Canonical curves of genus eight

By Manabu Ide ${ }^{*)}$ and Shigeru Mukai**)
(Communicated by Shigefumi Mori, M. J. A., March 12, 2003)

Abstract

A non-tetragonal curve of genus 8 is a complete intersection of divisors in either $\mathbf{P}^{2} \times \mathbf{P}^{2}$, a 6-dimensional weighted Grassmannian or the 8-dimensional Grassmannian.

Key words: Canonical curve; gonality; Grassmann variety.

Let $C=C_{14} \subset \mathbf{P}^{7}$ be a canonical curve of genus 8 over an algebraically closed field k. If C has no g_{7}^{2}, then $C_{14} \subset \mathbf{P}^{7}$ is a transversal linear section $\left[G(2,6) \subset \mathbf{P}^{14}\right] \cap H_{1} \cap \cdots \cap H_{7}$ of the 8-dimensional Grassmannian ([M2]). This is the case $\langle 8\rangle$ of the Flowchart below. In this article we study the case where C has a $\mathrm{g}_{7}^{2} \alpha$. The system of defining equations of C_{14} is easily found from the following: ([M1] Prop. 5)

Theorem. (i) Assume that C has no g_{4}^{1}. If $\alpha^{2} \cong K_{C}$, then C is the complete intersection of the 6 -dimensional weighted Grassmannian $w-G(2,5) \subset$ $\mathbf{P}\left(1^{3}: 2^{6}: 3\right)$ with a subspace $\mathbf{P}(11122)$, where $w=$ $(1,1,1,3,3) / 2($ Case $\langle 7\rangle)$. Otherwise C is the complete intersection of three divisors of bidegree $(1,1)$, $(1,2)$ and $(2,1)$ in $\mathbf{P}^{2} \times \mathbf{P}^{2}($ Case $\langle 6\rangle)$.
(ii) Assume that C has $a \mathrm{~g}_{4}^{1}$ but no g_{6}^{2}. Then C is the complete intersection of four divisors of bidegree $(1,1),(1,1),(0,2)$ and $(1,2)$ in $\mathbf{P}^{1} \times \mathbf{P}^{4}$ (Case $\langle 5\rangle)$.

Here a g_{d}^{r} is a line bundle of degree d and $h^{0} \geq$ $r+1$.

Corollary. C is a complete intersection of divisors in a variety X which is either a non-singular toric variety or a weighted Grassmannian:

Case	$\langle 1\rangle$	$\langle 2\rangle$	$\langle 3\rangle$	$\langle 4\rangle$	
X	\mathbf{F}_{9}	$\mathbf{P}^{1} \times \mathbf{P}^{1}, \mathbf{F}_{2}$	W_{7}^{\prime}	$B l_{p} \mathbf{P}^{3}$	
Cliff C	0	1	2		

$\langle 5\rangle$	$\langle 6\rangle$	$\langle 7\rangle$	$\langle 8\rangle$
$\mathbf{P}^{1} \times \mathbf{P}^{4}$	$\mathbf{P}^{2} \times \mathbf{P}^{2}$	$w-G(2,5)$	$G(2,6)$
	3		

[^0]Here W_{7}^{\prime} is the \mathbf{P}^{1}-bundle $\mathbf{P}\left(\mathcal{O}_{S} \oplus \mathcal{O}_{S}(-K)\right)$ over S_{7}, the blow-up of \mathbf{P}^{2} at two points. The bottom row indicates the Clifford index of C.

This is applied to the K3-extension problem in [I].

1. Cases of small Clifford index. The cases $\langle 1\rangle, \ldots,\langle 4\rangle$ are easy.

Case $\langle 1\rangle . C$ is a double covering $y^{2}=$ $f_{18}\left(x_{0}, x_{1}\right)$ of \mathbf{P}^{1} in the weighted projective space $\mathbf{P}(1: 1: 9)$, whose minimal resolution \mathbf{F}_{9} is the toric variety X.

Case $\langle 2\rangle$. X, a 2-dimensional rational scroll of degree 6 , is the quadric hull of $C_{14} \subset \mathbf{P}^{7}$ ([ACGH] III §3).

Case $\langle 3\rangle . C_{14} \subset \mathbf{P}^{7}$ is contained in the cone over an elliptic curve $E_{7} \subset \mathbf{P}^{6}$ of degree 7. E_{7} is a hyperplane section of a smooth del Pezzo surface $S_{7} \subset \mathbf{P}^{7}$ of degree 7. Let B be the branch locus of the double covering $C \rightarrow E_{7}$. Then there exists a member $D \in\left|-2 K_{S}\right|$ with $D \cap C=B$. In the
\mathbf{P}^{1}-bundle W_{7}^{\prime}, C is the intersection of the double covering of S with branch D and the inverse image of E_{7}.

