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Canonical curves of genus eight

By Manabu Ide∗) and Shigeru Mukai∗∗)

(Communicated by Shigefumi Mori, m. j. a., March 12, 2003)

Abstract: A non-tetragonal curve of genus 8 is a complete intersection of divisors in either
P2 ×P2, a 6-dimensional weighted Grassmannian or the 8-dimensional Grassmannian.

Key words: Canonical curve; gonality; Grassmann variety.

Let C = C14 ⊂ P7 be a canonical curve of
genus 8 over an algebraically closed field k. If C has
no g2

7, then C14 ⊂ P7 is a transversal linear section
[G(2, 6) ⊂ P14] ∩H1 ∩ · · · ∩H7 of the 8-dimensional
Grassmannian ([M2]). This is the case 〈8 〉 of the
Flowchart below. In this article we study the case
where C has a g2

7 α. The system of defining equa-
tions of C14 is easily found from the following: ([M1]
Prop. 5)

Theorem. (i) Assume that C has no g1
4. If

α2 ∼= KC , then C is the complete intersection of the
6-dimensional weighted Grassmannian w-G(2, 5) ⊂
P(13 : 26 : 3) with a subspace P(11122), where w =
(1, 1, 1, 3, 3)/2 (Case 〈7 〉). Otherwise C is the com-
plete intersection of three divisors of bidegree (1, 1),
(1, 2) and (2, 1) in P2 × P2 (Case 〈6 〉).

(ii) Assume that C has a g1
4 but no g2

6. Then C

is the complete intersection of four divisors of bide-
gree (1, 1), (1, 1), (0, 2) and (1, 2) in P1 × P4 (Case
〈5 〉).

Here a grd is a line bundle of degree d and h0 ≥
r + 1.

Corollary. C is a complete intersection of di-
visors in a variety X which is either a non-singular
toric variety or a weighted Grassmannian:

Case 〈1 〉 〈2 〉 〈3 〉 〈4 〉
X F9 P1 × P1,F2 W ′

7 Blp P3

Cliff C 0 1 2

〈5 〉 〈6 〉 〈7 〉 〈8 〉
P1 ×P4 P2 × P2 w-G(2, 5) G(2, 6)

3
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Here W ′
7 is the P1-bundle P(OS⊕OS(−K)) over S7,

the blow-up of P2 at two points. The bottom row
indicates the Clifford index of C.

This is applied to the K3-extension problem in
[I].
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Flowchart

1. Cases of small Clifford index. The
cases 〈1 〉, . . . , 〈4 〉 are easy.

Case 〈1 〉. C is a double covering y2 =
f18(x0, x1) of P1 in the weighted projective space
P(1 : 1 : 9), whose minimal resolution F9 is the toric
variety X.

Case 〈2 〉. X, a 2-dimensional rational scroll of
degree 6, is the quadric hull of C14 ⊂ P7 ([ACGH]
III §3).

Case 〈3 〉. C14 ⊂ P7 is contained in the cone
over an elliptic curve E7 ⊂ P6 of degree 7. E7 is
a hyperplane section of a smooth del Pezzo surface
S7 ⊂ P7 of degree 7. Let B be the branch locus
of the double covering C → E7. Then there exists
a member D ∈ | − 2KS | with D ∩ C = B. In the
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P1-bundle W ′
7, C is the intersection of the double

covering of S with branch D and the inverse image
of E7.

Case 〈4 〉. Let α be a non-bielliptic g2
6, and β

its Serre adjoint KCα
−1, which is a g3

8 by Riemann-
Roch. Then both α and β are base point free. Φ|α|
is a birational morphism onto a plane sextic C6 with
two nodes, one of which may be infinitely near. Let
π : S π2−→ S′ π1−→ P2 be the composite of the blowing-
ups at these nodes, h the pull-back of a line, e1 and e2
the total transform of the exceptional divisors. Since
−KS ∼ 3h−e1 −e2 and C ∼ 6h−2e1−2e2 , we have
α = h|C, β = (2h−e1 −e2)|C and βα−1 = (h−e1 −
e2)|C.

