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A note on Poincaré sums for finite groups
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Abstract: A simple and beautiful idea of Poincaré on Poincaré series in automorphic
functions can be applied to an arbitrary ring R acted by a group G. When G is finite, the key is
to look at the 0-dimensional Tate cohomology of (G,R) twisted by the 1-cohomology class of the
group of units of R. As a simplest case, we examine when R is the ring of integers of a quadratic
field.
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1. Introduction. Let R be the ring of holo-
morphic functions on the upperhalf plane and G be
a modular group. The action of G on the ring R

and on the group R× of units enables one to speak
of the the space Mc of modular forms belonging to
a cocycle c (a weight) of the G-group R×. Poincaré
constructed the subspace Pc of Poincaré series and
showed that Mc = Pc for many important cases.
Since this story is quite algebraic, it is natural to
generalize Poincaré’s construction starting from ar-
bitrary ring R acted by a group G. As a simplest
case, I examined the case where R is the ring of in-
tegers of a quadratic field acted by the Galois group
of order two. In this case the group Mc/Pc is of or-
der 1 or 2, but even here it’s determination for real
quadratic fields seems to be a nontrivial question.
(See [3] for Poincaré sums attached to Galois repre-
sentations).

2. H1(G, R×). Let G be a finite group, R
a ring and R× the group of units of R. We assume
that G acts on the ring R to the left: a �→ sa, s ∈ G,
a ∈ R. Then G acts naturally on the group R× and
we can speak of the cohomology set H1(G,R×). A
1-cocycle is a map c : G → R× such that

cst = cs
sct, s, t ∈ G.

We denote by Z1(G,R×) the set of all 1-cocycles.
Two cocycles c, c′ are equivalent: c ∼ c′ if there is
an element u ∈ R× such that

c′s = u−1cs
su, s ∈ G.

The cohomology set is, by definition,
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H1(G,R×) = Z1(G,R×)/∼.
We shall denote by [c] the cohomology class contain-
ing a cocycle c. The trivial class [1] consists of c′s
such that cs = u−1su, u ∈ R×.

3. Mc and Pc. To each cocycle c ∈
Z1(G,R×), we set

Mc =
{
a ∈ R; cssa = a, s ∈ G

}
,

Pc =
{
pc(x) :=

∑
t∈G

ct
tx, x ∈ R

}
.

Mc, Pc are Z-modules in the ring R. The definition
of cocycles implies that

|G|Mc ⊆ Pc ⊆Mc.

Here the first inequality follows from the equality:

pc(a) = |G|a, when a ∈Mc.

If, in particular, |G|1R is invertible in R then we have

Pc = Mc for any cocycle c ∈ Z1(G,R×).

4. Mc/Pc. We shall verify that the structure
of the |G|-torsion moduleMc/Pc depends only on the
cohomology class [c] ∈ H1(G,R×). So let c′ ∼ c, i.e.,

c′s = u−1cs
su, u ∈ R×.

Then one verifies that

(4.1) uMc′ = Mc, uPc′ = Pc.

Consequently, we find that the quotient module
Mc/Pc depends only on the class [c]. If, in particular,
c ∼ 1, then we have

Mc/Pc = M1/P1 = RG/NGR = Ĥ0(G,R).
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In general, for any γ = [c] ∈ H1(G,R×), we can
modify the above interpretation in the following way.

5. Ĥ0(G, R)γ . Using a cocycle c ∈
Z1(G,R×), we introduce a new G-module (G,R)c
by

s′a = cs
sa, s ∈ G.

Denote by G′ the group G with this new action on
R. Then we have

Mc = {a ∈ R; cssa = a} = {a ∈ R; s
′
a = a} = RG

′
,

Pc =
{
pc(x) =

∑
t∈G

ct
tx, x ∈ R

}
=

{ ∑
t′∈G′

t′x
}

= NG′R.

Hence

Mc/Pc = Ĥ0(G,R)c.

In view of (4.1), we have a G-module isomorphism
(G,R)c ≈ (G,R)c′ . So the G-module (class) (G,R)γ,
γ = [c] ∈ H1(G,R×) makes sence.

In other words, we have

Mc/Pc = Ĥ0(G,R)γ, γ = [c] ∈ H1(G,R×).

