Canonical curves of genus eight

By Manabu IDE^{*)} and Shigeru MUKAI^{**)}

(Communicated by Shigefumi MORI, M. J. A., March 12, 2003)

Abstract: A non-tetragonal curve of genus 8 is a complete intersection of divisors in either $\mathbf{P}^2 \times \mathbf{P}^2$, a 6-dimensional weighted Grassmannian or the 8-dimensional Grassmannian.

Key words: Canonical curve; gonality; Grassmann variety.

Let $C = C_{14} \subset \mathbf{P}^7$ be a canonical curve of genus 8 over an algebraically closed field k. If C has no g_7^2 , then $C_{14} \subset \mathbf{P}^7$ is a transversal linear section $[G(2, 6) \subset \mathbf{P}^{14}] \cap H_1 \cap \cdots \cap H_7$ of the 8-dimensional Grassmannian ([M2]). This is the case $\langle 8 \rangle$ of the Flowchart below. In this article we study the case where C has a $g_7^2 \alpha$. The system of defining equations of C_{14} is easily found from the following: ([M1] Prop. 5)

Theorem. (i) Assume that C has no g_4^1 . If $\alpha^2 \cong K_C$, then C is the complete intersection of the 6-dimensional weighted Grassmannian w-G(2,5) \subset $\mathbf{P}(1^3:2^6:3)$ with a subspace $\mathbf{P}(11122)$, where w = (1, 1, 1, 3, 3)/2 (Case $\langle 7 \rangle$). Otherwise C is the complete intersection of three divisors of bidegree (1, 1), (1, 2) and (2, 1) in $\mathbf{P}^2 \times \mathbf{P}^2$ (Case $\langle 6 \rangle$).

(ii) Assume that C has a g_4^1 but no g_6^2 . Then C is the complete intersection of four divisors of bidegree (1, 1), (1, 1), (0, 2) and (1, 2) in $\mathbf{P}^1 \times \mathbf{P}^4$ (Case $\langle 5 \rangle$).

Here a g_d^r is a line bundle of degree d and $h^0 \ge r+1$.

Corollary. C is a complete intersection of divisors in a variety X which is either a non-singular toric variety or a weighted Grassmannian:

Ca	se	$\langle 1 \rangle$	$\langle 2 \rangle$		$\langle 3 \rangle$	$\langle 4 \rangle$		
Х	ζ	\mathbf{F}_9	$\mathbf{P}^1 imes \mathbf{P}^1, \mathbf{F}_2$		W'_7	$Bl_p \mathbf{P}^3$		
Clif	f C	0	1		2			2
_						-		
_	$\langle 5 \rangle$		$\langle 6 \rangle$	$\langle 7 \rangle$			$\langle 8 \rangle$	
	F	$\mathbf{P}^1 imes \mathbf{P}^4$	$\mathbf{P}^2 imes \mathbf{P}^2$	w- $G(2,5)$		5)	G(2, 6)	
_			3					

2000 Mathematics Subject Classification. Primary 14H45. *) Graduate School of Mathematics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602. Here W'_7 is the \mathbf{P}^1 -bundle $\mathbf{P}(\mathcal{O}_S \oplus \mathcal{O}_S(-K))$ over S_7 , the blow-up of \mathbf{P}^2 at two points. The bottom row indicates the Clifford index of C.

This is applied to the K3-extension problem in [I].

1. Cases of small Clifford index. The cases $\langle 1 \rangle, \ldots, \langle 4 \rangle$ are easy.

Case $\langle 1 \rangle$. *C* is a double covering $y^2 = f_{18}(x_0, x_1)$ of \mathbf{P}^1 in the weighted projective space $\mathbf{P}(1:1:9)$, whose minimal resolution \mathbf{F}_9 is the toric variety *X*.

Case $\langle 2 \rangle$. X, a 2-dimensional rational scroll of degree 6, is the quadric hull of $C_{14} \subset \mathbf{P}^7$ ([ACGH] III §3).

Case $\langle 3 \rangle$. $C_{14} \subset \mathbf{P}^7$ is contained in the cone over an elliptic curve $E_7 \subset \mathbf{P}^6$ of degree 7. E_7 is a hyperplane section of a smooth del Pezzo surface $S_7 \subset \mathbf{P}^7$ of degree 7. Let *B* be the branch locus of the double covering $C \to E_7$. Then there exists a member $D \in |-2K_S|$ with $D \cap C = B$. In the

No. 3]

^{**)} Research Institute for Mathematical Sciences, Kyoto University, Kita Shirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502.