The morphism Φ|β| is birational onto a space
curve C8 ⊂ P3 of degree 8. Φ|β| extends to the mor-
phism f = Φ|2h−e1−e2| : S → P3 onto a quadric
surface Q. f contracts the strict transform L ∈ |h−
e1 − e2| of the line passing through the two nodes of
C6 to a nonsingular point p of Q. Since L.C = 2, p
is a double point of C8. C8 is a complete intersection
of Q and a quartic surface since C + 2L ∼ 4(2h −
e1 − e2). C itself is the complete intersection of two
divisors in the blow-up X of P3 at p. One is the
strict transform 	 S of Q and the other belongs to
| −K|.

Case 〈5 〉. Let α be a g1
4 and β its Serre adjoint.

Then |α| is base point free since C is not trigonal.
β is a g4

10 by Riemann-Roch and very ample by as-
sumption since C has no g2

6 or g3
8.

Lemma 1.1. The multiplication map
µ : H0(α) ⊗H0(β) −→ H0(KC) is surjective.
Proof. By the base point free pencil trick

([ACGH]), the kernel of µ is H0(α−1β). If µ is not
surjective, then α−1β is a g2

6. This is a contradiction.

There is a commutative diagram of embeddings

P1 ×P4 Segre−−−−→ P9 = P∗(H0(α) ⊗H0(β))

Φ|α|×Φ|β|

� �µ∗

C
canonical−−−−−−→ P7 = P∗H0(ωC),

where µ∗ is the linear embedding associated with the
surjection µ. By the lemma, the number of linearly
independent (1, 1)-forms vanishing on C is equal to
2. Therefore, C is contained in the intersection Y

of two divisors of bidegree (1, 1) in X = P1 × P4.
Since every divisor of bidegree (1, 1) containing C

is smooth, Y is smooth of dimension 3. Moreover

PicY ∼= Z2 by Lefschetz theorem. By easy dimen-
sion count, there exists a divisor of bidegree (1, 2)
and (0, 2) on Y which contain C. Since the degree of
the complete intersection Y ∩ (1, 2)∩ (0, 1) is

(a+ b)2.(a+ 2b).(2b).(a+ b) = 14ab3 = 14 = degC,

it coincides with C, where a = pr∗1OP1(1) and b =
pr∗2OP4(1).

2. Linear net of degree 7. Assume that
C has a g2

7 α but no g1
4. Let C ⊂ P2 be the im-

age of the morphism Φ|α|. Then C is of degree 7
and has no triple points. By the genus formula, C
has 7 double points, some of which may be infinitely
near. Therefore, there is a composition π of seven
one-point-blowing-ups

S := S(7) −→ S(6) −→ · · · −→ S(1) −→ S(0) = P2

such that Φ|α| : C → P2 lifts to C → S. Let Ei ⊂ S,
1 ≤ i ≤ 7, be the total transform of the exceptional
divisor of the blow-up S(i) −→ S(i−1) and h the pull
back of a line. Then C ⊂ S belongs to the linear
system |7h − 2

∑7
i=1 Ei|. Since the canonical class

KS of S is −3h+
∑7

i=1 Ei,

Hi

(
OS

(
(n− 7)h+

7∑
i=1

Ei

))

is the dual of H2−i(OS((4 − n)h)). Hence we have
Lemma 2.1. The restriction map

H0

(
S,OS

(
nh−

7∑
i=1

Ei

))

−→ H0

(
C,OC

(
nh−

7∑
i=1

Ei

))

is surjective for every n. Moreover, it is an isomor-
phism for n ≤ 6.

By the adjunction formula

KC = (KS +C)|C = h|C +
(

3h−
7∑
i=1

Ei

)
|C,

the Serre adjoint β = KCα
−1 is isomorphic to

OC(3h−
∑7

i=1 Ei). By Lemma 2.1, α is self adjoint ,
i.e., α ∼= β, if and only if |2h −

∑7
i=1Ei| �= ∅. We

discuss the case α ∼= β in the next section, and now
assume that α �∼= β.

Proposition 2.2. The multiplication map
H0(α)⊗H0(β) −→ H0(αβ) = H0(KC) is surjective.

Proof. Assume the contrary. Then there are
two independent (1, 1)-forms on P2 × P2 vanishing
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on C. Let P be the pencil generated by them, and
X = XP its base locus. If P contains a form of
rank 1, then the image of Φ|α| is a line, which is a
contradiction. Therefore P contains no (1, 1)-forms
of rank 1.