6. Quadratic fields. Let m be a square free
integer, K = Q(

√
m) the quadratic field and R =

OK the ring of integers of K. Let G = Gal(K/Q) be
generated by the automorphism s of order 2. G acts
naturally on R and the group R× of units of K. Let
us first list the structure of the group H1(G,R×):

Z/2Z if m < 0 or m > 0 with Nε = −1,

and

Z/2Z ×Z/2Z if m > 0 with Nε = 1,

where (and from now on) ε means the fundamental
unit of K when m > 0. As for cocycles c representing
the cohomology group, we can choose the following:

c = 1, i if m = −1, c = ±1 if m < −1

or m > 0 with Nε = −1,

c = ±1 or ±ε if m > 0 with Nε = 1.

As G is cyclic (of order 2) we may identify a cocycle
c : G → R× with a unit c ∈ R× with Nc = 1. To
each such c, we have a module

Mc = {α ∈ R; csα = α}
and its submodule

Pc = {pc(z) := z + csz, z ∈ R}
such that the quotient Mc/Pc is a 2-torsion group.
As we saw, this group depends only on the class γ =
[c] ∈ H1(G,R×) and can be considered as a group
Ĥ0(G,R)γ , a twisted Tate group.

To describe the structure of groups Mc/Pc, we
set following notations:

ω =
√
m or

1 +
√
m

2
for standard integral basis 1, ω for R,

c = u+ vω, u, v ∈ Z for a cocycle c,

and

α = a+ bω, z = x+ yω, α, z ∈ R.

Here are some basic relations. First of all, for a co-
cycle c, we have

(6.1) 1 = Nc = u2 + v2Nω + uvTω

where T means the trace. We find it convenient to
put

(6.2) t = uTω + vNω.

Then we can rewrite (6.1) as

(6.3) 1 − u2 = tv.

Using (6.2), we find that

(6.4) α ∈Mc ⇐⇒ a(1−u) = bt and av = b(u+1)

and

(6.5) z + csz = (1 + u)x+ ty + (vx + (1 − u)y)ω.

Notice, by (6.3), that the second equality in (6.4)
implies the first one whenever v 
= 0. If v = 0, then
(6.3) implies that u = ±1. In other words c = ±1,
and α ∈Mc means α is symmetric or antisymmetric
with respect to the involution s. In this case one
verifies that

(6.6)
Mc

Pc
=

{
0 when m ≡ 1 (mod 4),
Z/2Z otherwise.

Now back to the more interesting case v 
= 0, let us
put

A = (1 + u)x+ ty.(6.7)

B = vx + (1 − u)y.(6.8)

Then one verifies that

(6.9) vA = (1 + u)B.
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As we assume that v 
= 0, we have from (6.9)

A+ Bω =
B

v
((1 + u) + vω),

and hence, in view of (6.3), (6.5), (6.8), (6.9), we find
that

Mc ≈ {(a, b) ∈ Z2; av = b(u+ 1)}
Pc ≈ {(A,B) ∈ Z2; Av = B(u + 1), d |B},

d = (v, u− 1).

In other words, if we put e = (v, u + 1) and define
C, D by u+ 1 = Ce, v = De, then we find that

Mc = DZ ⊇ Pc = DZ ∩ dZ
and we end up with the isomorphism

(6.10)
Mc

Pc
≈ Z
d/(D, d)Z

.

7. Comments. Since Mc is Z-free of rank
1 and (Mc/Pc) is 2-torsion, the index [Mc : Pc] in
(6.10) is either 1 or 2. Our problem is to determine
it in terms of the quadratic field k. In view of the
structure of H1(G,R×), it is enough to consider co-
cycles of the form c = ±ε of real quadratic field with
Nε = 1. In fact, one verifies easily that the index is
unchanged if c is replaced by −c.

I owe Seok-Min Lee [2] the determination of the
index

∆m = [Mε : Pε], k = Q(
√
m), with m < 1000.

His table seems to support the following conjectural
statement:

(i) m ≡ 1 (mod 4) ⇒ ∆m = 1,

(ii) m ≡ 2 (mod 4) ⇒ ∆m = 2.

As for the remaining case m ≡ 3 (mod 4), both val-
ues 1 and 2 occur; they begin as follows:

∆m = 1 for m = 3, 7, 11, 15, 19, 23, 31, 35, 43, 47, 51,

59, 67, 71, 79, 83, 87, 91, 103,

∆m = 2 for m = 39, 55, 95, 111, 155, 183, 203, 259,

295, 299, 327, 355, 371, 395.

As you see, the second case appears much less fre-
quently.
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