 \mathbf{P}^1 -bundle W'_7 , C is the intersection of the double covering of S with branch D and the inverse image of E_7 .

Case $\langle 4 \rangle$. Let α be a non-bielliptic g_6^2 , and β its Serre adjoint $K_C \alpha^{-1}$, which is a g_8^3 by Riemann-Roch. Then both α and β are base point free. $\Phi_{|\alpha|}$ is a birational morphism onto a plane sextic C_6 with two nodes, one of which may be infinitely near. Let $\pi : S \xrightarrow{\pi_2} S' \xrightarrow{\pi_1} \mathbf{P}^2$ be the composite of the blowingups at these nodes, h the pull-back of a line, e_1 and e_2 the total transform of the exceptional divisors. Since $-K_S \sim 3h - e_1 - e_2$ and $C \sim 6h - 2e_1 - 2e_2$, we have $\alpha = h|_C$, $\beta = (2h - e_1 - e_2)|_C$ and $\beta \alpha^{-1} = (h - e_1 - e_2)|_C$.

The morphism $\Phi_{|\beta|}$ is birational onto a space curve $C_8 \subset \mathbf{P}^3$ of degree 8. $\Phi_{|\beta|}$ extends to the morphism $f = \Phi_{|2h-e_1-e_2|} : S \to \mathbf{P}^3$ onto a quadric surface Q. f contracts the strict transform $L \in |h - e_1 - e_2|$ of the line passing through the two nodes of C_6 to a nonsingular point p of Q. Since L.C = 2, pis a double point of C_8 . C_8 is a complete intersection of Q and a quartic surface since $C + 2L \sim 4(2h - e_1 - e_2)$. C itself is the complete intersection of two divisors in the blow-up X of \mathbf{P}^3 at p. One is the strict transform $\simeq S$ of Q and the other belongs to |-K|.

Case $\langle 5 \rangle$. Let α be a g_4^1 and β its Serre adjoint. Then $|\alpha|$ is base point free since C is not trigonal. β is a g_{10}^4 by Riemann-Roch and very ample by assumption since C has no g_6^2 or g_8^3 .

Lemma 1.1. The multiplication map $\mu: H^0(\alpha) \otimes H^0(\beta) \longrightarrow H^0(K_C)$ is surjective.

Proof. By the base point free pencil trick ([ACGH]), the kernel of μ is $H^0(\alpha^{-1}\beta)$. If μ is not surjective, then $\alpha^{-1}\beta$ is a g_6^2 . This is a contradiction.

There is a commutative diagram of embeddings

$$\begin{array}{ccc} \mathbf{P}^{1} \times \mathbf{P}^{4} & \stackrel{\text{Segre}}{\longrightarrow} & \mathbf{P}^{9} = \mathbf{P}^{*}(H^{0}(\alpha) \otimes H^{0}(\beta)) \\ \\ \varPhi_{|\alpha|} \times \varPhi_{|\beta|} \uparrow & & \uparrow \mu^{*} \\ C & \stackrel{\text{canonical}}{\longrightarrow} & \mathbf{P}^{7} = \mathbf{P}^{*}H^{0}(\omega_{C}), \end{array}$$

where μ^* is the linear embedding associated with the surjection μ . By the lemma, the number of linearly independent (1, 1)-forms vanishing on C is equal to 2. Therefore, C is contained in the intersection Y of two divisors of bidegree (1, 1) in $X = \mathbf{P}^1 \times \mathbf{P}^4$. Since every divisor of bidegree (1, 1) containing C is smooth, Y is smooth of dimension 3. Moreover

Pic $Y \cong \mathbb{Z}^2$ by Lefschetz theorem. By easy dimension count, there exists a divisor of bidegree (1, 2) and (0, 2) on Y which contain C. Since the degree of the complete intersection $Y \cap (1, 2) \cap (0, 1)$ is

$$(a+b)^2 \cdot (a+2b) \cdot (2b) \cdot (a+b) = 14ab^3 = 14 = \deg C,$$

it coincides with C, where $a = pr_1^* \mathcal{O}_{\mathbf{P}^1}(1)$ and $b = pr_2^* \mathcal{O}_{\mathbf{P}^4}(1)$.