If P is regular, then XP is irreducible (Propo-
sition 4.1). Let π : XP −→ P2 be the first pro-
jection. Then there is an effective divisor E such
that KX = π∗KP2 + E. On one hand, since KX =
OX(−1,−1) and π∗KP2 = OX(−3, 0), we have
E.C = degOC(2,−1) = 7. On the other hand, since
IP is of colength 3 (Proposition 4.2), we have a com-
position series IP = I3 ⊂ I2 ⊂ I1 ⊂ OP2 of ideal
sheaves and a composition

ψ : X3
ψ3→ X2

ψ2→ X1
ψ1→ P2

of three one-point-blow-ups. X3 is smooth and its
canonical class is ψ∗KP2 +E1 +E2 +E3, where Ei is
the total transform of the exceptional divisors of ψi.
By the universal property of the blow-up ([H] II 7.14),
there is a natural birational morphism φ : X3 −→
XP = BlIP P2. Since XP is a complete linear section
of P2 ×P2, it has at worst rational double points as
its singularities. Thus φ is a crepant resolution, and
we have E1 +E2 +E3 = φ∗E. Therefore, for some i,
we have Ei.C ≥ 3, and ψ∗OP2(1) −Ei restricts to a
g1
d with d ≤ 4 on C. This is a contradiction.

If P is singular, then XP is either

I) ∆ ∪ (P1 ×P1), or II) F3,2 ∪ (p ×P2)

by the table in §4. In the former case C is contained
in either the diagonal ∆ or P1 × P1. This means
that α is isomorphic to β or that the image of Φ|α|
is a line. In the latter case we have either that the
image of Φ|β| is a conic or that the image of Φ|α| is
a point. Thus we have a contradiction.

Now, we consider the multiplication map

H0(S, h) ⊗H0

(
S, 3h−

7∑
i=1

Ei

)

−→ H0

(
S, 4h−

7∑
i=1

Ei

)
.

This is not injective since h0(3h −
∑7

i=1 Ei) =
h0(β) = 3 and h0(S, 4h −

∑7
i=1 Ei) = h0(KC ) = 8

by Lemma 2.1. Similarly the dimension of the kernel
of

H0(S, 2h) ⊗H0

(
S, 3h−

7∑
i=1

Ei

)

−→ H0

(
S, 5h−

7∑
i=1

Ei

)

is at least 6× 3 − h0(αKC) = 4. Hence the image of
the rational map(

Φ|h|, Φ|3h−�Ei|
)

: S − −−→ P2 × P2

is contained in a divisor W of bidegree (1, 1) and W ′

of bidegree (2, 1) such that dimW ∩W ′ = 2. The
pull-back of the divisor class of bidegree (1, 2) to S
is h+2(3h−

∑7
i=1 Ei) = 7h−2

∑7
i=1 Ei and linearly

equivalent to C.
We now look at the 15 quadrics which vanish

on the canonical model C14 ⊂ P7 of C. First, C14 is
contained in a hyperplane section of the Segre variety

[W ⊂ P7] = [P2 × P2 ⊂ P8] ∩H,

and there are 9 quadrics vanishing on W . Next,
there are 3 quadrics which cut out W ∩ W ′ from
W . Finally, since the pull-back of OP7(2) to S is
OS

(
2(4h−

∑7
i=1Ei)

)
= OS(C+h), there are 3 more

independent quadrics vanishing on C. Thus we have
found 9 + 3 + 3 = 15 independent quadrics vanish-
ing on C. By Noether’s theorem, they form a basis
of H0(P7, IC(2)), and by the Enriques-Petri theo-
rem ([GH], Chap. 4), they define the canonical model
C14 ⊂ P7 scheme-theoretically. Thus C is the com-
plete intersection of divisors (1, 2) and (2, 1) in W

(Case 〈6 〉 of Theorem).
3. Curves with a self adjoint net. We as-

sume that α2 	 KC . Let ∆ ⊂ S = S(7) be the
unique member of

∣∣2h −
∑7

i=1Ei
∣∣ and ∆̄ ⊂ P2 its

image. Then ∆̄ is an irreducible conic. We choose
homogeneous coordinates of ∆ ∼= ∆̄ ∼= P1 and P2

such that the morphism ∆ → P2 is given by

(s : t) �→ (x0 : x1 : x2) = (s2 : st : t2).