Case $\langle 4\rangle$. Let α be a non-bielliptic g_{6}^{2}, and β its Serre adjoint $K_{C} \alpha^{-1}$, which is a g_{8}^{3} by RiemannRoch. Then both α and β are base point free. $\Phi_{|\alpha|}$ is a birational morphism onto a plane sextic C_{6} with two nodes, one of which may be infinitely near. Let $\pi: S \xrightarrow{\pi_{2}} S^{\prime} \xrightarrow{\pi_{1}} \mathbf{P}^{2}$ be the composite of the blowingups at these nodes, h the pull-back of a line, e_{1} and e_{2} the total transform of the exceptional divisors. Since $-K_{S} \sim 3 h-e_{1}-e_{2}$ and $C \sim 6 h-2 e_{1}-2 e_{2}$, we have $\alpha=\left.h\right|_{C}, \beta=\left.\left(2 h-e_{1}-e_{2}\right)\right|_{C}$ and $\beta \alpha^{-1}=\left(h-e_{1}-\right.$ $\left.e_{2}\right)\left.\right|_{C}$.

The morphism $\Phi_{|\beta|}$ is birational onto a space curve $C_{8} \subset \mathbf{P}^{3}$ of degree 8. $\Phi_{|\beta|}$ extends to the morphism $f=\Phi_{\left|2 h-e_{1}-e_{2}\right|}: S \rightarrow \mathbf{P}^{3}$ onto a quadric surface $Q . f$ contracts the strict transform $L \in \mid h-$ $e_{1}-e_{2} \mid$ of the line passing through the two nodes of C_{6} to a nonsingular point p of Q. Since $L . C=2, p$ is a double point of $C_{8} . C_{8}$ is a complete intersection of Q and a quartic surface since $C+2 L \sim 4(2 h-$ $\left.e_{1}-e_{2}\right) . C$ itself is the complete intersection of two divisors in the blow-up X of \mathbf{P}^{3} at p. One is the strict transform $\simeq S$ of Q and the other belongs to $|-K|$.

Case $\langle 5\rangle$. Let α be a g_{4}^{1} and β its Serre adjoint. Then $|\alpha|$ is base point free since C is not trigonal. β is a g_{10}^{4} by Riemann-Roch and very ample by assumption since C has no g_{6}^{2} or g_{8}^{3}.

Lemma 1.1. The multiplication map $\mu: H^{0}(\alpha) \otimes H^{0}(\beta) \longrightarrow H^{0}\left(K_{C}\right)$ is surjective.
Proof. By the base point free pencil trick ([ACGH]), the kernel of μ is $H^{0}\left(\alpha^{-1} \beta\right)$. If μ is not surjective, then $\alpha^{-1} \beta$ is a g_{6}^{2}. This is a contradiction.

There is a commutative diagram of embeddings

where μ^{*} is the linear embedding associated with the surjection μ. By the lemma, the number of linearly independent $(1,1)$-forms vanishing on C is equal to 2. Therefore, C is contained in the intersection Y of two divisors of bidegree $(1,1)$ in $X=\mathbf{P}^{1} \times \mathbf{P}^{4}$. Since every divisor of bidegree $(1,1)$ containing C is smooth, Y is smooth of dimension 3. Moreover
$\operatorname{Pic} Y \cong \mathbf{Z}^{2}$ by Lefschetz theorem. By easy dimension count, there exists a divisor of bidegree $(1,2)$ and $(0,2)$ on Y which contain C. Since the degree of the complete intersection $Y \cap(1,2) \cap(0,1)$ is
$(a+b)^{2} \cdot(a+2 b) \cdot(2 b) \cdot(a+b)=14 a b^{3}=14=\operatorname{deg} C$, it coincides with C, where $a=p r_{1}^{*} \mathcal{O}_{\mathbf{P}^{1}}(1)$ and $b=$ $p r_{2}^{*} \mathcal{O}_{\mathbf{P}^{4}}(1)$.
2. Linear net of degree 7. Assume that C has a $\mathrm{g}_{7}^{2} \alpha$ but no g_{4}^{1}. Let $\bar{C} \subset \mathbf{P}^{2}$ be the image of the morphism $\Phi_{|\alpha|}$. Then \bar{C} is of degree 7 and has no triple points. By the genus formula, \bar{C} has 7 double points, some of which may be infinitely near. Therefore, there is a composition π of seven one-point-blowing-ups

$$
S:=S_{(7)} \longrightarrow S_{(6)} \longrightarrow \cdots \longrightarrow S_{(1)} \longrightarrow S_{(0)}=\mathbf{P}^{2}
$$

such that $\Phi_{|\alpha|}: C \rightarrow \mathbf{P}^{2}$ lifts to $C \rightarrow S$. Let $E_{i} \subset S$, $1 \leq i \leq 7$, be the total transform of the exceptional divisor of the blow-up $S_{(i)} \longrightarrow S_{(i-1)}$ and h the pull back of a line. Then $C \subset S$ belongs to the linear system $\left|7 h-2 \sum_{i=1}^{7} E_{i}\right|$. Since the canonical class K_{S} of S is $-3 h+\sum_{i=1}^{7} E_{i}$,

$$
H^{i}\left(\mathcal{O}_{S}\left((n-7) h+\sum_{i=1}^{7} E_{i}\right)\right)
$$

is the dual of $H^{2-i}\left(\mathcal{O}_{S}((4-n) h)\right)$. Hence we have
Lemma 2.1. The restriction map

$$
\begin{aligned}
H^{0}(S, & \left.\mathcal{O}_{S}\left(n h-\sum_{i=1}^{7} E_{i}\right)\right) \\
& \longrightarrow H^{0}\left(C, \mathcal{O}_{C}\left(n h-\sum_{i=1}^{7} E_{i}\right)\right)
\end{aligned}
$$

is surjective for every n. Moreover, it is an isomorphism for $n \leq 6$.