2. Linear net of degree 7. Assume that C has a $g_7^2 \alpha$ but no g_4^1 . Let $\overline{C} \subset \mathbf{P}^2$ be the image of the morphism $\Phi_{|\alpha|}$. Then \overline{C} is of degree 7 and has no triple points. By the genus formula, \overline{C} has 7 double points, some of which may be infinitely near. Therefore, there is a composition π of seven one-point-blowing-ups

$$S := S_{(7)} \longrightarrow S_{(6)} \longrightarrow \cdots \longrightarrow S_{(1)} \longrightarrow S_{(0)} = \mathbf{P}^2$$

such that $\Phi_{|\alpha|}: C \to \mathbf{P}^2$ lifts to $C \to S$. Let $E_i \subset S$, $1 \leq i \leq 7$, be the total transform of the exceptional divisor of the blow-up $S_{(i)} \longrightarrow S_{(i-1)}$ and h the pull back of a line. Then $C \subset S$ belongs to the linear system $|7h - 2\sum_{i=1}^{7} E_i|$. Since the canonical class K_S of S is $-3h + \sum_{i=1}^{7} E_i$,

$$H^i\bigg(\mathcal{O}_S\Big((n-7)h+\sum_{i=1}^7 E_i\Big)\bigg)$$

is the dual of $H^{2-i}(\mathcal{O}_S((4-n)h))$. Hence we have **Lemma 2.1.** The restriction map

$$H^{0}\left(S, \mathcal{O}_{S}\left(nh - \sum_{i=1}^{7} E_{i}\right)\right) \longrightarrow H^{0}\left(C, \mathcal{O}_{C}\left(nh - \sum_{i=1}^{7} E_{i}\right)\right)$$

is surjective for every n. Moreover, it is an isomorphism for $n \leq 6$.

By the adjunction formula

$$K_C = (K_S + C)|_C = h|_C + \left(3h - \sum_{i=1}^7 E_i\right)|_C,$$

the Serre adjoint $\beta = K_C \alpha^{-1}$ is isomorphic to $\mathcal{O}_C(3h - \sum_{i=1}^7 E_i)$. By Lemma 2.1, α is self adjoint, *i.e.*, $\alpha \cong \beta$, if and only if $|2h - \sum_{i=1}^7 E_i| \neq \emptyset$. We discuss the case $\alpha \cong \beta$ in the next section, and now assume that $\alpha \ncong \beta$.

Proposition 2.2. The multiplication map $H^0(\alpha) \otimes H^0(\beta) \longrightarrow H^0(\alpha\beta) = H^0(K_C)$ is surjective.

Proof. Assume the contrary. Then there are two independent (1, 1)-forms on $\mathbf{P}^2 \times \mathbf{P}^2$ vanishing

on C. Let P be the pencil generated by them, and $X = X_P$ its base locus. If P contains a form of rank 1, then the image of $\Phi_{|\alpha|}$ is a line, which is a contradiction. Therefore P contains no (1, 1)-forms of rank 1.

If P is regular, then X_P is irreducible (Proposition 4.1). Let $\pi : X_P \longrightarrow \mathbf{P}^2$ be the first projection. Then there is an effective divisor E such that $K_X = \pi^* K_{\mathbf{P}^2} + E$. On one hand, since $K_X = \mathcal{O}_X(-1,-1)$ and $\pi^* K_{\mathbf{P}^2} = \mathcal{O}_X(-3,0)$, we have $E.C = \deg \mathcal{O}_C(2,-1) = 7$. On the other hand, since I_P is of colength 3 (Proposition 4.2), we have a composition series $I_P = I_3 \subset I_2 \subset I_1 \subset \mathcal{O}_{\mathbf{P}^2}$ of ideal sheaves and a composition

$$\psi: X_3 \xrightarrow{\psi_3} X_2 \xrightarrow{\psi_2} X_1 \xrightarrow{\psi_1} \mathbf{P}^2$$

of three one-point-blow-ups. X_3 is smooth and its canonical class is $\psi^* K_{\mathbf{P}^2} + E_1 + E_2 + E_3$, where E_i is the total transform of the exceptional divisors of ψ_i . By the universal property of the blow-up ([H] II 7.14), there is a natural birational morphism $\phi : X_3 \longrightarrow X_P = Bl_{I_P} \mathbf{P}^2$. Since X_P is a complete linear section of $\mathbf{P}^2 \times \mathbf{P}^2$, it has at worst rational double points as its singularities. Thus ϕ is a crepant resolution, and we have $E_1 + E_2 + E_3 = \phi^* E$. Therefore, for some i, we have $E_i.C \geq 3$, and $\psi^* \mathcal{O}_{\mathbf{P}^2}(1) - E_i$ restricts to a g_d^1 with $d \leq 4$ on C. This is a contradiction.