The surface S is the blow-up at seven points on
∆̄. Let f(s, t) = 0 be the equation of degree 7
over ∆̄ whose solutions are the seven points. We
shall construct a polynomial F (x) ∈ H0

(
S,OS(7h−

2
∑7
i=1 Ei)

)
which is determinantal in a certain

sense. This will imply that the system of equations
of C ⊂ P(11122) is 5 × 5 Pfaffian.

We start with a pair of ternary quartic polyno-
mialsA(x) and B(x) such that A(s2 , st, t2) = sf(s, t)
and B(s2, st, t2) = tf(s, t). Such polynomials exist
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by the exact sequence

(1)

H0(OP(2)) → H0(OP(4)) →H0(∆̄,O∆̄(4))→ 0

∼=

H0(P1,OP1(8)).

Since tA(s2 , st, t2)−sB(s2 , st, t2) is zero, the quintic
polynomials x1A(x)− x0B(x) and x2A(x)− x1B(x)
are divisible by δ(x), the equation of ∆̄ ⊂ P2. We
put

(2)
{
−x0B(x) +x1A(x) = δ(x)D(x)

−x1B(x) +x2A(x) = δ(x)E(x),

where D(x) and E(x) are cubic forms. Put{
D(x) = q0(x)x0 + q1(x)x1 + q2(x)x2

E(x) = r0(x)x0 + r1(x)x1 + r2(x)x2

for quadratic forms qi(x)’s and ri(x)’s. Then by
Cramer’s rule we have

(3) ∣∣∣∣−A+ q1δ q2δ

B + r1δ −A+ r2δ

∣∣∣∣
x0

=

∣∣∣∣ q2δ B + q0δ

−A + r2δ r0δ

∣∣∣∣
x1

=

∣∣∣∣B + q0δ −A + q1δ

r0δ B + r1δ

∣∣∣∣
x2

:= F (x).

Here F (x) is a form of degree 7 since xiF (x) is a
form of degree 8 for i = 0, 1, 2. Let y0, y1 and z be
new indeterminates which are algebraically indepen-
dent over the field k(x0, x1, x2). We consider the ring
homomorphism

ϕS : k[x0, x1, x2, y0, y1, z] −→ k

[
x0, x1, x2,

1
δ(x)

]
,

y0 �→ A(x)
δ(x)

, y1 �→ B(x)
δ(x)

, z �→ F (x)
δ(x)2

and its kernel IS . Then IS is a (quasi-)homogeneous
ideal under the grading deg xi = 1, deg yj = 2 and
deg z = 3. By the equation (2), two cubic forms

(4)
a0(x, y)x0 + a1(x, y)x1 + a2(x, y)x2, and
b0(x, y)x0 + b1(x, y)x1 + b2(x, y)x2

belong to IS , where we put

a0(x, y) = y1 + q0(x), a1(x, y) = −y0 + q1(x), · · ·
· · · , b1(x, y) = y1 + r1(x), b2(x, y) = −y0 + r2(x).

By (3), three quartic forms

(5)

x0z −
∣∣∣∣a1(x, y) a2(x, y)
b1(x, y) b2(x, y)

∣∣∣∣ ,
∣∣∣∣a2(x, y) a0(x, y)
b2(x, y) b0(x, y)

∣∣∣∣− x1z,

x2z −
∣∣∣∣a0(x, y) a1(x, y)
b0(x, y) b1(x, y)

∣∣∣∣
also belong to IS . These five relations (4) and (5) are
the five 4×4 Pfaffians of the skew-symmetric matrix


0 z a0(x, y) a1(x, y) a2(x, y)

0 b0(x, y) b1(x, y) b2(x, y)
0 x2 −x1

� 0 x0

0


 .

Now we relate the ideal IS with the anti-
canonical ring of a weak log del Pezzo surface. Let

R :=
⊕
n≥0

H0

(
S,
⌊
n
(
h+

2
3
∆
)⌋)

be the homogeneous coordinate ring of the Q-divisor
h + (2/3)∆, which is linearly equivalent to −KS −
(1/3)∆. For a global section s ∈ H0(S, n(h +
(2/3)n)) = H0(S, nh + a∆) = H0

(
(n + 2a)h −

a
∑7
i=1 Ei

)
, a = �(2/3)n�, its push-forward π∗s ∈

H0(P2,OP2(n + 2a)) is a homogeneous polynomial
of degree n + 2a. We identify R with the image
of the injective ring homomorphism ψ : R −→
k[x0, x1, x2, 1/δ(x)] defined by

H0(S, nh+ a∆) � s �→ π∗s
δ(x)a

∈ k

[
x0, x1, x2,

1
δ(x)

]
n

.