By the adjunction formula

$$
K_{C}=\left.\left(K_{S}+C\right)\right|_{C}=\left.h\right|_{C}+\left.\left(3 h-\sum_{i=1}^{7} E_{i}\right)\right|_{C}
$$

the Serre adjoint $\beta=K_{C} \alpha^{-1}$ is isomorphic to $\mathcal{O}_{C}\left(3 h-\sum_{i=1}^{7} E_{i}\right)$. By Lemma 2.1, α is self adjoint, i.e., $\alpha \cong \beta$, if and only if $\left|2 h-\sum_{i=1}^{7} E_{i}\right| \neq \emptyset$. We discuss the case $\alpha \cong \beta$ in the next section, and now assume that $\alpha \not \approx \beta$.

Proposition 2.2. The multiplication map $H^{0}(\alpha) \otimes H^{0}(\beta) \longrightarrow H^{0}(\alpha \beta)=H^{0}\left(K_{C}\right)$ is surjective.

Proof. Assume the contrary. Then there are two independent (1,1)-forms on $\mathbf{P}^{2} \times \mathbf{P}^{2}$ vanishing
on C. Let P be the pencil generated by them, and $X=X_{P}$ its base locus. If P contains a form of rank 1, then the image of $\Phi_{|\alpha|}$ is a line, which is a contradiction. Therefore P contains no (1,1)-forms of rank 1 .

If P is regular, then X_{P} is irreducible (Proposition 4.1). Let $\pi: X_{P} \longrightarrow \mathbf{P}^{2}$ be the first projection. Then there is an effective divisor E such that $K_{X}=\pi^{*} K_{\mathbf{P}^{2}}+E$. On one hand, since $K_{X}=$ $\mathcal{O}_{X}(-1,-1)$ and $\pi^{*} K_{\mathbf{P}^{2}}=\mathcal{O}_{X}(-3,0)$, we have $E . C=\operatorname{deg} \mathcal{O}_{C}(2,-1)=7$. On the other hand, since I_{P} is of colength 3 (Proposition 4.2), we have a composition series $I_{P}=I_{3} \subset I_{2} \subset I_{1} \subset \mathcal{O}_{\mathbf{P}^{2}}$ of ideal sheaves and a composition

$$
\psi: X_{3} \xrightarrow{\psi_{3}} X_{2} \xrightarrow{\psi_{2}} X_{1} \xrightarrow{\psi_{1}} \mathbf{P}^{2}
$$

of three one-point-blow-ups. X_{3} is smooth and its canonical class is $\psi^{*} K_{\mathbf{P}^{2}}+E_{1}+E_{2}+E_{3}$, where E_{i} is the total transform of the exceptional divisors of ψ_{i}. By the universal property of the blow-up ($[\mathrm{H}]$ II 7.14), there is a natural birational morphism $\phi: X_{3} \longrightarrow$ $X_{P}=B l_{I_{P}} \mathbf{P}^{2}$. Since X_{P} is a complete linear section of $\mathbf{P}^{2} \times \mathbf{P}^{2}$, it has at worst rational double points as its singularities. Thus ϕ is a crepant resolution, and we have $E_{1}+E_{2}+E_{3}=\phi^{*} E$. Therefore, for some i, we have $E_{i} . C \geq 3$, and $\psi^{*} \mathcal{O}_{\mathbf{P}^{2}}(1)-E_{i}$ restricts to a g_{d}^{1} with $d \leq 4$ on C. This is a contradiction.

If P is singular, then X_{P} is either

$$
\text { I) } \quad \Delta \cup\left(\mathbf{P}^{1} \times \mathbf{P}^{1}\right), \quad \text { or } \quad \text { II) } \quad \mathbf{F}_{3,2} \cup\left(p \times \mathbf{P}^{2}\right)
$$

by the table in $\S 4$. In the former case C is contained in either the diagonal Δ or $\mathbf{P}^{1} \times \mathbf{P}^{1}$. This means that α is isomorphic to β or that the image of $\Phi_{|\alpha|}$ is a line. In the latter case we have either that the image of $\Phi_{|\beta|}$ is a conic or that the image of $\Phi_{|\alpha|}$ is a point. Thus we have a contradiction.

