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Real spectrum with Nash structural sheaf
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Abstract: We show that the Nash structural sheaf over the real spectrum of a commutative
ring is determined only by the underlying space. We also calculate the stalks and global sections of
it in the restricted case. As an application, we show some basic properties of ‘separated’ morphisms.
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1. Introduction. Roy defined the following
Nash structural sheaf over the real spectrum of a
commutative ring [7].

Definition 1.1 (NSpecr A). Let A be a com-
mutative ring, and U a constructible open subset of
Specr A. Let I(U) be the inductive system whose
elements are (B, f, s) with f : A −→ B an étale
A-algebra and s a section from the local homeo-
morphism Specr f over U , whose morphisms from
(B, f, s) to (B′, f ′, s′) are A-algebra morphisms g :
B −→ B′ with g ◦ f = f ′ and s = Specr g ◦ s′ [6,
pp. 13–14].

The inductive limit A(U) of I(U) defines a
presheaf which is separated [1, Proposition 4.2.2].
The Nash structural sheaf over Specr A noted
NSpecr A is the sheaf associated to A.

Let R be a real closed field and M ⊂ Rn be a
Nash submanifold. For any open semialgebraic sub-
set U of M , N (U) denotes the ring of Nash func-
tions on U . The rings N (U) form a sheaf ÑM̃ for
the Grothendieck topology on the lattice of open
semialgebraic subsets of M which is generated by
the finite open semialgebraic covering. Here M̃ de-
notes the topological space whose underlying space
M with the above semialgebraic topology. Remem-
ber that a natural homomorphism R[X1, . . . , Xn] →
N (M) induces an homeomorphism SpecrN (M) →
M̃ . Furthermore, the sheaf ÑM̃ coincides with the
sheaf NSpecr N(M) via the above homeomorphism.

We consider the following ringed space.
Definition 1.2. An affine real scheme is a lo-

cally ringed space (Specr A,NSpecr A), where A is a
ring.
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A real scheme is a locally ringed space (X,NX)
which satisfies the following condition.

There exists an open covering {Ui}i∈I of X such
that, for any i ∈ I, there exists a ring A which satis-
fies

(Ui,NX |Ui) � (Specr A,NSpecr A)

as a ringed space. We call this covering an affine
open covering.

In the present paper, we give easy descriptions
of a stalk of this Nash sheaf over a real spectrum
and sections of this sheaf over an open basis. We
also show that the Nash structural sheaf NX is de-
termined only by the underlying topological space
X.

We define a separated morphism of real schemes
in Section 3. As an application, we investigate this
morphism using our result.

2. General facts. A real closed local ring is
an henselian ring with real closed residue field. The
real spectrum of a real closed local ring A has a
unique maximal prime cone µA [1, Proposition 2.3.1].
The real strict localization of a ring is defined as fol-
lows in [1].

Definition 2.1 (Aα). Let A be a ring and α

a prime cone of A. A real strict localization of A at
α is an A-algebra i : A −→ A′ such that:

1. A′ is a real closed local ring with maximal prime
cone νA, and the statement i−1(µA′ ) = α satis-
fies.

2. (universal property) for any closed local A-
algebra f : A −→ B such that, µB being the
maximal prime cone of B such that f−1(µB) =
α, there exists a unique local A-algebra mor-
phism g from A′ to B such that g ◦ i = f
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Then there exists a unique (up to isomorphism)
real strict localization of a ring at a prime cone

Proposition 2.2. Let (X,NX) and (Y,NY )
be two real schemes such that there exists a morphism
f : (X,NX) −→ (Y,NY ) and f is a homeomorphism
from a topological space X to a topological space Y .