If P is singular, then X_P is either

I)
$$\Delta \cup (\mathbf{P}^1 \times \mathbf{P}^1)$$
, or \mathbf{I}) $\mathbf{F}_{3,2} \cup (p \times \mathbf{P}^2)$

by the table in §4. In the former case C is contained in either the diagonal Δ or $\mathbf{P}^1 \times \mathbf{P}^1$. This means that α is isomorphic to β or that the image of $\Phi_{|\alpha|}$ is a line. In the latter case we have either that the image of $\Phi_{|\beta|}$ is a conic or that the image of $\Phi_{|\alpha|}$ is a point. Thus we have a contradiction.

Now, we consider the multiplication map

$$H^{0}(S,h) \otimes H^{0}\left(S, 3h - \sum_{i=1}^{7} E_{i}\right)$$
$$\longrightarrow H^{0}\left(S, 4h - \sum_{i=1}^{7} E_{i}\right).$$

This is not injective since $h^0(3h - \sum_{i=1}^7 E_i) = h^0(\beta) = 3$ and $h^0(S, 4h - \sum_{i=1}^7 E_i) = h^0(K_C) = 8$ by Lemma 2.1. Similarly the dimension of the kernel of

$$H^{0}(S, 2h) \otimes H^{0}\left(S, 3h - \sum_{i=1}^{7} E_{i}\right)$$

 $\longrightarrow H^{0}\left(S, 5h - \sum_{i=1}^{7} E_{i}\right)$

is at least $6 \times 3 - h^0(\alpha K_C) = 4$. Hence the image of the rational map

$$\left(\Phi_{|h|}, \Phi_{|3h-\sum E_i|}\right): S \longrightarrow \mathbf{P}^2 \times \mathbf{P}^2$$

is contained in a divisor W of bidegree (1, 1) and W' of bidegree (2, 1) such that dim $W \cap W' = 2$. The pull-back of the divisor class of bidegree (1, 2) to S is $h + 2(3h - \sum_{i=1}^{7} E_i) = 7h - 2\sum_{i=1}^{7} E_i$ and linearly equivalent to C.

We now look at the 15 quadrics which vanish on the canonical model $C_{14} \subset \mathbf{P}^7$ of C. First, C_{14} is contained in a hyperplane section of the Segre variety

$$W \subset \mathbf{P}^7] = [\mathbf{P}^2 \times \mathbf{P}^2 \subset \mathbf{P}^8] \cap H,$$

and there are 9 quadrics vanishing on W. Next, there are 3 quadrics which cut out $W \cap W'$ from W. Finally, since the pull-back of $\mathcal{O}_{\mathbf{P}^7}(2)$ to S is $\mathcal{O}_S(2(4h - \sum_{i=1}^7 E_i)) = \mathcal{O}_S(C+h)$, there are 3 more independent quadrics vanishing on C. Thus we have found 9 + 3 + 3 = 15 independent quadrics vanishing on C. By Noether's theorem, they form a basis of $H^0(\mathbf{P}^7, \mathcal{I}_C(2))$, and by the Enriques-Petri theorem ([GH], Chap. 4), they define the canonical model $C_{14} \subset \mathbf{P}^7$ scheme-theoretically. Thus C is the complete intersection of divisors (1, 2) and (2, 1) in W(Case $\langle 6 \rangle$ of Theorem).

3. Curves with a self adjoint net. We assume that $\alpha^2 \simeq K_C$. Let $\Delta \subset S = S_{(7)}$ be the unique member of $|2h - \sum_{i=1}^{7} E_i|$ and $\bar{\Delta} \subset \mathbf{P}^2$ its image. Then $\bar{\Delta}$ is an irreducible conic. We choose homogeneous coordinates of $\Delta \cong \bar{\Delta} \cong \mathbf{P}^1$ and \mathbf{P}^2 such that the morphism $\Delta \to \mathbf{P}^2$ is given by

$$(s:t) \mapsto (x_0:x_1:x_2) = (s^2:st:t^2).$$

The surface S is the blow-up at seven points on $\overline{\Delta}$. Let f(s,t) = 0 be the equation of degree 7 over $\overline{\Delta}$ whose solutions are the seven points. We shall construct a polynomial $F(x) \in H^0(S, \mathcal{O}_S(7h - 2\sum_{i=1}^7 E_i))$ which is determinantal in a certain sense. This will imply that the system of equations of $C \subset \mathbf{P}(11122)$ is 5×5 Pfaffian.