Now, we consider the multiplication map

$$
\begin{aligned}
H^{0}(S, h) \otimes H^{0} & \left(S, 3 h-\sum_{i=1}^{7} E_{i}\right) \\
& \longrightarrow H^{0}\left(S, 4 h-\sum_{i=1}^{7} E_{i}\right) .
\end{aligned}
$$

This is not injective since $h^{0}\left(3 h-\sum_{i=1}^{7} E_{i}\right)=$ $h^{0}(\beta)=3$ and $h^{0}\left(S, 4 h-\sum_{i=1}^{7} E_{i}\right)=h^{0}\left(K_{C}\right)=8$ by Lemma 2.1. Similarly the dimension of the kernel of

$$
\begin{aligned}
H^{0}(S, 2 h) \otimes H^{0} & \left(S, 3 h-\sum_{i=1}^{7} E_{i}\right) \\
& \longrightarrow H^{0}\left(S, 5 h-\sum_{i=1}^{7} E_{i}\right)
\end{aligned}
$$

is at least $6 \times 3-h^{0}\left(\alpha K_{C}\right)=4$. Hence the image of the rational map

$$
\left(\Phi_{|h|}, \Phi_{\left|3 h-\sum E_{i}\right|}\right): S \cdots \mathbf{P}^{2} \times \mathbf{P}^{2}
$$

is contained in a divisor W of bidegree $(1,1)$ and W^{\prime} of bidegree $(2,1)$ such that $\operatorname{dim} W \cap W^{\prime}=2$. The pull-back of the divisor class of bidegree $(1,2)$ to S is $h+2\left(3 h-\sum_{i=1}^{7} E_{i}\right)=7 h-2 \sum_{i=1}^{7} E_{i}$ and linearly equivalent to C.

We now look at the 15 quadrics which vanish on the canonical model $C_{14} \subset \mathbf{P}^{7}$ of C. First, C_{14} is contained in a hyperplane section of the Segre variety

$$
\left[W \subset \mathbf{P}^{7}\right]=\left[\mathbf{P}^{2} \times \mathbf{P}^{2} \subset \mathbf{P}^{8}\right] \cap H
$$

and there are 9 quadrics vanishing on W. Next, there are 3 quadrics which cut out $W \cap W^{\prime}$ from W. Finally, since the pull-back of $\mathcal{O}_{\mathbf{P}^{7}}(2)$ to S is $\mathcal{O}_{S}\left(2\left(4 h-\sum_{i=1}^{7} E_{i}\right)\right)=\mathcal{O}_{S}(C+h)$, there are 3 more independent quadrics vanishing on C. Thus we have found $9+3+3=15$ independent quadrics vanishing on C. By Noether's theorem, they form a basis of $H^{0}\left(\mathbf{P}^{7}, \mathcal{I}_{C}(2)\right)$, and by the Enriques-Petri theorem ([GH], Chap. 4), they define the canonical model $C_{14} \subset \mathbf{P}^{7}$ scheme-theoretically. Thus C is the complete intersection of divisors $(1,2)$ and $(2,1)$ in W (Case $\langle 6\rangle$ of Theorem).
3. Curves with a self adjoint net. We assume that $\alpha^{2} \simeq K_{C}$. Let $\Delta \subset S=S_{(7)}$ be the unique member of $\left|2 h-\sum_{i=1}^{7} E_{i}\right|$ and $\bar{\Delta} \subset \mathbf{P}^{2}$ its image. Then $\bar{\Delta}$ is an irreducible conic. We choose homogeneous coordinates of $\Delta \cong \bar{\Delta} \cong \mathbf{P}^{1}$ and \mathbf{P}^{2} such that the morphism $\Delta \rightarrow \mathbf{P}^{2}$ is given by

$$
(s: t) \mapsto\left(x_{0}: x_{1}: x_{2}\right)=\left(s^{2}: s t: t^{2}\right)
$$

The surface S is the blow-up at seven points on $\bar{\Delta}$. Let $f(s, t)=0$ be the equation of degree 7 over $\bar{\Delta}$ whose solutions are the seven points. We shall construct a polynomial $F(x) \in H^{0}\left(S, \mathcal{O}_{S}(7 h-\right.$ $\left.2 \sum_{i=1}^{7} E_{i}\right)$) which is determinantal in a certain sense. This will imply that the system of equations of $C \subset \mathbf{P}(11122)$ is 5×5 Pfaffian.

We start with a pair of ternary quartic polynomials $A(x)$ and $B(x)$ such that $A\left(s^{2}, s t, t^{2}\right)=s f(s, t)$ and $B\left(s^{2}, s t, t^{2}\right)=t f(s, t)$. Such polynomials exist
by the exact sequence
(1)

$$
\begin{aligned}
& H^{0}\left(\mathcal{O}_{\mathbf{P}}(2)\right) \rightarrow H^{0}\left(\mathcal{O}_{\mathbf{P}}(4)\right) \rightarrow H^{0}\left(\bar{\Delta}, \mathcal{O}_{\bar{\Delta}}(4)\right) \rightarrow 0 \\
& \| \mathbb{R} \\
& H^{0}\left(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}(8)\right) .
\end{aligned}
$$