Then (X,NX) is isomorphic to (Y,NY ).
Proof. Since the family of open affine sets is

an open basis of X, we have only to prove that
NSpecr B |Specr A

∼= NSpecr A in the case when there
exists an inclusion Specr A ↪→ Specr B and a homo-
morphism B −→ A. In short, we have only to prove
that NSpecr B,α

∼= NSpecr A,α, where α ∈ Specr A.
By definition of Aα, there exists a unique homo-

morphism Bα −→ Aα.
On the other hand, there exists an affine

open set Specr B′ of Specr A such that α ∈
Specr B′ ↪→ Specr A ↪→ Specr B by [2, Theo-
rem 23] because a family of constructive open sub-
sets is an open basis of Specr B. In this case, there
exists a homomorphism Γ(Specr A,NSpecr A) −→
Γ(Specr B′,NSpecr B

′). Hence there exists a mor-
phism (Specr B′,NSpecr B

′ ) −→ (Specr A,NSpecr A)
by [1, Theorem 4.2.4]. As above, there exists a mor-
phism Bα −→ Aα −→ B′

α = Bα. Thus Aα ∼= Bα
because there exist no homomorphisms Bα −→ Bα
but an identity. i.e., NSpecr A,α

∼= NSpecr B,α.
Definition 2.3. A ring N satisfies an

idempotency property if this ring N satisfies
N = Γ(Specr N,NSpecr N ). The ring N =
Γ(Specr A,NSpecr A) satisfies an idempotency prop-
erty by [2, Theorem 23].

Proposition 2.4. Let N be a ring which sat-
isfies an idempotency property.
(a) For any α ∈ SpecrN, Nα = NSpecr N,α =

Nsupp(α).
(b) Set U(f1 , . . . , fp) := {s ∈ M ; f1(x) >

0, . . . , fp(x) > 0} for any elements f1, . . . fp ∈
N . Then

N (U(f1 , . . . , fp)) = (· · · (Nf1 )f2 · · · )fp .

We will abbreviate this ring to Nf1,...,fp later.
Proof. (a): We have only to show that the ring

Nsupp(α) satisfies the condition of Definition 2.1.
(i) We first prove that Nsupp(α) is a real closed local

ring. It is obvious that Nsupp(α) is local.
Now recall that k(supp(α)) denotes the

residue field of Nsupp(α) and k(α) denotes the
real closure of k(supp(α)). For any x ∈ k(α),

there exists a polynomial P with coefficients in
k(supp(α)) such that x is a simple root of P . Let
Q be a polynomial with coefficients in Nsupp(α)

such that Q̄ = P . We can assume that Q ∈
N [X].
Let mQ be the kernel of the homomorphism

B = Nsupp(α)[X]/(Q) � X �→ x ∈ k(α).

Let R be an element of B such that R /∈
mQ and Q′ is invertible in BR (it exists be-
cause Q′ /∈ mQ). In the same way, there ex-
ists an element h of N such that h /∈ supp(α)
and hR ∈ N [X]/(Q). Since h is invertible
in Nsupp(α)[X]/(Q), we may assume that R ∈
N [X]. Then

(Nsupp(α)[X]/(Q))R = S−1
α (N [X]/(Q))R,

where Sα = N \ supp(α) (cf. [6, p. 18]).
The algebra (Nsupp(α)[X]/(Q))R is étale over
Nsupp(α), and (N [X]/(Q))R is étale over N .

By construction, there exists a homomor-
phism (N [X]/(Q))R → N . Set t as the image of
X under this homomorphism. In this case, the
image of t by N −→ Nsupp(α) −→ k(α) coincides
with the image of X by

(Nsupp(α)[X]/(Q))R −→ S−1
α (N [X]/(Q))R

−→ k(α).

Thus, this is x. Therefore the residue field of
Nsupp(α) is k(α).

Now we will show that the ring Nsupp(α) is
henselian. Let P be a polynomial with coeffi-
cients in Nsupp(α) and x be a simple root of P̄
in k(α). Furthermore, let mP be the kernel of
the homomorphism

Nsupp(α)[X]/(P ) � X �→ x ∈ k(α).

Take R as an element of B as men-
tioned above. In the same way, we
may assume that (Nsupp(α)[X]/(P ))R =
S−1
α ((N [X]/(P ))R). Whence the image t of X

under (N [X]/(P ))R −→ N satisfies the equa-
tion

P (t) = 0

by the definition.
Therefore, Nsupp(α) is henselian.

(ii) We next prove an universal property. Let f :
N −→ B be a real closed local N -algebra with
its maximal cone µB such that f−1(µB) = α.
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Then it is obvious that there exists only one
N -algebra homomorphism Nsupp(α) −→ B such
that this homomorphism and f commute.

(b): We will show (b). We need the following two
lemmas to show (b).