We start with a pair of ternary quartic polynomials A(x) and B(x) such that $A(s^2, st, t^2) = sf(s, t)$ and $B(s^2, st, t^2) = tf(s, t)$. Such polynomials exist

No. 3]

by the exact sequence

(1)

$$H^{0}(\mathcal{O}_{\mathbf{P}}(2)) \to H^{0}(\mathcal{O}_{\mathbf{P}}(4)) \to H^{0}(\bar{\Delta}, \mathcal{O}_{\bar{\Delta}}(4)) \to 0$$

$$\downarrow \mid \wr$$

$$H^{0}(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}(8)).$$

Since $tA(s^2, st, t^2) - sB(s^2, st, t^2)$ is zero, the quintic polynomials $x_1A(x) - x_0B(x)$ and $x_2A(x) - x_1B(x)$ are divisible by $\delta(x)$, the equation of $\overline{\Delta} \subset \mathbf{P}^2$. We put

(2)
$$\begin{cases} -x_0 B(x) + x_1 A(x) = \delta(x) D(x) \\ -x_1 B(x) + x_2 A(x) = \delta(x) E(x), \end{cases}$$

where D(x) and E(x) are cubic forms. Put

$$\begin{cases} D(x) = q_0(x)x_0 + q_1(x)x_1 + q_2(x)x_2 \\ E(x) = r_0(x)x_0 + r_1(x)x_1 + r_2(x)x_2 \end{cases}$$

for quadratic forms $q_i(x)$'s and $r_i(x)$'s. Then by Cramer's rule we have

$$\frac{\begin{vmatrix} -A + q_1 \delta & q_2 \delta \\ B + r_1 \delta & -A + r_2 \delta \end{vmatrix}}{x_0} = \frac{\begin{vmatrix} q_2 \delta & B + q_0 \delta \\ -A + r_2 \delta & r_0 \delta \end{vmatrix}}{x_1}$$
$$= \frac{\begin{vmatrix} B + q_0 \delta & -A + q_1 \delta \\ r_0 \delta & B + r_1 \delta \end{vmatrix}}{x_2} := F(x).$$

Here F(x) is a form of degree 7 since $x_i F(x)$ is a form of degree 8 for i = 0, 1, 2. Let y_0, y_1 and z be new indeterminates which are algebraically independent over the field $k(x_0, x_1, x_2)$. We consider the ring homomorphism

$$\varphi_S : k[x_0, x_1, x_2, y_0, y_1, z] \longrightarrow k\left[x_0, x_1, x_2, \frac{1}{\delta(x)}\right],$$
$$y_0 \mapsto \frac{A(x)}{\delta(x)}, \ y_1 \mapsto \frac{B(x)}{\delta(x)}, \ z \mapsto \frac{F(x)}{\delta(x)^2}$$

and its kernel I_S . Then I_S is a (quasi-)homogeneous ideal under the grading deg $x_i = 1$, deg $y_j = 2$ and deg z = 3. By the equation (2), two cubic forms

(4)
$$a_0(x, y)x_0 + a_1(x, y)x_1 + a_2(x, y)x_2$$
, and
 $b_0(x, y)x_0 + b_1(x, y)x_1 + b_2(x, y)x_2$

belong to I_S , where we put

$$a_0(x,y) = y_1 + q_0(x), \ a_1(x,y) = -y_0 + q_1(x), \cdots$$

 $\cdots, b_1(x,y) = y_1 + r_1(x), \ b_2(x,y) = -y_0 + r_2(x).$

By (3), three quartic forms

(5)

$$\begin{aligned} x_0 z - \begin{vmatrix} a_1(x,y) & a_2(x,y) \\ b_1(x,y) & b_2(x,y) \end{vmatrix}, \begin{vmatrix} a_2(x,y) & a_0(x,y) \\ b_2(x,y) & b_0(x,y) \end{vmatrix} - x_1 z, \\ x_2 z - \begin{vmatrix} a_0(x,y) & a_1(x,y) \\ b_0(x,y) & b_1(x,y) \end{vmatrix} \end{aligned}$$

also belong to I_S . These five relations (4) and (5) are the five 4×4 Pfaffians of the skew-symmetric matrix

$$\left(egin{array}{ccccc} 0 & z & a_0(x,y) & a_1(x,y) & a_2(x,y) \ & 0 & b_0(x,y) & b_1(x,y) & b_2(x,y) \ & & 0 & x_2 & -x_1 \ & \ominus & & 0 & x_0 \ & & & & 0 \end{array}
ight).$$