Since $t A\left(s^{2}, s t, t^{2}\right)-s B\left(s^{2}, s t, t^{2}\right)$ is zero, the quintic polynomials $x_{1} A(x)-x_{0} B(x)$ and $x_{2} A(x)-x_{1} B(x)$ are divisible by $\delta(x)$, the equation of $\bar{\Delta} \subset \mathbf{P}^{2}$. We put

$$
\left\{\begin{align*}
-x_{0} B(x)+x_{1} A(x) & =\delta(x) D(x) \tag{2}\\
-x_{1} B(x)+x_{2} A(x) & =\delta(x) E(x),
\end{align*}\right.
$$

where $D(x)$ and $E(x)$ are cubic forms. Put

$$
\left\{\begin{array}{l}
D(x)=q_{0}(x) x_{0}+q_{1}(x) x_{1}+q_{2}(x) x_{2} \\
E(x)=r_{0}(x) x_{0}+r_{1}(x) x_{1}+r_{2}(x) x_{2}
\end{array}\right.
$$

for quadratic forms $q_{i}(x)$'s and $r_{i}(x)$'s. Then by Cramer's rule we have

$$
\begin{align*}
& \frac{\left|\begin{array}{cc}
-A+q_{1} \delta & q_{2} \delta \\
B+r_{1} \delta & -A+r_{2} \delta
\end{array}\right|}{x_{0}}=\frac{\left|\begin{array}{cc}
q_{2} \delta & B+q_{0} \delta \\
-A+r_{2} \delta & r_{0} \delta
\end{array}\right|}{x_{1}} \tag{3}\\
& =\frac{\left|\begin{array}{cc}
B+q_{0} \delta & -A+q_{1} \delta \\
r_{0} \delta & B+r_{1} \delta
\end{array}\right|}{x_{2}}:=F(x) .
\end{align*}
$$

Here $F(x)$ is a form of degree 7 since $x_{i} F(x)$ is a form of degree 8 for $i=0,1,2$. Let y_{0}, y_{1} and z be new indeterminates which are algebraically independent over the field $k\left(x_{0}, x_{1}, x_{2}\right)$. We consider the ring homomorphism

$$
\begin{aligned}
& \varphi_{S}: k\left[x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, z\right] \longrightarrow k\left[x_{0}, x_{1}, x_{2}, \frac{1}{\delta(x)}\right], \\
& y_{0} \mapsto \frac{A(x)}{\delta(x)}, \quad y_{1} \mapsto \frac{B(x)}{\delta(x)}, \quad z \mapsto \frac{F(x)}{\delta(x)^{2}}
\end{aligned}
$$

and its kernel I_{S}. Then I_{S} is a (quasi-)homogeneous ideal under the grading $\operatorname{deg} x_{i}=1, \operatorname{deg} y_{j}=2$ and $\operatorname{deg} z=3$. By the equation (2), two cubic forms

$$
\begin{align*}
& a_{0}(x, y) x_{0}+a_{1}(x, y) x_{1}+a_{2}(x, y) x_{2}, \quad \text { and } \tag{4}\\
& b_{0}(x, y) x_{0}+b_{1}(x, y) x_{1}+b_{2}(x, y) x_{2}
\end{align*}
$$

belong to I_{S}, where we put

$$
\begin{aligned}
& a_{0}(x, y)=y_{1}+q_{0}(x), a_{1}(x, y)=-y_{0}+q_{1}(x), \cdots \\
& \cdots, b_{1}(x, y)=y_{1}+r_{1}(x), b_{2}(x, y)=-y_{0}+r_{2}(x)
\end{aligned}
$$

By (3), three quartic forms

$$
\begin{gather*}
x_{0} z-\left|\begin{array}{cc}
a_{1}(x, y) & a_{2}(x, y) \\
b_{1}(x, y) & b_{2}(x, y)
\end{array}\right|,\left|\begin{array}{ll}
a_{2}(x, y) & a_{0}(x, y) \\
b_{2}(x, y) & b_{0}(x, y)
\end{array}\right|-x_{1} z \tag{5}\\
x_{2} z-\left|\begin{array}{ll}
a_{0}(x, y) & a_{1}(x, y) \\
b_{0}(x, y) & b_{1}(x, y)
\end{array}\right|
\end{gather*}
$$

also belong to I_{S}. These five relations (4) and (5) are the five 4×4 Pfaffians of the skew-symmetric matrix

$$
\left(\begin{array}{ccccc}
0 & z & a_{0}(x, y) & a_{1}(x, y) & a_{2}(x, y) \\
& 0 & b_{0}(x, y) & b_{1}(x, y) & b_{2}(x, y) \\
& & 0 & x_{2} & -x_{1} \\
& \ominus & & 0 & x_{0} \\
& & & & 0
\end{array}\right)
$$