Lemma 2.5. Let N be a ring which satisfies
an idempotency property, and let A be a sheaf given
by

A(U) =
{
s : U −→

⊔
α∈U

Nα; ∀α ∈ U, ∃a, f ∈ N,

∀β ∈ U(f) ∩ U, s(β) = a/f in Nβ

}
.

Then A ∼= NSpecr N .
Proof. We first construct a natural morphism

A −→ NSpecr N .
Let {(U(f̄i)∩U, āi/f̄i)} be an element of A(U).

By taking a sufficiently fine open covering of U(f̄i)∩
U , U(f̄i) ∩ U =

⋃
j∈J Vj , we may assume that there

exists ai which is an element of standard étale N -
algebra B and a representation of āi, and fi which
is an element of standard étale N -algebra B and a
representation of f̄i. Then ai/fi is an element of
standard étale N -algebra Bfi . Thus we obtain an
element {(Vi, ai/fi, Bfi )} in NSpecr N (U).

It is obvious, by the definition of NSpecr N (U),
that any choice of representations of ai/fi gives the
same element {(Vi, ai/fi, Bfi)} of NSpecr N (U) that
another choice gives.

Every stalk of one sheaf already coincides with
one of another sheaf, so we have proved this lemma.

Lemma 2.6. If b1, . . . , bk are elements of
N (U(f1, . . . , fp)), the element 1 + b21 + · · · + b2k is
an invertible element in N (U(f1 , . . . , fp)).

Proof. There exist an open covering {Ui}i∈I of
U(f1, . . . , fp), rings Ci which is étale over Nf1,...,fp

and elements b′1, . . . , b′k of Ci such that (Ui, b′i, Ci)
represents bi on Ui. For any α ∈ U(f1, . . . , fp),
(1 + b21 + · · · + b2k)(α) > 0. Furthermore, the ring
Ci(1+b21+···b2

k
)(α) is étale over N ([6, p. 16]). The

element 1 + b21 + · · · b2k is invertible in the ring
Ci(1+b21+···b2k)(α). Since N (U(f1, . . . , fp)) satisfies an
idempotency property,

(1 + b21 + · · ·+ b2k) ∈ N (U(f1, . . . , fp))

is invertible by construction.
Let

ψ : Nf1,...,fp −→ N (U(f1 , . . . , fp))

be a natural homomorphism. In this situation, we
will show that ψ is an isomorphism.

We will show that ψ is injective. We first show
that the homomorphism ψ is injective in the case
when p = 1.

Set f := f1. Now assume that ψ(a/fn) =
ψ(b/fm). There exists an element h of supp(α) such
that h(fma − fn) = 0 in N because the images of
a/fn and b/fm coincide in Nα for any α ∈ U(f).

Let J ⊂ N be an annihilator of fma− fnb.
Then h ∈ J , h /∈ supp(α). Therefore, J �⊂

supp(α) for all α ∈ U(f).
Since Z(J) ↪→ Z(f), f ∈ R

√
J , where Z(J) de-

notes the zero set of an ideal J . Now we conclude
that

f2ai

i + b21 + · · ·+ b2k ∈ J.

By Lemma 2.6, fa(fma− fnb) = 0 in N(U(f)). Fi-
nally, we get the conclusion that

a/fn = b/fm.

Therefore ψ is injective.
The morphism

Nf1,f2 ↪→ (NSpecr(N(U(f1)))(U(f2)))f1
↪→ N (U(f1, f2))

is injective by Proposition 2.2. Therefore ψ is also
injective in general case.

We will show the surjectivity of ψ. By idempo-
tency,

(U(f1, . . . , fp−1),N|U(f1,...,fp−1)) ∼=
(SpecrN (U(f1 , . . . , fp−1)),NSpecr N(U(f1,...,fp−1))).

Hence we have only to prove that the homomorphism
ψ : Nf −→ N (U(f)) is surjective.

Choose an arbitrary s ∈ N (U(f)). The element
smay be represented as (ai/hi,U(hi)) by Lemma 2.5.

In this situation, the equality

ai/hi = ai′/hi′

holds true on U(hi, hi′). Since ψ is injective, ai/hi =
ai′/hi′ in Nhi,hi′ . Hence

(hihi′)p(hi′ai − hiai′)(1 + b21 + · · ·+ b2k) = 0

(bl ∈ Nhi,hi′ ).