Now we relate the ideal I_S with the anticanonical ring of a weak log del Pezzo surface. Let

$$R := \bigoplus_{n \ge 0} H^0\left(S, \left\lfloor n\left(h + \frac{2}{3}\Delta\right) \right\rfloor\right)$$

be the homogeneous coordinate ring of the **Q**-divisor $h + (2/3)\Delta$, which is linearly equivalent to $-K_S - (1/3)\Delta$. For a global section $s \in H^0(S, n(h + (2/3)n)) = H^0(S, nh + a\Delta) = H^0((n + 2a)h - a\sum_{i=1}^{7} E_i), a = \lfloor (2/3)n \rfloor$, its push-forward $\pi_* s \in H^0(\mathbf{P}^2, \mathcal{O}_{\mathbf{P}^2}(n+2a))$ is a homogeneous polynomial of degree n + 2a. We identify R with the image of the injective ring homomorphism $\psi : R \longrightarrow k[x_0, x_1, x_2, 1/\delta(x)]$ defined by

$$H^0(S, nh + a\Delta) \ni s \mapsto \frac{\pi_* s}{\delta(x)^a} \in k \left[x_0, x_1, x_2, \frac{1}{\delta(x)} \right]_n.$$

The degree 1 part $H^0(S, h)$ is spanned by the homogeneous coordinates x_0, x_1, x_2 . The degree 2 part $H^0(S, 2h + \Delta)$ contains $S^2\langle x_0, x_1, x_2 \rangle$ as a subspace. The pull-back of the quartic forms A(x)and B(x) to S belong to $H^0(S, 4h - \sum_{i=1}^7 E_i)$ and $\{A(x)/\delta(x), B(x)/\delta(x)\}$ is a complementary basis of $S^2\langle x_0, x_1, x_2 \rangle \subset H^0(S, \mathcal{O}_S(2h + \Delta))$ by the exact sequence (1).

Consider the multiplication map

(6) $H^0(S,h) \otimes H^0(S,2h+\Delta) \longrightarrow H^0(S,3h+\Delta)$

from degree 1 and 2 to degree 3. Since the restriction maps $H^0(S,h) \longrightarrow H^0(\mathcal{O}_{\Delta}(h))$ and $H^0(S, 2h + \Delta) \longrightarrow H^0(\mathcal{O}_{\Delta}(2h + \Delta))$ are surjective, so is this multiplication map. By the exact sequence

$$0 \to \mathcal{O}_S\left(5h - \sum_{i=1}^7 E_i\right) \to \mathcal{O}_S(3h + 2\Delta) \to \mathcal{O}_\Delta \to 0$$

62

and Lemma 2.1, the degree 3 part $H^0(S, 3h + 2\Delta)$ is generated by the image of (6) and $F(x)/\delta(x)^2$.

Now we relate the ideal I_S with $C \in |7h - 2\sum_{i=1}^{7} E_i|$. Since C is disjoint from Δ and since $\mathcal{O}_C(h) \cong \alpha$, we have the restriction maps

(7)
$$H^0\left(S, \left\lfloor n\left(h + \frac{2}{3}\Delta\right)\right\rfloor\right) \longrightarrow H^0(C, \alpha^n)$$

and $R \longrightarrow R(C, \alpha) := \bigoplus_{n \ge 0} H^0(C, \alpha^n)$. Since (7) is an isomorphism for n = 1 and 2, the ring homomorphisms φ_S and ψ induce that

$$\varphi_C: k[x_0, x_1, x_2, y_0, y_1] \longrightarrow R(C, \alpha)$$

to the semi-canonical ring.