The degree 1 part H0(S, h) is spanned by the
homogeneous coordinates x0, x1, x2. The degree 2
part H0(S, 2h+ ∆) contains S2〈x0, x1, x2〉 as a sub-
space. The pull-back of the quartic forms A(x)
and B(x) to S belong to H0(S, 4h −

∑7
i=1 Ei) and

{A(x)/δ(x), B(x)/δ(x)} is a complementary basis of
S2〈x0, x1, x2〉 ⊂ H0(S,OS(2h+ ∆)) by the exact se-
quence (1).

Consider the multiplication map

(6) H0(S, h) ⊗H0(S, 2h+ ∆) −→ H0(S, 3h+ ∆)

from degree 1 and 2 to degree 3. Since the restric-
tion maps H0(S, h) −→ H0(O∆(h)) and H0(S, 2h+
∆) −→ H0(O∆(2h + ∆)) are surjective, so is this
multiplication map. By the exact sequence

0 → OS

(
5h−

7∑
i=1

Ei

)
→ OS(3h+ 2∆) → O∆ → 0
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and Lemma 2.1, the degree 3 part H0(S, 3h+ 2∆) is
generated by the image of (6) and F (x)/δ(x)2.

Now we relate the ideal IS with C ∈
∣∣7h −

2
∑7
i=1 Ei

∣∣. Since C is disjoint from ∆ and since
OC(h) ∼= α, we have the restriction maps

(7) H0

(
S,
⌊
n
(
h +

2
3
∆
)⌋)

−→ H0(C, αn)

and R −→ R(C, α) :=
⊕

n≥0H
0(C, αn). Since (7) is

an isomorphism for n = 1 and 2, the ring homomor-
phisms ϕS and ψ induce that

ϕC : k[x0, x1, x2, y0, y1] −→ R(C, α)

to the semi-canonical ring.
The equation of C̄ ⊂ P2, or C ⊂ S, is of the

form F (x) + δ(x)G(x) for a quintic form G(x) ∈
H0
(
S, 5h −

∑7
i=1 Ei

)
. There exist a cubic form

c(x, y0, y1) such that c(x, A(x)/δ(x), B(x)/δ(x)) =
G(x)/δ(x)2 and a commutative diagram

ϕS
k[x0, x1, x2, y0, y1, z] −→ R

↓ ↓
k[x0, x1, x2, y0, y1] −→ R(C, α),

ϕC

where the left vertical map is the specialization of z
to the degree 3 element c(x, y). Hence the five 4 × 4
Pfaffians of

(8)




0 c(x, y) a0(x, y) a1(x, y) a2(x, y)
0 b0(x, y) b1(x, y) b2(x, y)

0 x2 −x1

� 0 x0

0




belongs to the kernel of ϕC .
Now we prove Theorem in Case 〈7 〉. Let C ⊂

P7 = P∗H0(KC) be the canonical model of C. Since
Sym2H0(α) ⊂ H0(KC ), C is contained in the join of
the Veronese surface and a line. This join is nothing
but the weighted projective space P(11122) whose
coordinates are x0, x1, x2, y0, y1. Two polynomi-
als (4) vanish on C. Multiplying these by x0, x1

and x2, we obtain 6 relations of degree 4, which
are linearly independent. Together with 3 relations
(5) of degree 4, the five Pfaffians of (8) generate 9
quartic forms on P(11122) vanishing on C. On the
other hand there are 6 quadratic forms vanishing on
P(11122) ⊂ P7. Hence we have 15 quadratic forms
vanishing on C ⊂ P7. These are all quadratic forms
vanishing on C. Hence the five Pfaffians cut out C

scheme-theoretically from P(11122) by the Enriques-
Petri theorem. Case 〈7 〉 of Theorem follows since
w-G(2.5) is 5 × 5 Pfaffian in P(13 : 26 : 3).