Now we relate the ideal I_{S} with the anticanonical ring of a weak log del Pezzo surface. Let

$$
R:=\bigoplus_{n \geq 0} H^{0}\left(S,\left\lfloor n\left(h+\frac{2}{3} \Delta\right)\right\rfloor\right)
$$

be the homogeneous coordinate ring of the \mathbf{Q}-divisor $h+(2 / 3) \Delta$, which is linearly equivalent to $-K_{S}-$ $(1 / 3) \Delta$. For a global section $s \in H^{0}(S, n(h+$ $(2 / 3) n))=H^{0}(S, n h+a \Delta)=H^{0}((n+2 a) h-$ $\left.a \sum_{i=1}^{7} E_{i}\right), a=\lfloor(2 / 3) n\rfloor$, its push-forward $\pi_{*} s \in$ $H^{0}\left(\mathbf{P}^{2}, \mathcal{O}_{\mathbf{P}^{2}}(n+2 a)\right)$ is a homogeneous polynomial of degree $n+2 a$. We identify R with the image of the injective ring homomorphism $\psi: R \longrightarrow$ $k\left[x_{0}, x_{1}, x_{2}, 1 / \delta(x)\right]$ defined by
$H^{0}(S, n h+a \Delta) \ni s \mapsto \frac{\pi_{*} s}{\delta(x)^{a}} \in k\left[x_{0}, x_{1}, x_{2}, \frac{1}{\delta(x)}\right]_{n}$.
The degree 1 part $H^{0}(S, h)$ is spanned by the homogeneous coordinates x_{0}, x_{1}, x_{2}. The degree 2 part $H^{0}(S, 2 h+\Delta)$ contains $S^{2}\left\langle x_{0}, x_{1}, x_{2}\right\rangle$ as a subspace. The pull-back of the quartic forms $A(x)$ and $B(x)$ to S belong to $H^{0}\left(S, 4 h-\sum_{i=1}^{7} E_{i}\right)$ and $\{A(x) / \delta(x), B(x) / \delta(x)\}$ is a complementary basis of $S^{2}\left\langle x_{0}, x_{1}, x_{2}\right\rangle \subset H^{0}\left(S, \mathcal{O}_{S}(2 h+\Delta)\right)$ by the exact sequence (1).

Consider the multiplication map
(6) $H^{0}(S, h) \otimes H^{0}(S, 2 h+\Delta) \longrightarrow H^{0}(S, 3 h+\Delta)$
from degree 1 and 2 to degree 3 . Since the restriction maps $H^{0}(S, h) \longrightarrow H^{0}\left(\mathcal{O}_{\Delta}(h)\right)$ and $H^{0}(S, 2 h+$ $\Delta) \longrightarrow H^{0}\left(\mathcal{O}_{\Delta}(2 h+\Delta)\right)$ are surjective, so is this multiplication map. By the exact sequence
$0 \rightarrow \mathcal{O}_{S}\left(5 h-\sum_{i=1}^{7} E_{i}\right) \rightarrow \mathcal{O}_{S}(3 h+2 \Delta) \rightarrow \mathcal{O}_{\Delta} \rightarrow 0$
and Lemma 2.1, the degree 3 part $H^{0}(S, 3 h+2 \Delta)$ is generated by the image of (6) and $F(x) / \delta(x)^{2}$.

Now we relate the ideal I_{S} with $C \in \mid 7 h-$ $2 \sum_{i=1}^{7} E_{i} \mid$. Since C is disjoint from Δ and since $\mathcal{O}_{C}(h) \cong \alpha$, we have the restriction maps

$$
\begin{equation*}
H^{0}\left(S,\left\lfloor n\left(h+\frac{2}{3} \Delta\right)\right\rfloor\right) \longrightarrow H^{0}\left(C, \alpha^{n}\right) \tag{7}
\end{equation*}
$$

and $R \longrightarrow R(C, \alpha):=\bigoplus_{n \geq 0} H^{0}\left(C, \alpha^{n}\right)$. Since (7) is an isomorphism for $n=1$ and 2 , the ring homomorphisms φ_{S} and ψ induce that

$$
\varphi_{C}: k\left[x_{0}, x_{1}, x_{2}, y_{0}, y_{1}\right] \longrightarrow R(C, \alpha)
$$

to the semi-canonical ring.
The equation of $\bar{C} \subset \mathbf{P}^{2}$, or $C \subset S$, is of the form $F(x)+\delta(x) G(x)$ for a quintic form $G(x) \in$ $H^{0}\left(S, 5 h-\sum_{i=1}^{7} E_{i}\right)$. There exist a cubic form $c\left(x, y_{0}, y_{1}\right)$ such that $c(x, A(x) / \delta(x), B(x) / \delta(x))=$ $G(x) / \delta(x)^{2}$ and a commutative diagram

$$
\begin{array}{cc}
k\left[x_{0}, x_{1}, x_{2}, y_{0}, y_{1}, z\right] & \stackrel{\varphi_{S}}{\longrightarrow} \\
\downarrow & R \\
k\left[x_{0}, x_{1}, x_{2}, y_{0}, y_{1}\right] & \stackrel{\downarrow}{\longrightarrow} \\
\underset{\varphi_{C}}{\longrightarrow} & R(C, \alpha),
\end{array}
$$