The equation of $\overline{C} \subset \mathbf{P}^2$, or $C \subset S$, is of the form $F(x) + \delta(x)G(x)$ for a quintic form $G(x) \in$ $H^0(S, 5h - \sum_{i=1}^7 E_i)$. There exist a cubic form $c(x, y_0, y_1)$ such that $c(x, A(x)/\delta(x), B(x)/\delta(x)) =$ $G(x)/\delta(x)^2$ and a commutative diagram

where the left vertical map is the specialization of z to the degree 3 element c(x, y). Hence the five 4×4 Pfaffians of

(8)
$$\begin{pmatrix} 0 & c(x,y) & a_0(x,y) & a_1(x,y) & a_2(x,y) \\ & 0 & b_0(x,y) & b_1(x,y) & b_2(x,y) \\ & & 0 & x_2 & -x_1 \\ & \ominus & & 0 & x_0 \\ & & & & & 0 \end{pmatrix}$$

belongs to the kernel of φ_C .

Now we prove Theorem in Case $\langle 7 \rangle$. Let $C \subset \mathbf{P}^7 = \mathbf{P}^* H^0(K_C)$ be the canonical model of C. Since Sym² $H^0(\alpha) \subset H^0(K_C)$, C is contained in the join of the Veronese surface and a line. This join is nothing but the weighted projective space $\mathbf{P}(11122)$ whose coordinates are x_0, x_1, x_2, y_0, y_1 . Two polynomials (4) vanish on C. Multiplying these by x_0, x_1 and x_2 , we obtain 6 relations of degree 4, which are linearly independent. Together with 3 relations (5) of degree 4, the five Pfaffians of (8) generate 9 quartic forms on $\mathbf{P}(11122)$ vanishing on C. On the other hand there are 6 quadratic forms vanishing on $\mathbf{P}(11122) \subset \mathbf{P}^7$. Hence we have 15 quadratic forms vanishing on C. Hence the five Pfaffians cut out C scheme-theoretically from $\mathbf{P}(11122)$ by the Enriques-Petri theorem. Case $\langle 7 \rangle$ of Theorem follows since w-G(2.5) is 5×5 Pfaffian in $\mathbf{P}(1^3 : 2^6 : 3)$.

4. Pencil of matrices. For a 3×3 matrix $A = (a_{ij})_{0 \le i,j \le 2}$, we denote the divisor $f_A(x, y) := \sum_{0 \le i,j \le 2} a_{ij} x_i y_j = 0$ in the Segre variety $\mathbf{P}^2 \times \mathbf{P}^2 \subset \mathbf{P}^8$ by X_A , where $(x_0 : x_1 : x_2)$ and $(y_0 : y_1 : y_2)$ are the homogeneous coordinates. Then X_A is reducible, singular at one point and smooth according as A is of rank 1, 2 and 3.

Let P be a 2-dimensional space of 3×3 matrices and $\{A, B\}$ be its basis. We classify $X_P := X_A \cap X_B$. We call P regular if it contains an invertible matrix and singular otherwise. Let

$$f_A(x, y) = a_0(x)y_0 + a_1(x)y_1 + a_2(x)y_2,$$

$$f_B(x, y) = b_0(x)y_0 + b_1(x)y_1 + b_2(x)y_2,$$

be the (1, 1)-forms corresponding to A and B and I_P the ideal sheaf of $\mathcal{O}_{\mathbf{P}^2}$ generated by the minors

$$D_0 = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}, \quad D_1 = \begin{vmatrix} a_2 & a_0 \\ b_2 & b_0 \end{vmatrix}, \quad D_2 = \begin{vmatrix} a_0 & a_1 \\ b_0 & b_1 \end{vmatrix},$$

of the coefficient matrix. Then the zero locus $V(I_P) \subset \mathbf{P}^2$ is the locus where the first projection $\pi: X_P \longrightarrow \mathbf{P}^2$ is not isomorphic.

If P is regular, then the divisor Y corresponding to an invertible matrix in P is nonsingular and the projections $Y \longrightarrow \mathbf{P}^2$ are \mathbf{P}^1 -bundles. By the Lefshetz Theorem, the Picard number of Y is equal to 2 and the Picard group is generated by $\mathcal{O}_Y(1,0)$ and $\mathcal{O}_Y(0,1)$. Thus if X_P is reducible, it must be a sum of divisors of bidegree (1,0) and (0,1) on Y, *i.e.*, a section of Y by (1,1)-forms of rank 1. X_P is the union of two cubic scrolls $\mathbf{F}_{2,1} \cup \mathbf{F}_{1,2}$. So we have

Proposition 4.1. If P is regular and contains no member of rank 1, then X_P is irreducible.