Therefore

(hihi′)p(hi′ai − hiai′) = 0

by Lemma 2.6 and injectivity of ψ.
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If p is an even number, exchange hp+1
i for hi

and hpi ai for ai, and if p is an odd number, exchange
hp+2
i for hi and hp+1

i ai for ai. The same exchange
of hi′ , ai′ as before make us assume that s has a
representation of the form ai/hi on U(hi) such that
hi′ai = hiai′ . By construction, U(f) ⊂ ∪ U(hi).
Therefore Z(h1, . . . , hk) ↪→ Z(f), so f ∈ R

√∑
(hit).

Now the equality

f2m + b21 + · · ·+ b2k =
∑

cihi (cl, bl ∈ N)

holds true. Set a =
∑
ciai. Then

hi′a =
∑

ciaihi′ =
∑

cihiai′

= (f2m + b21 + · · · b2k)aj.
Now we conclude that

a/(f2m + b21 + · · · b2k) = aj/hj .

There exists a′ ∈ N such that a′/fn = aj/hj by
Lemma 2.6.

Hence, ψ(a′/fn) = s. In short, ψ is surjective.

3. Separateness.
Definition 3.1. Let S be a real scheme, and

X, Y be real schemes over S, i.e., real schemes with
morphism to S. We define the real scheme X ×S Y
with morphisms p1 : X×S Y −→ X and p2 : X×S Y
−→ Y as follows:

For any real scheme Z such that the following
diagram commutes,

Z
f−−−−→ X

g

( (
Y −−−−→ S

there exists a morphism θ : Z −→ X×S Y such that
p1 ◦ θ = f , p2 ◦ θ = g.

One can show in the same way as [3, Theo-
rem 3.3] that, for any two real schemes X and Y

over a real scheme S, X ×S Y exists uniquely up to
isomorphism.

Definition 3.2. Let f : X −→ Y be a mor-
phism of real schemes.

The diagonal morphism is the unique morphism
∆ : X −→ X ×Y X whose composition with both
projection maps p1, p2 : X ×Y X −→ X satisfies p1 ◦
∆ = p2 ◦ ∆ = id.

The morphism f is said to be separated if im∆
is constructive and closed.

Furthermore, X is said to be separated if the
morphism f : X −→ Specr Z is separated.

Theorem 3.3. Let f : X −→ Y be a mor-
phism of real schemes. Then the following conditions
are equivalent.

• The morphism f is separated.
• For any real closed field K, whose proper cone is
β, and for any β-convex valuation ring R with
quotient field K, we set T = Specr R, U =
SpecrK and i : U −→ T as a morphism in-
duced by the inclusion R ↪→K.

Then for any morphism q : T → Y and any
morphism p : U → X such that the following
diagram commutes,

U
p−−−−→ X

i

( (f
T −−−−→

q
Y

there exists at most one morphism r : T −→ X

such that p = r ◦ i.
Claim 1. Under the condition of this theorem,

T consists of two points and one is a specialization
of another.

Proof of Claim 1. By [4, Proposition 10.1.6,
Proposition 10.2.3], T contains at least two points
and the one is a specialization of another one.

Furthermore, one point is β∩R and the other is
one induced by B −→ B/mB = kB. Now we assume
that there exists more than two proper cones. By
[4, Theorem 10.1.10], K has more than two proper
cones. Contradiction.

Hence kB is a real closed field, and the proof of
Claim 1 is completed.

Claim 2. Under the condition of this theorem,
to give U −→ X is equivalent to giving a point x1 of
X and an inclusion k(x1) = Nx1/mx1 ↪→ K. And
to give T −→ X is equivalent to giving points x0,

x1 of X (where x0 is a specialization of x1), inclu-
sions k(x1) = Nx1/mx1 ↪→ K, Nx0 ↪→ R and mx0 =
M ∩Nx0 , provide that mx0 ,M is a maximal ideal of
Nx0 , R.

Proof of Claim 2. The first part of this claim
is obvious.

If the morphism T −→ X is given, x0, x1 are
given as the images of two points t0, t1 of T , where
t0 → t1.

The morphism T −→ X can factorize through
Z = {x1}− as follows by Proposition 2.2:
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T −→ Z = {x1}− ↪→ X.