where the left vertical map is the specialization of z to the degree 3 element $c(x, y)$. Hence the five 4×4 Pfaffians of

$$
\left(\begin{array}{ccccc}
0 & c(x, y) & a_{0}(x, y) & a_{1}(x, y) & a_{2}(x, y) \tag{8}\\
& 0 & b_{0}(x, y) & b_{1}(x, y) & b_{2}(x, y) \\
& & 0 & x_{2} & -x_{1} \\
& \ominus & & 0 & x_{0} \\
& & & & 0
\end{array}\right)
$$

belongs to the kernel of φ_{C}.
Now we prove Theorem in Case $\langle 7\rangle$. Let $C \subset$ $\mathbf{P}^{7}=\mathbf{P}^{*} H^{0}\left(K_{C}\right)$ be the canonical model of C. Since $\operatorname{Sym}^{2} H^{0}(\alpha) \subset H^{0}\left(K_{C}\right), C$ is contained in the join of the Veronese surface and a line. This join is nothing but the weighted projective space $\mathbf{P}(11122)$ whose coordinates are $x_{0}, x_{1}, x_{2}, y_{0}, y_{1}$. Two polynomials (4) vanish on C. Multiplying these by x_{0}, x_{1} and x_{2}, we obtain 6 relations of degree 4 , which are linearly independent. Together with 3 relations (5) of degree 4, the five Pfaffians of (8) generate 9 quartic forms on $\mathbf{P}(11122)$ vanishing on C. On the other hand there are 6 quadratic forms vanishing on $\mathbf{P}(11122) \subset \mathbf{P}^{7}$. Hence we have 15 quadratic forms vanishing on $C \subset \mathbf{P}^{7}$. These are all quadratic forms vanishing on C. Hence the five Pfaffians cut out C
scheme-theoretically from \mathbf{P} (11122) by the EnriquesPetri theorem. Case $\langle 7\rangle$ of Theorem follows since $w-G(2.5)$ is 5×5 Pfaffian in $\mathbf{P}\left(1^{3}: 2^{6}: 3\right)$.
4. Pencil of matrices. For a 3×3 matrix $A=\left(a_{i j}\right)_{0 \leq i, j \leq 2}$, we denote the divisor $f_{A}(x, y):=$ $\sum_{0 \leq i, j \leq 2} a_{i j} x_{i} y_{j}=0$ in the Segre variety $\mathbf{P}^{2} \times \mathbf{P}^{2} \subset$ \mathbf{P}^{8} by X_{A}, where $\left(x_{0}: x_{1}: x_{2}\right)$ and $\left(y_{0}: y_{1}: y_{2}\right)$ are the homogeneous coordinates. Then X_{A} is reducible, singular at one point and smooth according as A is of rank 1,2 and 3 .

Let P be a 2-dimensional space of 3×3 matrices and $\{A, B\}$ be its basis. We classify $X_{P}:=X_{A} \cap X_{B}$. We call P regular if it contains an invertible matrix and singular otherwise. Let

$$
\begin{aligned}
& f_{A}(x, y)=a_{0}(x) y_{0}+a_{1}(x) y_{1}+a_{2}(x) y_{2}, \\
& f_{B}(x, y)=b_{0}(x) y_{0}+b_{1}(x) y_{1}+b_{2}(x) y_{2},
\end{aligned}
$$

be the (1,1)-forms corresponding to A and B and I_{P} the ideal sheaf of $\mathcal{O}_{\mathbf{P}^{2}}$ generated by the minors
$D_{0}=\left|\begin{array}{ll}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right|, \quad D_{1}=\left|\begin{array}{ll}a_{2} & a_{0} \\ b_{2} & b_{0}\end{array}\right|, \quad D_{2}=\left|\begin{array}{ll}a_{0} & a_{1} \\ b_{0} & b_{1}\end{array}\right|$,
of the coefficient matrix. Then the zero locus $V\left(I_{P}\right) \subset \mathbf{P}^{2}$ is the locus where the first projection $\pi: X_{P} \longrightarrow \mathbf{P}^{2}$ is not isomorphic.

If P is regular, then the divisor Y corresponding to an invertible matrix in P is nonsingular and the projections $Y \longrightarrow \mathbf{P}^{2}$ are \mathbf{P}^{1}-bundles. By the Lefshetz Theorem, the Picard number of Y is equal to 2 and the Picard group is generated by $\mathcal{O}_{Y}(1,0)$ and $\mathcal{O}_{Y}(0,1)$. Thus if X_{P} is reducible, it must be a sum of divisors of bidegree $(1,0)$ and $(0,1)$ on Y, i.e., a section of Y by $(1,1)$-forms of rank 1. X_{P} is the union of two cubic scrolls $\mathbf{F}_{2,1} \cup \mathbf{F}_{1,2}$. So we have

Proposition 4.1. If P is regular and contains no member of rank 1, then X_{P} is irreducible.

It is well known that π is the blow-up at three points if X_{P} is smooth.