It is well known that π is the blow-up at three points if X_P is smooth.

Proposition 4.2. Let P and X_P be as in the above proposition. Then $V(I_P)$ is of dimension 0, and $I_P \subset \mathcal{O}_{\mathbf{P}^2}$ is of colength 3. Moreover $\pi : X_P \longrightarrow \mathbf{P}^2$ is the blowing-up with center I_P .

Proof. If dim $V(I_P) > 0$, then the inverse image $\pi^{-1}V(I_P)$ is a surface. This is impossible since X_P is irreducible of dimension 2. The colength of I_P is equal to 3 since it is so if X_P is smooth.

The blow-up $Bl_{I_P} \mathbf{P}^2$ with center $V(I_P)$ has a natural embedding φ into $\mathbf{P}^2 \times \mathbf{P}^2$. φ is an isomorphism onto X_P since $a_0 D_0 + a_1 D_1 + a_2 D_2 = b_0 D_0 + b_0 D_0$

No. 3]

 $b_1D_1 + b_2D_2 = 0$ and since X_P is irreducible and reduced.

If P is singular, then by Kronecker's classification ([Ga] Chap. XII), P is either

$$\begin{aligned} \text{type I} \quad \left\langle \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \right\rangle, \\ \text{type II} \quad \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \right\rangle, \text{ or} \\ \text{type III} \quad \left\langle \begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} * & * & 0 \\ * & * & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\rangle \end{aligned}$$

modulo suitable linear transformations and modulo transpose.

If P is of type I, then the defining equation of X_P is

$$x_0y_1 - x_1y_0 = x_0y_2 - x_2y_0 = 0$$

and X_P is the union of the diagonal Δ and $\mathbf{P}^1 \times \mathbf{P}^1$. If P is of type II, then the equation is

$$x_0y_0 - x_1y_1 = x_0y_0 - x_1y_2 = 0,$$

and X_P is the union of

$$\overline{\{(1:\lambda:\mu)\times (\lambda^2:\lambda:1)\mid \lambda,\mu\in k\}},$$

a quintic scroll $\mathbf{F}_{3,2}$, and a plane $p \times \mathbf{P}^2$. All non-zero members are of rank 2 in these cases.

If P is of type \mathbb{II} , then by the Jordan normal form of 2×2 -matrices, the defining equation of X_P is either

 $x_0y_0 + x_1y_1 = x_iy_j = 0$ for some $0 \le i \le j \le 1$, or $x_0y_0 = x_0y_1 = 0.$

So we have the following table:

P	rank 1 X_P		degree	
reg.	A	$Bl_{I_P} \mathbf{P}^2$	6	
	П	$\mathbf{F}_{2,1} \cup \mathbf{F}_{1,2}$	3 + 3	
	A	$\Delta \cup (\mathbf{P}^1 \times \mathbf{P}^1)$	4 + 2	
sing.	Ц	$\mathbf{F}_{3,2} \cup (p imes \mathbf{P}^2)$	5 + 1	
sing.	П	$2\mathbf{P}^2 \cup 2(\mathbf{P}^1 \times \mathbf{P}^1)$	$1\!+\!1\!+\!2\!+\!2$	
		$(\mathbf{P}^1 \times \mathbf{P}^2) \cup (\mathbf{P}^2 \times p)$	(3)+1	

References

- [ACGH] Arbarello, E., Cornalba, M., Griffiths, P., and Harris, J.: Geometry of Algebraic Curves Vol. I. Springer-Verlag, New York (1985).
- [Ga] Gantmacher, F. A.: The Theory of Matrices Vol. 2. Chelsea, New York (1959).
- [GH] Griffiths, P., and Harris, J.: Principles of Algebraic Geometry. John Wiley & Sons, Inc., New York (1978).
- [H] Hartshorne, R.: Algebraic Geometry. Springer-Verlag, New York (1977).
- [I] Ide, M.: Every curves of genus not greater than eight lies on a K3 surface. (2002). (Preprint).
- [M1] Mukai, S.: Curves and symmetric spaces. Proc. Japan Acad., 68A, 7–10 (1992).
- [M2] Mukai, S.: Curves and Grassmannians. Algebraic Geometry and Related Topics, Inchoen, Korea, 1992 (eds. Yang, J.-H. *et al.*). International Press, Boston, pp. 19–40 (1993).