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A new expression for the product of the two Dirichlet series I

By Masumi NAKAJIMA
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(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 2003)

Abstract: A new expression for the product of the two Dirichlet series is given. From this
new expression we derive many results. Among other things we give here another proof of Wilton’s
expression for the product of two Riemann’s zeta functions through our new expression. Other

results including mean value theorems will be treated elsewhere.

Key words:

Let F(w) and G(w) be defined by the Dirichlet
series

(o)
F(w) := Zann_w (an, w=x+iy € C)
n=1

G(w) := Z bpn™" (bn, w =z +1iy € C)
n=1

which converge absolutely for ®w > ¢, and Rw >
¢y respectively and are extended meromorphically to
the whole complex plane C with the following con-
ditions:

(i)
A < Ruy < cq
A < Ru, <

for Yuy € Sp
for Vv, € Sg

where Sr and Sg are the sets of all poles of the
meromorphic functions F(w) and G(w) respectively.
(ii)

There exist F,, £, € R and sequences
{To =1 {0} =1 with

o< <Thy<---<T), <--+-— 00 and

0<Ti<Ty<---<TH <--— 00
such that
F(zx+iT,,) =o(Ty,) for Vo> —-E,
G(x +1T)) =o(T},) for VYo > —E,

Then we have the following

Theorem 1. If both
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The Riemann zeta function; Dirichlet series.

Z Res {F(u—i—w)G(v—w)l}

W=Ug—U w
urESF
—b<R(ur—u)
1
= 1i )=
fmo 30 Res (P wGo )
|Suk|<T
urESF
—b<R(ur—u)
and
1
Z Res {G(U—i—w)F(u—w)—}
W=V —V w
vk €S
—b' <R(vi—v)

converge, then we have

F(u)G(v)
1
=— Z Res {F(u—i—w)G(v—w)—}
w=ur—u w
uRESF
—b<R(ur—u)
1
- Z Res {G(U—i—w)F(u—w)—}
W=V —v w
vkE€Sa
—b' <R (v —v)
1 dw
- Ja )
2 /o (u+w)G(v—w) ”
1 dw
- Flu — w)—
27Ti (—b’) G(U + UJ) (U UJ) w

for u+v—ug ¢ Sg, u+v—v; ¢ Sp, Ru > cq,
Ro>cp, 0<b<cy+ E, 0<V <cp+ Ey where

a+1i00
means / ,
(a) a—ioo

Resy—af(w) denotes the residue of f(w) at w = a
and the above equation is extended meromorphically
to the whole complex plane as far as the values in the
equation are finite.
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In particular, we have
Corollary 1.

1 dw
F — | F —w)=—=
(u)G(v) = 27 o) (u+w)G(v —w) ”
dw
- Flu — w)—
2 o Gv+w)F(u—w) ”

for Ru>c,+c, Ro>cy+c, ¢>0,c >0.
Proof of Theorem 1.
tions, we have

By the change of summa-

= Z Z ' ann” “bymm=Y + Z Z ' apn” “bymm™"

m=1n<m n=1m<n

for Ru > ¢, and Rv > ¢, where > <m f(n) means
that we add (1/2)f(m) in place of f(m) when n =
m. Applying Perron’s formula [6], we have

Z b 27m
+ Z ann “2—7”

w
F(u+ w)m—dw
(c) w

w
G(v+ w)n—dw
(¢) w

1 dw
1
— G(U—i-w)F(u—w)d—w
271 (¢) w

for Ru > c, + ¢, v > cp + ¢, ¢ >0, ¢ > 0 which is
the corollary. Next we move the path of integration
from [, to [, (resp. from [, to [, ) and by
the theorem of residue we lastly have the theorem.
Ol
We show some examples. The equations in the
examples are extended meromorphically to the whole
complex plane as far as the values in the equations
are finite.

Example 1.
() = Cutv -1 ==+ —=1
1 dw
T omi ), b)C(“‘*‘“’)C( w);
! du

[Vol. T9(A),

foru+v#2,0<Ru—1<b<(3/2),0<Rv—-1<
" < (3/2) where ((s) is the Riemann zeta function.

Example 2

(u)*¢(v)?
={2¢(u+v—1)¢(u+v—-1)

R

1 1
+C(u+v_12{1—u +(1—’U)2}
+

1 5 dw
T omi ) C(u+w)*¢(v —w)?—
1 9 5 dw
2mi Jy o+ w)clu—w) 2

foru+v#2,0<Ru—-1<b<],0<Rv—-1<¥b <
1 where v = 79 is the Euler constant.

Example 3.

((u)’¢(v)?
[6¢0u+0 - 1¢'u+0 - 1)?
+3¢(u+v—1)%¢"(w+v—1)
—970¢(u+v - 1)’ (u+v—1)

1 1
+3(7% —m)C(u+v—1) }{1—u+1—U}
+{6¢(u+v—1)*C"(u+v—1)

1 1
—3v0¢(u+v — 1)3}{(1 )2 + (1— u)Q}

+2¢(u v~ 1)3{(1 —1u)3 "a —1v)3H

1 3 g dw
_% (_b)C(U+UJ) C(’U—U}) ;
1 3 g dw
~ gt Ly, SO e

foru+v#2,0<Ru—-1<b<(3/4),0< Rv—
1 < b < (3/4) where 7, is the n-th generalized Euler
constant defined by

(oo}
s Z :
Example 4.

