 20, (2003). (Personal letter).
[3] Ono, T.: A note on Poincaré sums of Galois representations. I. Proc. Japan Acad., 67A, 145-147 (1991); A note on Poincaré sums of Galois representations. II. Proc. Japan Acad., 67A, 240-242 (1991); A note on Poincaré sums of Galois representations. III. Proc. Japan Acad., 67A, 274-277 (1991).

[^0]: 2000 Mathematics Subject Classification. 11F75.