Therefore we get an inclusion which satisfies required
conditions.

Assume that the inclusions are given. There ex-
ists a morphism Specr R −→ SpecrN −→ X be-
cause there exists an inclusion Nx0 −→ R. Hence
we can easily construct required maps. The proof of
Claim 2 is completed.

We prove the theorem, using the above two
claim.

Assume that f is separated and that there exist
two morphism h, h′ which satisfy the equations

h ◦ i = p, h′ ◦ i = p.

This two morphism construct a morphism

h′′ : T −→ X ×Y X.
Because h and h′ coincide on U , h′′(t1) ∈ ∆(X).
Furthermore, t0 ∈ ∆(X) i.e., h(t0) = x0 = h′(t0),
h(t1) = x1 = h(t1) because ∆(X) is closed and con-
structive. The inclusion k(x1) ⊂ K induces h, h′.
Hence one of the statements is proved by Claim 2.

Conversely, assume that the condition of com-
mutative diagram is satisfied. The set ∆(X) is con-
structive because a set is compact on Specr A if
and only if it is constructive on Specr A [4, Corol-
lary 7.1.13] and because an image of a compact
set by a continuous map is compact. If ∆(X) is
closed under specialization, ∆(X) is closed [4, Corol-
lary 7.1.22]. Hence we have only to prove that ∆(X)
is closed under specialization.

Choose an arbitrary element ξ1 ∈ ∆(X), and let
ξ0 be a specialization of ξ1. Set K := k(ξ1) and Nξ0

as a stalk of the Nash structure sheaf at ξ0 on {ξ}−.
There exists a valuation ring R which dominates

Nξ0 by [5, p. 72 Theorem 10.1, 10.2]. We obtain a
morphism

r : T = Specr R → X ×Y X
such that r(t0) = ξ0 and r(t1) = ξ1 by Claim 2.
Let p1 and p2 be the first and second projection of
X ×Y X onto X, respectively. Then

f ◦ p1 ◦ r = f ◦ p2 ◦ r.
Therefore the morphism T −→ X ×Y X factor-

izes as

T −→ X
∆−→ X ×Y X.

Therefore, ξ0 ∈ ∆(X).

The proof of this theorem is completed.

Corollary 3.4. In the same condition of The-
orem 3.3,

1. Open and closed inclusions are separated.
2. If f and g are separated morphisms, then f ◦ g

is separated.
3. If f : X −→ Y and f ′ : X′ −→ Y ′ are separated

morphisms over S, then the morphism f × f ′ :
X ×S X′ −→ Y ×S Y ′ is separated.

4. Let f : X −→ Y and g : Y −→ Z be two mor-
phisms. If g◦s is separated, then f is separated.

5. A morphism f : X −→ Y is separated if and
only if Y can be covered by open subsets Vi such
that f−1(Vi) −→ Vi is separated for each i.

Lemma 3.5. Let X be a separated real scheme
over an affine scheme S, and U, V be open affine
subsets of X, then U ∩ V is affine.

Proof. The composition map X
∆−→ X ×S X

p1−→ X is an identity map.
Therefore ∆ : X −→ ∆(X) is a homeomor-

phism.
The set ∆(U ∩ V ) = ∆(X) ∩ (U ×S V ) is closed

in the set U ×S V . The real scheme U ×S V is affine
by the way of construction. Therefore it is compact.
Since ∆ is a homeomorphism, we may assume that
the set U ∩ V ⊂ U ×S V is closed. Since U ∩ V is
compact, it is constructive by [4, Corollary 7.1.13].
Hence U ∩ V is affine because it is a closed construc-
tive subset of an affine real scheme.

References

[ 1 ] Alonso, M. E., and Roy, M.-F.: Real strict locali-
sation. Math. Z., 194 (3), 429–441 (1987).

[ 2 ] Coste, M., Ruiz, M., and Shiota, M.: Uniform
bounds on complexity and transfer of global
properties of Nash functions. J. Reine Angew.
Math., 536, 209–235 (2001).

[ 3 ] Hartshorne, R.: Algebraic Geometry. Springer-
Verlag, New York-Heidelberg (1977).

[ 4 ] Coste, M., Bochnak, J., and Roy, M.-F.: Real
Algebraic Geometry. Translated from the 1987
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