¢(u)¢(v)?
((utv—1)°
1—u

+{{(u+v—1)=2v¢(u+v—1)}

TL

'Yns_l)

1—w
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Clu+v-1) I, (b, u)
1—wv)2 1 d
(1—v) =— 1 (27n)~% sinz(u—z)F(z—u+1)—Z
1 2 dw 27 (b) 2 z
5 Glu+w)¢(o —w)™——
T J(~b) and can move the path of integration to the left as
1 d .
-5 Clv+ w)QC(u _ w)—w follows:
T (=) w
In(bla U’)
— — 1 d
for ul+v7é2, 0<Ru—1<b<(3/2), 0 <Rv L (27m)_zsinz(u—z)l‘(z—u—i—l)—z
1< b < 1. 271 (b1) 2 z

Example 5.

neN;
1<2n<2[T?/3]

-1
Aoz v
u+2n v+2n

where (¢'/¢)(s) := (¢'(5))/(¢(s)) and p is the non-

trivial zero of ¢(s).

Lastly we restrict ourselves to the special case
Example 1. We denote the first integral in the equa-
tion by gp(u,v), that is,

~1
w) =g [ e —w)

dw
o

w

1 T
— 2 2 u—l_ 2 —Z i _
(2m) 5rd /(b)( m) 7 sin 2(u z)

xT(z—u+1)¢(v+w)(z —u+ 1)%

where we used the functional equation of ((s) after
the change of the variables.
Ru < b, then we have

Moreover we assume

gv(u,v)
(oo}
=2(2m)% ! Z 01— u_n(n)n® !
n=1

1 d
X 5 (b)(27m)_z sing(u—z)r(z —u—i—l)f
where o.(n) :=3_,,, d* (z € C).

We put

which is absolutely convergent for by + (1/2) < Ru,
0<Ru—1<b;.
By the formula [2, p. 325]:

1 , d
Gy “ z°T(s + a)?s =T(a,z) (¢>0, Rz >0)
1 , d
o o (iz)°T'(s + a)?s =T(«,ix)
1
(c>0, §Roz<§—c, xER)
where

(o)
o, x) :/ z*te7tdt (largal < )
x

is the incomplete gamma function, we have

1 ™
—e~ 31 0-UID(1 — u, 2min)

1 ™
+ 5@7“1—“)1“(1 — u, —27in)

o0
:/ ™% cos xdx
2mn
o0
zu/ T
2mn

where we used the formula [3, p. 149]

o0
/ 2 cos zdx
u

1 &, 1 =,
= 56_7’“1’(% iu) + 567’“1’(@, —iu).

In(bl, u) =

(Ru > 0)

u=Llgin xdx

(Ru > —1)

Then we have

gv(u,v)

o

(o)
=2(2n)% ! Z al_u_v(n)n“_lu/ x”
n=1 2

™

“=Llgin xdx.

Therefore we obtain the following theorem which is
Wilton’s expression for the product of two Riemann’s
zeta functions [7].

Theorem 2 (Wilton). For Ru, Rv > -1
R(u+v) >0 and u+v # 2, we have

)
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C(u)¢(v) decomposition we can appeal to Perron’s formula to
_ 1 1 1 continue our procedure.
=((utov— ){ u—1 + v—1 } Our Theorem 1 gives a unified method to con-
L s L o0 L struct the mean value theorem of wider class of
+2(2m)" Zal_u_v(n)n“_ U/ z~"" "sinzdr  Dirichlet series including Wilton’s formula (Theo-
n=1 2 rem 2, [7]), Bellman’s formula (Example 2, [4]) and
0o Joe) . .
+ 2(27T)v—1 Z Ul_u_@(n)n”_lv/ e Vsinpde. SO OM- Lastly we should pomt.out that. Example 1 is
= omn the first example that ((-) satisfies an integral equa-

Remarks. Our very simple idea of the decom-
position (in the proof of Theorem 1):

BRI DIEDY

n<m n=m n>m

of

0o 0o
n=1m=1

is new in place of that of Atkinson’s [1]:

PIRDIEDY

n<m n=m n>m
by making use of which he derived the square mean
value theorem of the Riemann zeta-function now
called Atkinson’s formula. Motohashi generalized
this Atkinson’s decomposition to matrix version to
develop his fourth mean value theory of the Riemann
zeta-function [5]. Although Atkinson’s decomposi-
tion can work only in the case of the Rimannn zeta-
function and N L(s, x), but our decomposition can
work in wider class of Dirichlet series because in our

tion whereas it is well known that ¢(-) cannot satisfy
any algebraic differential equation.
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