Proposition 4.2. Let P and X_{P} be as in the above proposition. Then $V\left(I_{P}\right)$ is of dimension 0, and $I_{P} \subset \mathcal{O}_{\mathbf{P}^{2}}$ is of colength 3. Moreover $\pi: X_{P} \longrightarrow$ \mathbf{P}^{2} is the blowing-up with center I_{P}.

Proof. If $\operatorname{dim} V\left(I_{P}\right)>0$, then the inverse image $\pi^{-1} V\left(I_{P}\right)$ is a surface. This is impossible since X_{P} is irreducible of dimension 2 . The colength of I_{P} is equal to 3 since it is so if X_{P} is smooth.

The blow-up $B l_{I_{P}} \mathbf{P}^{2}$ with center $V\left(I_{P}\right)$ has a natural embedding φ into $\mathbf{P}^{2} \times \mathbf{P}^{2} . \varphi$ is an isomorphism onto X_{P} since $a_{0} D_{0}+a_{1} D_{1}+a_{2} D_{2}=b_{0} D_{0}+$
$b_{1} D_{1}+b_{2} D_{2}=0$ and since X_{P} is irreducible and reduced.

If P is singular, then by Kronecker's classification ([Ga] Chap. XII), P is either

$$
\begin{aligned}
& \text { type I }\left\langle\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right)\right\rangle \\
& \text { type II }\left\langle\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right)\right\rangle \text {, or }
\end{aligned}
$$

type III $\left\langle\left(\begin{array}{lll}* & * & 0 \\ * & * & 0 \\ 0 & 0 & 0\end{array}\right),\left(\begin{array}{lll}* & * & 0 \\ * & * & 0 \\ 0 & 0 & 0\end{array}\right)\right\rangle$
modulo suitable linear transformations and modulo transpose.

If P is of type I, then the defining equation of X_{P} is

$$
x_{0} y_{1}-x_{1} y_{0}=x_{0} y_{2}-x_{2} y_{0}=0
$$

and X_{P} is the union of the diagonal Δ and $\mathbf{P}^{1} \times \mathbf{P}^{1}$. If P is of type II, then the equation is

$$
x_{0} y_{0}-x_{1} y_{1}=x_{0} y_{0}-x_{1} y_{2}=0
$$

and X_{P} is the union of

$$
\overline{\left\{(1: \lambda: \mu) \times\left(\lambda^{2}: \lambda: 1\right) \mid \lambda, \mu \in k\right\}}
$$

a quintic scroll $\mathbf{F}_{3,2}$, and a plane $p \times \mathbf{P}^{2}$. All non-zero members are of rank 2 in these cases.

If P is of type III, then by the Jordan normal form of 2×2-matrices, the defining equation of X_{P} is either

$$
\begin{aligned}
& x_{0} y_{0}+x_{1} y_{1}=x_{i} y_{j}=0 \quad \text { for some } 0 \leq i \leq j \leq 1, \text { or } \\
& x_{0} y_{0}=x_{0} y_{1}=0 .
\end{aligned}
$$

So we have the following table:

P	rank 1	X_{P}	degree
reg.	\nexists	$B l_{I_{P}} \mathbf{P}^{2}$	6
	\exists	$\mathbf{F}_{2,1} \cup \mathbf{F}_{1,2}$	$3+3$
sing.	\nexists	$\Delta \cup\left(\mathbf{P}^{1} \times \mathbf{P}^{1}\right)$	$4+2$
		$\mathbf{F}_{3,2} \cup\left(p \times \mathbf{P}^{2}\right)$	$5+1$
		$2 \mathbf{P}^{2} \cup 2\left(\mathbf{P}^{1} \times \mathbf{P}^{1}\right)$	$1+1+2+2$
		$\left(\mathbf{P}^{1} \times \mathbf{P}^{2}\right) \cup\left(\mathbf{P}^{2} \times p\right)$	$(3)+1$

References

[ACGH] Arbarello, E., Cornalba, M., Griffiths, P., and Harris, J.: Geometry of Algebraic Curves Vol. I. Springer-Verlag, New York (1985).
[Ga] Gantmacher, F. A.: The Theory of Matrices Vol. 2. Chelsea, New York (1959).
[GH] Griffiths, P., and Harris, J.: Principles of Algebraic Geometry. John Wiley \& Sons, Inc., New York (1978).
[H] Hartshorne, R.: Algebraic Geometry. SpringerVerlag, New York (1977).
[I] Ide, M.: Every curves of genus not greater than eight lies on a K3 surface. (2002). (Preprint).
[M1] Mukai, S.: Curves and symmetric spaces. Proc. Japan Acad., 68A, 7-10 (1992).
[M2] Mukai, S.: Curves and Grassmannians. Algebraic Geometry and Related Topics, Inchoen, Korea, 1992 (eds. Yang, J.-H. et al.). International Press, Boston, pp. 19-40 (1993).

[^0]: 2000 Mathematics Subject Classification. Primary 14H45.
 *) Graduate School of Mathematics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602.
 **) Research Institute for Mathematical Sciences, Kyoto University, Kita Shirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502.