4. Pencil of matrices. For a 3 × 3 matrix
A = (aij)0≤i,j≤2, we denote the divisor fA(x, y) :=∑

0≤i,j≤2aijxiyj = 0 in the Segre variety P2 ×P2 ⊂
P8 by XA, where (x0 : x1 : x2) and (y0 : y1 : y2) are
the homogeneous coordinates. Then XA is reducible,
singular at one point and smooth according as A is
of rank 1, 2 and 3.

Let P be a 2-dimensional space of 3×3 matrices
and {A,B} be its basis. We classifyXP := XA∩XB.
We call P regular if it contains an invertible matrix
and singular otherwise. Let

fA(x, y) = a0(x)y0 + a1(x)y1 + a2(x)y2,

fB(x, y) = b0(x)y0 + b1(x)y1 + b2(x)y2,

be the (1, 1)-forms corresponding to A and B and IP
the ideal sheaf of OP2 generated by the minors

D0 =
∣∣∣∣a1 a2

b1 b2

∣∣∣∣ , D1 =
∣∣∣∣a2 a0

b2 b0

∣∣∣∣ , D2 =
∣∣∣∣a0 a1

b0 b1

∣∣∣∣ ,
of the coefficient matrix. Then the zero locus
V (IP ) ⊂ P2 is the locus where the first projection
π : XP −→ P2 is not isomorphic.

If P is regular, then the divisor Y correspond-
ing to an invertible matrix in P is nonsingular and
the projections Y −→ P2 are P1-bundles. By the
Lefshetz Theorem, the Picard number of Y is equal
to 2 and the Picard group is generated by OY (1, 0)
and OY (0, 1). Thus if XP is reducible, it must be
a sum of divisors of bidegree (1, 0) and (0, 1) on Y ,
i.e., a section of Y by (1, 1)-forms of rank 1. XP is
the union of two cubic scrolls F2,1∪F1,2. So we have

Proposition 4.1. If P is regular and contains
no member of rank 1, then XP is irreducible.

It is well known that π is the blow-up at three
points if XP is smooth.

Proposition 4.2. Let P and XP be as in the
above proposition. Then V (IP ) is of dimension 0,
and IP ⊂ OP2 is of colength 3. Moreover π : XP −→
P2 is the blowing-up with center IP .

Proof. If dimV (IP ) > 0, then the inverse im-
age π−1V (IP ) is a surface. This is impossible since
XP is irreducible of dimension 2. The colength of IP
is equal to 3 since it is so if XP is smooth.

The blow-up BlIP P2 with center V (IP ) has a
natural embedding ϕ into P2 × P2. ϕ is an isomor-
phism onto XP since a0D0 + a1D1 + a2D2 = b0D0 +
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b1D1 + b2D2 = 0 and since XP is irreducible and
reduced.

If P is singular, then by Kronecker’s classifica-
tion ([Ga] Chap. XII), P is either

type I

〈
 0 1 0
−1 0 0
0 0 0


 ,


 0 0 1

0 0 0
−1 0 0



〉
,

type II

〈
1 0 0

0 −1 0
0 0 0


 ,


0 1 0

0 0 −1
0 0 0



〉
, or

type III

〈∗ ∗ 0
∗ ∗ 0
0 0 0


 ,


∗ ∗ 0
∗ ∗ 0
0 0 0


〉

modulo suitable linear transformations and modulo
transpose.

If P is of type I, then the defining equation of
XP is

x0y1 − x1y0 = x0y2 − x2y0 = 0,

and XP is the union of the diagonal ∆ and P1 ×P1.
If P is of type II, then the equation is

x0y0 − x1y1 = x0y0 − x1y2 = 0,

and XP is the union of

{(1 : λ : µ) × (λ2 : λ : 1) | λ, µ ∈ k},

a quintic scroll F3,2, and a plane p×P2. All non-zero
members are of rank 2 in these cases.

If P is of type III, then by the Jordan normal
form of 2 × 2-matrices, the defining equation of XP
is either

x0y0 + x1y1 = xiyj = 0 for some 0 ≤ i ≤ j ≤ 1, or

x0y0 = x0y1 = 0.

So we have the following table:

P rank 1 XP degree

reg.
� ∃ BlIP P2 6
∃ F2,1 ∪F1,2 3+3

sing.
� ∃

∆ ∪ (P1 ×P1) 4+2
F3,2 ∪ (p ×P2) 5+1

∃ 2P2 ∪ 2(P1 ×P1) 1+1+2+2
(P1 ×P2) ∪ (P2 × p) (3)+1
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